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Abstract—A recent integration showed that ant colony opti-
mization (ACO) algorithms with immigrants schemes perform
well on different variations of the dynamic travelling salesman
problem. In this paper, we address ACO for the dynamic vehicle
routing problem (DVRP) with traffic factor where the changes
occur in a cyclic pattern. In other words, previous environments
will re-appear in the future. Memory-based immigrants are
used with ACO in order to collect the best solutions from the
environments and use them to generate diversity and transfer
knowledge when a dynamic change occurs. The results show
that the proposed algorithm, with an appropriate size of memory
and immigrant replacement rate, outperforms other peer ACO
algorithms on different DVRP test cases.

I. I NTRODUCTION

Ant colony optimization (ACO) algorithms consist of a
population of ants that cooperate via their pheromone trails,
where each ant deposits pheromone to its trails and the
remaining ants can exploit it [5]. ACO algorithms have been
applied and showed good performance on difficult optimiza-
tion problems [4]. The environment of most of the problems
addressed with ACO remains fixed during the execution of
the algorithm. However, many real-world applications have
dynamic environments, where the changing optimum needs to
be tracked over time [19].

ACO algorithms can adapt to dynamic optimization prob-
lems (DOPs) since they are inspired from nature, which is a
continuous adaptation process [11]. More precisely, they can
adapt by transferring knowledge from past environments [1].
However, ACO algorithms face a serious challenge because
of the stagnation behaviour, where all ants follow the same
path from early stages of the algorithm. As a result, the algo-
rithm loses the adaptation capability because high intensity
of pheromone trails are generated to a single path, and it
is difficult for the population of ants to adapt to the new
environment when a dynamic change occurs. A simple way to
address this challenge is to re-initialize the pheromone trails
equally after the change and consider each environment as the
arrival of a new problem instance. Usually, a global restart
of the algorithm is not efficient and it is computationally
expensive. It would only be a sufficient choice when the

environment changes completely, and transferring knowledge
from previous environments will not make sense [2].

Recently, developing strategies for ACO algorithms to
deal with the premature convergence problem and address
DOPs has attracted a lot of attention, which includes local
and global restart strategies [9], memory-based approaches
[8], pheromone manipulation schemes to maintain diversity
[6], and immigrants schemes to increase diversity [14]–[16].
These approaches have been applied to the dynamic travelling
salesman problem (DTSP), which is the simplest case of a
DVRP, i.e., only one vehicle is used. Among them, immi-
grants schemes and memory-based approaches showed good
performance in dynamic environments.

In this paper, we apply a hybridization of a memory-based
approach and an immigrants scheme, called memory-based
immigrants ACO (MIACO), to the dynamic VRP (DVRP) with
traffic factor that changes in a cyclic pattern, which means
that old environments are guaranteed to re-appear again in the
future. The environmental changes are applied in such a way as
to represent potential traffic jams over 24 hours. For example,
during rush hours, the traffic factor is high, whereas during
evening hours it is low. The aim of MIACO is to maintain the
diversity via immigrants during the execution of the algorithm,
and to transfer knowledge via memory to guide the population
on environments that are previously visited.

The rest of the paper is organized as follows. Section II
describes the DVRP with cyclic traffic factors. Section III
describes the ant colony system (ACS), which is one of the
best performing algorithms for the VRP. Section IV describes
MIACO where immigrants and memory schemes are inte-
grated to ACO. Section V describes the experiments carried
out by comparing MIACO with other peer ACO algorithms.
Finally, Section VI concludes this paper with directions for
future work.

II. T HE DVRP WITH CYCLIC TRAFFIC FACTOR

The VRP is classified asNP-hard [13]. The basic VRP
can be described as follows: a number of vehicles with a
fixed capacity need to satisfy the demand of all the customers,



starting from and finishing at the depot. There are many
variations and extensions of the VRP, due to its similarities
with many real-world application [18], such as the VRP with
multiple depots, the VRP with service time, the VRP with
pickup and delivery, the VRP with time windows, and so on.

Usually, the VRP is represented by a complete weighted
graphG = (V,E), with n+1 nodes, whereV = {u0, . . . , un}
is a set of vertices corresponding to the customers (or de-
livery points) ui (i = 1, · · · , n) and the depotu0, and
E = {(ui, uj) : i 6= j} is a set of edges. Each edge(ui, uj)
is associated with a non-negativedij which represents the
distance (or travel time) betweenui anduj . For each customer
ui, a non-negative demandqi is given, whereas for the depot
u0, a zero demand is associated, i.e.,q0 = 0.

In this paper we consider the capacitated VRP where the
aim is to find the route (or a set of routes) with the lowest
cost without violating the following constraints:

1) every customer is visited exactly once by only one
vehicle;

2) every vehicle starts and finishes at the depot;
3) the total demand of every route of a vehicle must not

exceed the capacityQ of the vehicle.

The number of routes identifies the corresponding number of
vehicles used to generate one VRP solution, which is not fixed
but chosen by the algorithm.

From the stationary capacitated VRP described above
we generate a dynamic variation, where the environmental
changes are cyclic. A typical benchmark problem, is the DVRP
with dynamic demands [12], [18]. However, in this paper we
generate a DVRP with traffic factors, where each edge(ui, uj)
is associated with a traffic factortij . Therefore, the cost to
travel fromui to uj is cij = dij × tij . Note that the cost to
travel fromuj to ui may differ due to different traffic factor.
For example, one road may have more traffic in one direction
and no traffic on the opposite direction.

Every f iterations, a random numberR ∈ [FL, FU ] is
generated to represent potential traffic jams, whereFL and
FU are the lower and upper bounds of the traffic factor,
respectively. Each edge has a probabilitym to have a traffic
factor, by generating a differentR to represent high and low
traffic jams on different roads, i.e.,tij = 1 + R , where
the remaining edges are set totij = 1 (indicates no traffic).
Note thatf andm represent the frequency and magnitude of
changes in the DVRP, respectively.

A cyclic environment can be constructed by generating
different dynamic cases with traffic factors as the base states,
representing DVRP environments with either low, normal, or
high traffic. Then, the environment cycles among these base
states in a fixed logical ring. Depending on the period of
the day, environments with different traffic factors can be
generated. For example, during the rush hour periods, a higher
probability is given to generateR closer toFU , whereas during
evening hour periods, a higher probability is given to generate
R closer toFL.

III. ACO FOR THEDVRP

ACO algorithms consists of a population ofµ ants where
they construct solutions and share their information with
each other via their pheromone trails. Ants “read” pheromone
from others and “write” pheromone to their trails. The first
ACO algorithm developed is the Ant System (AS) [5]. Many
variations and extensions of the AS have been developed over
the years and applied to different optimization problems [3],
[4], [20].

The best performing ACO algorithm for the DVRP is the
ACS [3]. There is a multi-colony variation of this algorithm
applied to the VRP with time windows [7]. In this paper,
we consider the single colony which has been applied to the
DVRP [17]. Initially, all the ants are placed on the depot and
all pheromone trails are initialized with an equal amount. With
a probability1−q0, whereq0(0 ≤ q0 ≤ 1) is a parameter of the
pseudo-randomproportional decision rule (usuallyq0 = 0.9
for ACS), an antk chooses the next customerj from customer
i, as follows:

pkij =







[τij ]
α[ηij ]

β

∑

l∈Nk
i

[τil]
α[ηil]

β , if j ∈ Nk
i ,

0, otherwise,
(1)

where τij is the existing pheromone trail between citiesi
and j, ηij is the heuristic information available a priori,
which is defined asηij = 1/cij, where cij is the distance
travelled (includingtij ) between citiesi and j, Nk

i denotes
the neighbourhood of unvisited customers of antk when its
current customer isi, andα and β are the two parameters
that determine the relative influence of pheromone trail and
heuristic information, respectively. With the probability q0, ant
k chooses the next city, i.e.,z, with the maximum probability,
which satisfies the following formula:

z = argmax
j∈Nk

i

[τij ]
α
[ηij ]

β
. (2)

However, if the choice of the next customer will lead to an
infeasible solution, i.e., exceeding the maximum capacityof
the vehicle, the depot is chosen and a new vehicle route starts.

When all ants construct their solutions, the best ant retraces
the solution and deposits pheromone globally according to its
solution quality on the corresponding trails, as follows:

τij ← (1− ρ)τij + ρ∆τbestij , ∀(i, j) ∈ T best, (3)

where 0 < ρ ≤ 1 is the pheromone evaporation rate and
∆τbestij = 1/Cbest, whereCbest is the total cost of the best
tour T best. Moreover, a local pheromone update is performed
every time an ant chooses another customerj from customer
i as follows:

τij ← (1− ρ)τij + ρτ0, (4)

whereρ is defined as in Eq. (3) andτ0 is the initial pheromone
value.

The pheromone evaporation is the mechanism that helps the
population to “forget” bad solutions constructed in previous
environments by eliminating unnecessary pheromone trailsand



Algorithm 1 MIACO and MEACO
1: initialize parameters
2: initialize antsP (0)
3: initialize pheromone trailsτinit
4: initialize klong(0) with random ants
5: kshort(0) := empty, tM := rand[5, 10] andt := 0
6: while termination conditionnot satisfieddo
7: for k := 1 to µ do
8: construct VRP solution by antk
9: evaluatek

10: updateP (t)
11: end for
12: Add Ks best ants fromP (t) into kshort(t)
13: evaluate(klong(t))
14: if t := tM || change detectedthen
15: UpdateMemory(klong(t)) using Algorithm 2
16: tM := t+ rand[5, 10]
17: end if
18: if t := 0 then
19: update pheromone usingkshort(t)
20: else
21: if MIACO is selectedthen
22: bestM := find the best inklong(t)
23: generate the setSmi usingbestM
24: replace worst ants inkshort(t) with Smi

25: end if
26: if MEACO is selectedthen
27: update pheromone usingklong(t)
28: end if
29: update pheromone usingkshort(t)
30: end if
31: t := t+ 1
32: klong(t) := klong(t− 1)
33: end while

adapt to the new environment. The recovery time depends on
the size of the problem and magnitude of change.

IV. M EMORY-BASED IMMIGRANTS AND MEMORY

ENHANCED ACO FOR THEDVRP

A. Framework

The framework of the ACO algorithms enhanced with
memory, i.e., MIACO and memory enhanced ACO (MEACO),
as shown in Algorithm 1, is based on the ACO-based al-
gorithms with immigrants used for the DTSP in previous
work [14], [15]. It will be interesting to observe whether
the framework based on immigrants schemes is beneficial for
more realistic problems, such as the DVRP with cyclic traffic
factors, as described in Section II. MEACO is identical with
MIACO except that it does not generate immigrants, and it
is considered in our experiments to investigate the effect of
memory-based immigrants.

The initial phase of the algorithm and the solution construc-
tion of the ants are the same with the ACS (withq0 = 0.0);
see Eq. (1). The difference of the proposed framework is

that it uses a short-term memory every iterationt, denoted
askshort(t), of limited sizeKs, and it is associated with the
pheromone matrix. Initially,kshort(0) is empty where at the
end of the iteration theKs best ants will be added tokshort(t).
Each antk stored inkshort(t) deposits a constant amount of
pheromone to the corresponding trails, as follows:

τij ← τij +∆τkij , ∀ (i, j) ∈ T k, (5)

where∆τkij = (τmax − τ0)/Ks andT k is the tour of antk.
Here, τmax and τ0 are the maximum and initial pheromone
value, respectively.

Every iteration the ants fromkshort(t−1) are replaced with
the Ks best ants from iterationt, and a negative update is
performed to their pheromone trails, as follows:

τij ← τij −∆τkij , ∀ (i, j) ∈ T k, (6)

where∆τij andT k are defined as in Eq. (5). This is because
no ants can survive in more than one iteration due to the
changing environment.

B. Memory Enhanced ACO (MEACO)

Apart from thekshort(t) described above, MEACO has a
long-term memory, denoted asklong(t), of limited sizeKl,
which is updated by replacing the closest ant inklong(t) with
the best-so-far ant whenever there is a dynamic change. The
metric to define how close antp is to antq is defined as:

Mpq = 1−
CEpq

n+ avg(NVp, NVq)
(7)

where CEpq is defined as the number of common edges
between the ants,n is the number of customers, andNVp and
NVq are the number of vehicles antsp and q have in their
solutions, respectively. A valueMpq closer to 0 means that
the ants are similar. Every iterationt, the ants inklong(t) are
re-evaluated in order to be valid with the new environment in
case a dynamic change occurs. Moreover, an environmental
change is detected if there is a change to the cost of the
solutions stored inklong(t) at iterationt + 1 when they are
re-evaluated.

The update ofklong(t) occurs whenever a dynamic change
is detected. However, the update does not depend only on
the detection of dynamic changes since in some real-world
applications it is not easy or impossible to detect changes.
For example, in dynamic environments, where noise is added
in every iteration of the algorithm, it may also indicate envi-
ronmental changes using the detection mechanism described
above. As a result, the algorithm will not be able to distinguish
whether the change of the fitness in a solution is because of
noise or an environmental change, and the detection mech-
anism will not work properly. Note that this is not tested in
the experiments, and deserves further investigation. Therefore,
instead of updatingklong(t) only in a fixed time interval, e.g.,
everyf iterations, which is dependent on the dynamic changes,
klong(t) is also updated in a dynamic pattern. For every update
of klong(t), a random numberR ∈ [5, 10] is generated, which
indicates the next update time; see Algorithm 2. For example,



Algorithm 2 UpdateMemory(klong(t))

1: if t := tM then
2: best := find the iteration best ant inP (t)
3: end if
4: if change detectedthen
5: best := find the best inkshort(t− 1)
6: evaluate(best)
7: end if
8: if still any random ant inklong(t) then
9: replace a random ant inklong(t) with best

10: else
11: find the antCM in klong(t) closest tobest
12: if best is better thanCM then
13: CM := best
14: end if
15: end if

if the memory is updated at iterationt, the next update will
occur at iterationTM := t + R [22], [23] (if no change is
detected before iterationTM ).

For every iterationt, kshort(t) is used to update the
pheromone trails, and whenever a dynamic change is detected,
klong(t) is merged withkshort(t) to add additional pheromone
and transfer knowledge for the ants on iterationt + 1 as
presented in Algorithm 1. MEACO may perform well on
slightly changing environments since the knowledge transfer
may still be fit, and on cyclic environments since useful
solutions fromklong are used to guide the population on re-
appeared environments.

C. Memory-based Immigrants ACO (MIACO)

The main concern when dealing with immigrants schemes
is how to generate immigrant ants, that represent feasible
solutions. Traditional immigrants are generated randomly, i.e.,
random immigrants ACO (RIACO), which represent random
VRP solutions. RIACO has been found to perform better in
fast and significantly changing environments for the DTSP,
since they enhance diversity [16]. However, there is a high
risk of too much randomization with RIACO that may disturb
the optimization process and degrade the performance.

Differently from RIACO, which generates diversity ran-
domly with the immigrants, MIACO generates guided diver-
sity by transferring knowledge using the best ant fromklong(t)
which is updated as in MEACO; see Algorithm 2. A memory-
based immigrant ant for the DVRP is generated as follows.
The best ant of the previous environment is selected in order
to use it as the base to generate memory-based immigrants.
The depots of the best ant are removed and adaptive inversion
is performed based on the inver-over operator [10]. When the
inversion operator finishes, the depots are added so that the
capacity constraint is satisfied in order to represent one feasible
VRP solution.

Considering the proposed framework above, on iterationt,
the best ant fromklong(t) is used as the base to generate a
set Smi of r × Ks immigrants, wherer is the replacement

rate. The memory-based immigrants replace the worst ants in
kshort(t) before the pheromone trails are updated as presented
in Algorithm 1.

The MIACO algorithm has been found to perform better
in slowly and slightly changing environments for the DTSP
[14]. MIACO inherits the advantages of both MEACO to
guide the population directly to an old environment already
visited and RIACO to increase diversity. It is very important
to store different solutions inklong(t) which represent different
environments that might be useful in the future. This is
achieved by the replacement strategy used in Eq. (7). The
key idea behind MIACO is to provide guided diversity into
the pheromone trails in order to avoid the disruption of the
optimization process. However, there is a risk to transfer too
much knowledge and start the optimization process from a
local optimum and get stuck there.

V. EXPERIMENTAL STUDY

A. Experimental Setup

In the experiments, we compare the proposed MIACO and
MEACO algorithms with RIACO and the traditional ACS,
described in Section III. All the algorithms have been applied
to thevrp45, vrp72, andvrp135 problem instances1.

To achieve a good balance between exploration and ex-
ploitation, most of the parameters have been optimized and
obtained from our preliminary experiments where others have
been inspired from literature [14], [15]. For all algorithms,
µ = 50 ants are used (expect on MIACO and MEACO where
µ = 46), α = 1 andβ = 5. For ACS,q0 = 0.9, andρ = 0.7.
Note that a lower evaporation rate has been used for ACS,
i.e. ρ = 0.1, with similar or worse results. For RIACO and
MIACO, q0 = 0.0, Ks = 10, τmax = 1.0 and r = 0.4. For
MIACO and MEACO,Kl = 4.

For each algorithm on a DVRP instance, 30 independent
runs were executed on the same cyclic environmental changes.
The algorithms were executed for 1000 iterations and the
overall offline performance is calculated as follows:

P̄offline =
1

G

G
∑

i=1





1

N

N
∑

j=1

P ∗

ij



 (8)

whereN defines the number of runs,G defines the number
of iterations for each run andP ∗

ij defines the tour cost of the
best ant since the last dynamic change of iterationi in run j
[11]. Of course a lower value indicates a better performance.

The value off was set to 10 and 100, which indicate fast
and slowly changing environments, respectively. The valueof
m was set to 0.1, 0.25, 0.5, and 0.75, which indicate the
degree of environmental changes from small, to medium, to
large, respectively. The cyclic environment has 4 states and
the bounds of the traffic factor are set asFL = 0 andFU = 5.
As a result, eight dynamic environments, i.e., 2 values of
f × 4 values ofm, were generated from each stationary VRP

1Taken from the Fisher benchmark instances available at http://neo.lcc.uma.
es/radi-aeb/WebVRP/



TABLE I
EXPERIMENTAL RESULTS REGARDING THE OFFLINE PERFORMANCE OF THE ALGORITHMS FORDVRP WITH TRAFFIC FACTOR

Alg. & Inst. vrp45 vrp72 vrp135

f = 10, m ⇒ 0.1 0.25 0.5 0.75 0.1 0.25 0.5 0.75 0.1 0.25 0.5 0.75

ACS 895.5 925.1 1179.3 1542.2 307.6 338.6 396.1 447.3 1409.6 1541.4 1767.8 2494.9

RIACO 851.4 864.8 1053.9 1363.4 295.5 318.0 380.7 426.1 1409.8 1541.0 1757.0 2434.9

MEACO 855.7 863.5 1060.5 1377.5 294.3 319.8 379.6 426.7 1413.4 1535.4 1752.1 2452.4

MIACO 853.3 862.5 1052.6 1361.5 291.9 315.4 379.2 425.0 1394.1 1532.2 1748.3 2433.0

f = 100, m ⇒ 0.1 0.25 0.5 0.75 0.1 0.25 0.5 0.75 0.1 0.25 0.5 0.75

ACS 861.8 886.3 1067.7 1394.3 301.4 325.6 384.0 425.5 1366.2 1484.1 1686.7 2281.9

RIACO 829.6 833.5 975.2 1214.8 282.2 297.2 354.6 390.4 1354.6 1437.7 1623.6 2173.2

MEACO 836.5 834.3 987.4 1241.6 282.9 298.7 351.8 391.7 1353.8 1437.0 1623.2 2178.0

MIACO 833.3 830.4 972.0 1213.1 277.6 288.7 349.1 387.7 1326.2 1425.5 1601.4 2121.2

TABLE II
STATISTICAL TEST RESULTS REGARDING THE OFFLINE PERFORMANCEOF THE ALGORITHMS FORDVRP WITH TRAFFIC FACTOR

Alg. & Inst. vrp45 vrp72 vrp135

f = 10, m ⇒ 0.1 0.25 0.5 0.75 0.1 0.25 0.5 0.75 0.1 0.25 0.5 0.75

ACS⇔MEACO − − − − − − − − + − − −

RIACO⇔ACS + + + + + + + + + ∼ + +

RIACO⇔MEACO + − + + − + − ∼ + + − +

MIACO⇔ACS + + + + + + + + + + + +

MIACO⇔MEACO + + + + + + ∼ + + + + +

MIACO⇔RIACO − + ∼ + + + + + + + + ∼

f = 100, m ⇒ 0.1 0.25 0.5 0.75 0.1 0.25 0.5 0.75 0.1 0.25 0.5 0.75

ACS⇔MEACO − − − − − − − − − − − −

RIACO⇔ACS + + + + + + + + + + + +

RIACO⇔MEACO + + + + ∼ ∼ − + ∼ ∼ ∼ +

MIACO⇔ACS + + + + + + + + + + + +

MIACO⇔MEACO + + + + + + + + + + + +

MIACO⇔RIACO − + + ∼ + + + + + + + +

instance, as described in Section II, to systematically analyze
the adaptation and searching capability of each algorithm on
the DVRP.

B. Experimental Results and Analysis

The experimental results regarding the offline performance
of the algorithms are given in Table I and the corresponding
statistical results of Wilcoxon rank-sum test, at the 0.05 level
of significance, are presented in Table II, where the symbol
“+” or “−” indicates that the first algorithm is significantly
better than or significantly worse than the second one, re-
spectively, and “∼” indicates no significant difference between
two algorithms. Moreover, to better understand the dynamic
behaviour of algorithms, the results of slow and fast changing
environments, are plotted in Figs. 1 and 2, withm = 0.1 and
m = 0.75 for the first 1000 and 500 iterations, respectively.
From the experimental results, several observations can be
made by comparing the behaviour of algorithms.

First, RIACO outperforms ACS in all the dynamic test
cases; see the results of RIACO⇔ ACS in Table II. This

validates our expectation that ACS need sufficient time to
recover when a dynamic change occurs, which can be also
observed from Fig. 1. This is because the pheromone evap-
oration is the only mechanism used to eliminate pheromone
trails that are not useful to the new environment, and may bias
the population to areas that are not near the new optimum. On
the other hand, RIACO uses the proposed framework where
the pheromone trails exist only in one iteration and are re-
generated in the next iteration.

Second, MEACO outperforms ACS in all dynamic test
cases; see the results of MEACO⇔ ACS in Table II. This
is due to the knowledge transferred using the solutions from
klong(t) when the environment changes. However, MEACO is
outperformed by RIACO in most fast changing environments
f = 10 and significantly changing environmentsm = 0.75
(even whenf = 100); see the results of RIACO⇔ MEACO
in Table II. The knowledge transferred may not be useful when
the environments are not similar or when the available time is
not enough to store useful solutions inklong(t).
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Fig. 1. Dynamic behaviour of ACO algorithms on slow changingenvironment
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Fig. 2. Dynamic behaviour of ACO algorithms on fast changingenvironment

Third, MIACO outperforms ACS in all dynamic test cases
as RIACO; see the results MIACO⇔ ACS in Table II. This

is due to the same reasons RIACO outperforms the traditional
ACS. Furthermore, MIACO outperforms RIACO and MEACO
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Fig. 3. Offline performance of RIACO and MIACO with differentreplace-
ment ratesr.

in almost all dynamic test cases; see the results of MIACO⇔
RIACO and MIACO⇔ MEACO in Table II. MIACO is able
to guide the population of ants to old environments that willre-
appear again in the future using solutions fromklong. To some
extent, this validates our expectation that MIACO inheritsthe
merits from both memory and immigrants schemes, but we
furthermore investigate their effect.

C. Experimental Results Regarding the Replacement Rater

In order to investigate the effectiveness of the immi-
grants schemes, further experiments have been performed
on the same problem instances with the same parameters
used before but with different replacement rates, i.e.,r ∈
{0.0, 0.2, 0.4, 0.6, 0.8, 1.0}. In Fig. 3, the offline performance
of RIACO and MIACO with the varying replacement rate for
f = 100 andm = 0.1 andm = 0.75 for all problem instances
are presented. The experimental results of the remaining
dynamic test cases are similar, wherer = 0.0 means that
no immigrants are generated to replace ants inkshort.

From the results, it can be observed that memory-based
immigrants in MIACO improve the performance and validate
our expectation; see the results in Fig. 3 fromr = 0.0 and
r > 0.0. On the other hand, random immigrants in RIACO
improve the performance on some problem instances and some
dynamic test cases, whereas they degrade the performance on
the remaining ones. This is because the random immigrants
may disturb the optimization process of ACO because of too
much randomization on the pheromone trails.

Generally, the performance of RIACO is inconsistent since
on vrp45 the performance is improved, whereas onvrp72
and vrp135 it is degraded. On the other hand, the per-
formance of MIACO is consistent since the performance is
always improved, even if all ants inkshort(t) are replaced
by immigrant ants. The optimization is not disturbed as
in RIACO, since MIACO with r = 1.0 may destroy the
knowledge gained inkshort(t) but generate new knowledge
using the best ant fromklong(t).

D. Experimental Results Regarding the Memory SizeKl

In order to investigate the effectiveness of the memory
scheme, further experiments have been performed on the same
problem instances with the same parameters used before but
with different memory sizesKl, i.e., Kl ∈ {0, 2, 4, 6}. The
population sizeµ was set according toKl in order to have
the same number of evaluations. For example, whenKl = 0
the number of ants is set toµ = 50 normally, whereas when
Kl > 0 the number of ants is toµ = 50 −Kl. In Fig. 4 the
offline performance of MIACO and MEACO with the varying
Kl for f = 100 on all problem instances are presented. The
experimental results of the remaining test cases showed similar
behaviour.

From the results, it is can be observed that the memory
in MIACO improves the performance which validates our
expectation; see the results in Fig. 4 fromKl = 0 to
Kl = 2 and Kl = 4. On the other hand, the memory in
MEACO slightly improves the performance on some problem
instances and some dynamic test cases, whereas it degrades
the performance on the remaining ones. This may be due to
the use ofklong(t), in which MIACO uses the best ant to
generate memory-based immigrants to replace the worst ones
in kshort(t), MEACO mergeskshort(t) andklong(t), and then
pheromone trails are updated. The knowledge transferred from
MIACO is more direct since a solution from one environment
is used, whereas from MEACO it is general since all the from
various environments are used.

Generally, the performance of MEACO is inconsistent
whereas for MIACO it is consistent since it always improves.
It is similar with the effect found previously for the immi-
grants schemes. From the experiments presented in Fig. 4
and on the remaining ones, it is observed that increasingKl

usually degrades the performance since the actual population
is decreased for the sake of achieving the same number of
evaluations. As a result, the search capability of ACO is
degraded because fewer ants explore the search space. In fact,
Branke [2] observed that a standalone memory may not be
enough to address DOPs, and, it should be combined with a
diversity method.

VI. CONCLUSIONS ANDFUTURE WORK

Memory-based immigrants have been successfully applied
to evolutionary algorithms (EAs) to address different binary-
encoded DOPs [21], and to ACO to address DTSPs [15].
In this paper, we apply MIACO to address the DVRP with
traffic factor under cyclic environmental changes, which is
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Fig. 4. Offline performance of MEACO and MIACO with differentmemory sizesKl.

a DOP closer to a real-world application. It combines the
merits of memory and immigrants schemes, where the first
one is able to guide the population into previously visited
environment directly, and the second one is able to increase
and maintain diversity within the population to adapt well in
DOPs. The immigrant ants are generated using the best ant
from the memory as the base and replace the worst ones in
the population.

Comparing MIACO with other peer ACO algorithms on
different test cases of DVRPs, the following concluding re-
marks can be drawn. First, memory-based immigrants per-
form well in dynamic environments under cyclic changes.
Second, random immigrants and memory usually improves the
performance of ACO for DVRPs, but they have inconsistent
behaviour. Finally, MIACO outperforms other peer ACO al-
gorithms in almost all dynamic test cases, and shows that its
behaviour is consistent.

For future work, it would be interesting to apply MIACO
in DVRP with traffic factor where the environment changes
randomly and not cyclically, and compare it with other ACO-
based algorithms with immigrants schemes [14]. The knowl-
edge transferred by memory-based immigrants from previous
environments to the pheromone trails of the new one may
be useful, even if old environments are not guaranteed to re-
appear, when the changing environments are similar. Another
future work is to investigate the performance of MIACO in
dynamic environments with noise where the environmental
changes are undetectable.
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