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Abstract—A recent integration showed that ant colony opti- environment changes completely, and transferring knogded
miZ”ationd(QCO)ta'QQritt_th V¥lttf;] irr:jmigrantst schﬁ_mes plerform from previous environments will not make sense [2].
well on different variations of the dynamic travelling salesman ; ; ;
problem. In this paper, we address ACO for the dynamic vehiat Rece_ntly, developing strategies for ACO algorithms to
routing problem (DVRP) with traffic factor where the changes deal with the premature converger_me pro_blen_w and address
occur in a cyclic pattern. In other words, previous environments DOPs has attracted a lot of attention, which includes local
will re-appear in the future. Memory-based immigrants are and global restart strategies [9], memory-based apprgache
used with ACO in order to collect the best solutions from the [8], pheromone manipulation schemes to maintain diversity
environments and use them to generate diversity and transfe [6], and immigrants schemes to increase diversity [14]}[16

knowledge when a dynamic change occurs. The results show_l_h hes h b lied to the d ict I
that the proposed algorithm, with an appropriate size of menory ese approaches have been applied 1o the dynamic tragsefiin

and immigrant replacement rate, outperforms other peer ACO salesman problem (DTSP), which is the simplest case of a
algorithms on different DVRP test cases. DVREP, i.e., only one vehicle is used. Among them, immi-
grants schemes and memory-based approaches showed good
performance in dynamic environments.

Ant colony optimization (ACO) algorithms consist of a In this paper, we apply a hybridization of a memory-based
population of ants that cooperate via their pheromonestraibpproach and an immigrants scheme, called memory-based
where each ant deposits pheromone to its trails and tinemigrants ACO (MIACO), to the dynamic VRP (DVRP) with
remaining ants can exploit it [5]. ACO algorithms have beetnaffic factor that changes in a cyclic pattern, which means
applied and showed good performance on difficult optimiz#élat old environments are guaranteed to re-appear agdiein t
tion problems [4]. The environment of most of the problemi&iture. The environmental changes are applied in such away a
addressed with ACO remains fixed during the execution td represent potential traffic jams over 24 hours. For exampl
the algorithm. However, many real-world applications hawguring rush hours, the traffic factor is high, whereas during
dynamic environments, where the changing optimum needseigening hours it is low. The aim of MIACO is to maintain the
be tracked over time [19]. diversity via immigrants during the execution of the algjaom,

ACO algorithms can adapt to dynamic optimization prokand to transfer knowledge via memory to guide the population
lems (DOPs) since they are inspired from nature, which isce environments that are previously visited.
continuous adaptation process [11]. More precisely, tteey ¢ The rest of the paper is organized as follows. Section Il
adapt by transferring knowledge from past environments [escribes the DVRP with cyclic traffic factors. Section lll
However, ACO algorithms face a serious challenge becausescribes the ant colony system (ACS), which is one of the
of the stagnation behaviour, where all ants follow the sanbest performing algorithms for the VRP. Section IV descibe
path from early stages of the algorithm. As a result, the-algMIACO where immigrants and memory schemes are inte-
rithm loses the adaptation capability because high intgnsgrated to ACO. Section V describes the experiments carried
of pheromone trails are generated to a single path, andoiit by comparing MIACO with other peer ACO algorithms.
is difficult for the population of ants to adapt to the newvFinally, Section VI concludes this paper with directions fo
environment when a dynamic change occurs. A simple way fisture work.
address this challenge is to re-initialize the pheromoattstr
equally after the change and consider each environmentas th
arrival of a new problem instance. Usually, a global restart The VRP is classified a®vP-hard [13]. The basic VRP
of the algorithm is not efficient and it is computationallycan be described as follows: a number of vehicles with a
expensive. It would only be a sufficient choice when thiixed capacity need to satisfy the demand of all the customers

|I. INTRODUCTION

Il. THE DVRPWITH CycLIC TRAFFIC FACTOR



starting from and finishing at the depot. There are many I1l. ACO FOR THEDVRP

variations and extensions of the VRP, due to its simila&itie Aco algorithms consists of a population pfants where
with many real-world application [18], such as the VRP withey construct solutions and share their information with

multiple depots, the VRP with service time, the VRP withyach other via their pheromone trails. Ants “read” pheroenon
pickup and delivery, the VRP with time windows, and so 0o others and “write” pheromone to their trails. The first
Usually, the VRP is represented by a complete weight@dcO algorithm developed is the Ant System (AS) [5]. Many
graphG = (V, E), with n+1 nodes, wheré” = {uo,...,u,} variations and extensions of the AS have been developed over
is a set of vertices corresponding to the customers (or dfe years and applied to different optimization problendis [3
livery points) u; (i = 1,---,n) and the depotuy, and [4], [20].
E = {(u;,uj) : i # j} is a set of edges. Each edge;,u;)  The best performing ACO algorithm for the DVRP is the
is associated with a non-negativg; which represents the ACS [3]. There is a multi-colony variation of this algorithm
distance (or travel time) betweemn andu;. For each customer applied to the VRP with time windows [7]. In this paper,
u;, @ non-negative demang is given, whereas for the depotwe consider the single colony which has been applied to the
up, @ zero demand is associated, i®.~= 0. DVRP [17]. Initially, all the ants are placed on the depot and
In this paper we consider the capacitated VRP where th# pheromone trails are initialized with an equal amounithW
aim is to find the route (or a set of routes) with the lowest probabilityl —qo, wherego (0 < go < 1) is a parameter of the
cost without violating the following constraints: pseudo-randonproportional decision rule (usuallyy = 0.9

L for ACS), an ant chooses the next customgfrom customer
1) every customer is visited exactly once by only one

) T, as follows:
vehicle;
2) every vehicle starts and finishes at the depot; %, if j € NF,
3) the total demand of every route of a vehicle must not Py = ZlGN},‘ [ral®{ma] (1)
exceed the capacit@ of the vehicle. 0, otherwise

The number of routes identifies the corresponding numberwhere 7;; is the existing pheromone trail between cities
vehicles used to generate one VRP solution, which is not fixéfld j, 7:; is the heuristic information available a priori,
but chosen by the algorithm. which is defined asy;; = 1/¢;;, wherec;; is the distance

From the stationary capacitated VRP described aboyf@velled (includingt;;) between cities and j, N;* denotes
we generate a dynamic variation, where the environmenf3f neighbourhood of unvisited customers of anwhen its
changes are cyclic. A typical benchmark problem, is the DVR§#!TeNt customer is, and o and 5 are the two parameters
with dynamic demands [12], [18]. However, in this paper whhat Qefte_rmme th_e relative mfluencg of pheromopg trail and
generate a DVRP with traffic factors, where each egeu;) heuristic |nformat|on,_res_pectlvgly. With thg probalyili, a}r_1t
is associated with a traffic factds;. Therefore, the cost to ¥ CN00Ses the next city, i.ez, with the maximum probability,
travel fromu; to u; is ¢;; = d;; x t;;. Note that the cost to which satisfies the following formula:
travel fromw; to u; may differ due to differe_nt _traffic fa_ctor._ 2 = argmax [r;;]" [%]B . )

For example, one road may have more traffic in one direction JENF

and no traffic on the opposite direction. However, if the choice of the next customer will lead to an

Every f iterations, a random numbek < [F1, Fu] IS infeasible solution, i.e., exceeding the maximum capafty
generated to represent potential traffic jams, whefeand he vehicle, the depot is chosen and a new vehicle routestart
Fy are the lower and upper bounds of the traffic factor, \when all ants construct their solutions, the best ant rerac

respectively. Each edge has a probabilityto have a traffic o sojution and deposits pheromone globally accordingsto i
factpr, .by generat_lng a differert 'Fo represent high and low solution quality on the corresponding trails, as follows:
traffic jams on different roads, i.et,; = 1 + R , where

the remaining edges are set#g = 1 (indicates no traffic). Tij < (1= p)mj + pATZ-I)]-eSt,V(i,j) e Test 3

Note thatf andm represent the frequency and magnitude of . .
changes in the DVRP, respectively. where(0 < p < 1 is the pheromone evaporation rate and

} ) _Arhest — 1/Cbest, whereCP* is the total cost of the best
A cyclic environment can be constructed by generating

i X ! i ur T*est, Moreover, a local pheromone update is performed
different d_ynamlc cases.wnh traffic fgctors as the bas&s;v‘.,tatevery time an ant chooses another custognépm customer
representing DVRP environments with either low, normal, 9" as follows:
high traffic. Then, the environment cycles among these base
states in a fixed logical ring. Depending on the period of
the day, environments with different traffic factors can beherep is defined as in Eq. (3) and is the initial pheromone
generated. For example, during the rush hour periods, a&highalue.
probability is given to generatR closer tofy;, whereas during  The pheromone evaporation is the mechanism that helps the
evening hour periods, a higher probability is given to gateer population to “forget” bad solutions constructed in preiso
R closer toFp. environments by eliminating unnecessary pheromone #ails

7ij < (1 = p)7i; + po, (4)



Algorithm 1 MIACO and MEACO that it uses a short-term memory every iteratipndenoted

1: initialize parameters as ksnort(t), Of limited size K, and it is associated with the
2: initialize antsP(0) pheromone matrix. Initiallykspo-:(0) is empty where at the
3: initialize pheromone trails;,,;; end of the iteration thé(; best ants will be added ta o+ (t).

4: initialize k;on4(0) with random ants Each antk stored inkg,..+(t) deposits a constant amount of
5 Ksnort(0) := empty, tar := rand[5,10] andt := 0 pheromone to the corresponding trails, as follows:

6: while termination conditiomot satisfieddo X o i

7. for k:=1topudo Tij 4= Tij + AT,V (6,5) € TV, ®)

8 construct VRP solution by arit where Att = (7ynq0 — 70)/ K, and T* is the tour of antk.

9 evaluatek Here, 7,4, and y are the maximum and initial pheromone
10: updateP(t) value, respectively.

11 end for . Every iteration the ants frory,.,(t—1) are replaced with
12:  Add K, best ants fromP(t) into ksnore(t) the K, best ants from iteration, and a negative update is
13: evaluatekiong(t)) performed to their pheromone trails, as follows:

14 if t :=t) || change detectethen

15: UpdateMemoryK;,,,,(t)) using Algorithm 2 Tij Ty — ATELY (6,5) € TV, (6)

16: tu =t + rand(5, 10] whereAr,;; andT* are defined as in Eq. (5). This is because
17 gnd if no ants can survive in more than one iteration due to the
18 if t:=0 then . changing environment.

19: update pheromone usirigp.+(t)

20: else B. Memory Enhanced ACO (MEACO)

21: if MIACO is selectedhen Apart from thek,«(t) described above, MEACO has a
22: bestar := find the best inkion (¢) long-term memory, denoted ds,,,(t), of limited size K,

23: generate the sef,,; usingbest s which is updated by replacing the closest ankig,, (t) with

24: replace worst ants ikport () With Sy the best-so-far ant whenever there is a dynamic change. The
25 end if metric to define how close antis to antg is defined as:

26: if MEACO is selectedhen CE

27 update pheromone usirig,,,, (¢ M, =1-— Pq 7

o8 endplf p rlg g( ) Pq n —+ U/Ug(NVp,N‘/q) ( )

29: update pheromone usirig o (t) where CE,, is defined as the number of common edges
30:  end if between the ants, is the number of customers, afdV,, and

3 ti=t+1 NV, are the number of vehicles antsand ¢ have in their
320 kiong(t) = kiong(t — 1) solutions, respectively. A valud{,, closer to 0 means that
33: end while the ants are similar. Every iteratianthe ants ink;.4(t) are

re-evaluated in order to be valid with the new environment in

case a dynamic change occurs. Moreover, an environmental
adapt to the new environment. The recovery time depends eitange is detected if there is a change to the cost of the
the size of the problem and magnitude of change. solutions stored irk;,n,(t) at iterationt + 1 when they are
re-evaluated.

The update of;,,,4(t) occurs whenever a dynamic change
is detected. However, the update does not depend only on
A. Framework the detection of dynamic changes since in some real-world

The framework of the ACO algorithms enhanced witlapplications it is not easy or impossible to detect changes.
memory, i.e., MIACO and memory enhanced ACO (MEACO)or example, in dynamic environments, where noise is added
as shown in Algorithm 1, is based on the ACO-based dh every iteration of the algorithm, it may also indicate ienv
gorithms with immigrants used for the DTSP in previousonmental changes using the detection mechanism described
work [14], [15]. It will be interesting to observe whetherabove. As a result, the algorithm will not be able to distisgu
the framework based on immigrants schemes is beneficial f@hether the change of the fithess in a solution is because of
more realistic problems, such as the DVRP with cyclic trafficoise or an environmental change, and the detection mech-
factors, as described in Section Il. MEACO is identical witlanism will not work properly. Note that this is not tested in
MIACO except that it does not generate immigrants, and tihe experiments, and deserves further investigation.efbie,
is considered in our experiments to investigate the efféct imstead of updating;..,(t) only in a fixed time interval, e.g.,
memory-based immigrants. everyf iterations, which is dependent on the dynamic changes,

The initial phase of the algorithm and the solution construé;,,,(t) is also updated in a dynamic pattern. For every update
tion of the ants are the same with the ACS (with= 0.0);  of kiony(t), a random numbeR € [5, 10] is generated, which
see Eg. (1). The difference of the proposed framework iisdicates the next update time; see Algorithm 2. For example

IV. MEMORY-BASED IMMIGRANTS AND MEMORY
ENHANCED ACO FOR THEDVRP



Algorithm 2 UpdateMemorykiony(t)) rate. The memory-based immigrants replace the worst ants in

1: if ¢ =ty then ksnort (t) before the pheromone trails are updated as presented
2:  best := find the iteration best ant i (t) in Algorithm 1.

3 end if The MIACO algorithm has been found to perform better
4: if change detectethen in slowly and slightly changing environments for the DTSP
5. best = find the best iMksport(t — 1) [14]. MIACO inherits the advantages of both MEACO to
6: evaluatefest) guide the population directly to an old environment already
7. end if visited and RIACO to increase diversity. It is very impoitan

8: if still any random ant irk;,,,4(¢) then to store different solutions ik, 4 (t) which represent different

9: replace a random ant iky,nq(t) with best environments that might be useful in the future. This is
10: else achieved by the replacement strategy used in Eq. (7). The
11:  find the antCys in kiong(t) closest tobest key idea behind MIACO is to provide guided diversity into
12:  if best is better thanC'y, then the pheromone trails in order to avoid the disruption of the
13: Ch = best optimization process. However, there is a risk to transfer t
14:  end if much knowledge and start the optimization process from a
15: end if local optimum and get stuck there.

V. EXPERIMENTAL STUDY

if the memory is updated at iteration the next update will A. Experimental Setup

occur at iterationly := ¢ + R [22], [23] (if no change is | the experiments, we compare the proposed MIACO and
detected before iteratiofiy). _ MEACO algorithms with RIACO and the traditional ACS,
For every iterationt, ksnori(t) is used to update the gescribed in Section I11. All the algorithms have been aggpli
pheromone trails, and whenever a dynamic change is defecigthe v r p45, vr p72, andvr p135 problem instancés
Kiong (t) is merged withk,o,+(¢) to add additional pheromone 14 achieve a good balance between exploration and ex-
and transfer knowledge for the ants on iteratior- 1 as pioitation, most of the parameters have been optimized and
presented in Algorithm 1. MEACO may perform well ongpiained from our preliminary experiments where othershav
slightly changing environments since the knowledge temsfygoap, inspired from literature [14], [15]. For all algoritsm
may still be fit, and on cyclic environments since useftﬁ — 50 ants are used (expect on MIACO and MEACO where
solutions fromk;,,, are used to guide the population on r€;, — 46), a = 1 and 8 = 5. For ACS,qo = 0.9, andp = 0.7.
appeared environments. Note that a lower evaporation rate has been used for ACS,

C. Memory-based Immigrants ACO (MIACO) i.e. p = 0.1, with similar or worse results. For RIACO and

) . _ . MIACO, ¢ = 0.0, K5, = 10, Tynee = 1.0 andr = 0.4. For
The main concern when dealing with immigrants SChemR}ﬁACO and MEACO, K, — 4

s hO.W to gen.e.rate _immﬁgrant ants, that represent.feasibIeFor each algorithm on a DVRP instance, 30 independent
forlltétlogsi.mTr;?dltlo?al Al\rgronlglrre?ztcsgre gﬁnﬁrated randtomiya runs were executed on the same cyclic environmental changes
ando imigrants ( ), which represent ran Mhe algorithms were executed for 1000 iterations and the
VRP solutions. RIACO has been found to perform better 'é\/erall offline performance is calculated as follows:
fast and significantly changing environments for the DTSP, '
since they enhance diversity [16]. However, there is a high B 18 1
risk of too much randomization with RIACO that may disturb Poggiine = > ~ > P (8)
the optimization process and degrade the performance. i=1 j=1
D|ﬁergntly frqm RIACO’ which generates d|ve_r5|ty AN here N defines the number of rung; defines the number

domly with the immigrants, MIACO generates guided diver-; . . N :
. . ) of iterations for each run anf’. defines the tour cost of the
sity by transferring knowledge using the best ant friag,, (¢) v

g ) ) . best ant since the last dynamic change of iteratiam run j
which is updated as in MEACO; see Algorithm 2. A memory'11]. Of course a lower value indicates a better performance

based immigrant ant for the DVRP is generated as foIIovJs The value off was set to 10 and 100, which indicate fast
The best ant of the previous environment is selected in order . . o
; L apd slowly changing environments, respectively. The value
to use it as the base to generate memory-based immigrants, "<t 10 0.1. 025 0.5 and 0.75. which indicate the
The depots of the best ant are removed and adaptive inversion Lo T T :
: : egree of environmental changes from small, to medium, to
is performed based on the inver-over operator [10]. When the . : .
. . . rge, respectively. The cyclic environment has 4 states an
inversion operator finishes, the depots are added so that tl?? )
. s A : the bounds of the traffic factor are setids = 0 and Fyy = 5.

capacity constraint is satisfied in order to represent oasiliée : ; ) .
VRP solution. As a result, eight dynamic environments, i.e., 2 values of

Considering the proposed framework above, on iteraztjonf x 4 values ofm, were generated from each stationary VRP

the best ant fromki,n,(t) is used as the base to generate airaken from the Fisher benchmark instances available at/http.lcc.uma.
set S,,; of r x K, immigrants, where- is the replacement es/radi-aeb/WebVRP/



TABLE |
EXPERIMENTAL RESULTS REGARDING THE OFFLINE PERFORMANCE OFHE ALGORITHMS FORDVRP WITH TRAFFIC FACTOR

[ Ag. &inst. || vr p45 VI p72 vrp135 |
f=10,m= |/ 01 025 05 075 |01 025 05 075] 01 025 05 0.75
ACS 8955 9251 1179.3 15422 307.6 338.6 396.1 447.3 1409.6 15414 1767.8 24944
RIACO 8514 864.8 1053.9 1363.4 2955 318.0 380.7 426.]1 1409.8 1541.0 1757.0 2434.4
MEACO 855.7 8635 10605 13775 294.3 319.8 379.6 426.7 14134 15354 17521 2452/
MIACO 853.3 8625 1052.6 136152919 3154 379.2 4250 13941 1532.2 17483 2433.()
f=100,m= || 01 025 05 075 |01 025 05 075|0.1 025 05 0.75
ACS 861.8 8863 1067.7 1394.3 301.4 3256 384.0 4255 1366.2 14841 1686.7 2281.f
RIACO 829.6 8335 9752 1214.8 2822 297.2 3546 3904 13546 1437.7 1623.6 2173.4
MEACO 8365 8343 987.4 12416 282.9 298.7 351.8 391.7 1353.8 1437.0 1623.2 2178/
MIACO 833.3 8304 9720 1213 277.6 288.7 349.1 387.7 13262 14255 1601.4 2121.
TABLE Il

STATISTICAL TEST RESULTS REGARDING THE OFFLINE PERFORMANCEF THE ALGORITHMS FORDVRP WITH TRAFFIC FACTOR

|| Alg. & Inst. || vr p45 vrp72 vrpl3s ||
f=10,m = 0.1 025 05 075 01 025 05 075 01 025 05 0.75
ACS&MEACO — — - - — — — - 4 _ _ _
RIACO<ACS + + + + + + + + + ~ + +
RIACO<MEACO + - + + - + - ~ + + - +
MIACO<ACS + + + + + + + + + + + +
MIACO<MEACO || + + + + + + ~ + + + + +
MIACO<RIACO — + ~ + + + + + + + + ~
f =100, m = 01 025 05 075 01 025 05 075 01 025 05 0.75
ACS<MEACO — — - — — — — — — _
RIACO<ACS + + + + + + + + + + + +
RIACO<MEACO + + + + ~ ~ - + ~ ~ ~ +
MIACO<ACS + + + + + + + + + + + +
MIACO<MEACO || + + + + + + + + + + + +
MIACO<RIACO — + + ~ + + + 4 4 + + +

instance, as described in Section Il, to systematicallyyaea validates our expectation that ACS need sufficient time to
the adaptation and searching capability of each algorithm cecover when a dynamic change occurs, which can be also
the DVRP. observed from Fig. 1. This is because the pheromone evap-
B. Experimental Results and Analysis ora_ltion is the only mechanism used tq eliminate pheromqne
) : ) trails that are not useful to the new environment, and may bia
The experimental results regarding the offline performange, 1, iation to areas that are not near the new optimum. On

of the.algorithms are 9“’9” in Table | and the correspondinge ey hand, RIACO uses the proposed framework where
statistical results of Wilcoxon rank-sum test, at the 0O@&l . pheromone trails exist only in one iteration and are re-

of S|gn|f|can_ce,_ are presented in Table _II, wherg th.e. Symbé’énerated in the next iteration.
“+” or “—" indicates that the first algorithm is significantly
better than or significantly worse than the second one, re-Second, MEACO outperforms ACS in all dynamic test
spectively, and ~” indicates no significant difference betweercases; see the results of MEAGE ACS in Table II. This
two algorithms. Moreover, to better understand the dynani& due to the knowledge transferred using the solutions from
behaviour of algorithms, the results of slow and fast chaggi ki0..4(t) When the environment changes. However, MEACO is
environments, are plotted in Figs. 1 and 2, with= 0.1 and outperformed by RIACO in most fast changing environments
m = 0.75 for the first 1000 and 500 iterations, respectivelyf = 10 and significantly changing environments = 0.75
From the experimental results, several observations can (egen whenf = 100); see the results of RIAC& MEACO
made by comparing the behaviour of algorithms. in Table Il. The knowledge transferred may not be useful when
First, RIACO outperforms ACS in all the dynamic testhe environments are not similar or when the available tisne i
cases; see the results of RIAC® ACS in Table Il. This not enough to store useful solutionsAp,,4(t).
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Third, MIACO outperforms ACS in all dynamic test casess due to the same reasons RIACO outperforms the traditional
as RIACO; see the results MIAC@&> ACS in Table Il. This ACS. Furthermore, MIACO outperforms RIACO and MEACO
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vrp45, f=100,m=0.1 vrp45, f =100,m=0.75
T 1 T T

T

o o Generally, the performance of RIACO is inconsistent since
onvr p45 the performance is improved, whereas\anp72

il and vr p135 it is degraded. On the other hand, the per-
] formance of MIACO is consistent since the performance is
3§ always improved, even if all ants ikg,+(t) are replaced

< by immigrant ants. The optimization is not disturbed as
] wop in RIACO, since MIACO withr = 1.0 may destroy the

r r knowledge gained irkg,,+(t) but generate new knowledge

1220f -
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vIp72, f=100,m=0.1 vip72, f = 100,m= 0.75 using the best ant fromye,q(t).
300 . . - 450 - - T

205 - g a0 1

D. Experimental Results Regarding the Memory 3ize
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In order to investigate the effectiveness of the memory
scheme, further experiments have been performed on the same
problem instances with the same parameters used before but
with different memory sized<, i.e., K; € {0,2,4,6}. The
population sizey was set according td<; in order to have
the same number of evaluations. For example, when= 0
the number of ants is set o = 50 normally, whereas when
K; > 0 the number of ants is tp = 50 — K;. In Fig. 4 the
offline performance of MIACO and MEACO with the varying
K, for f =100 on all problem instances are presented. The
I e experimental results of the remaining test cases showathsim
i behaviour.

: P — P From the results, it is can be observed that the memory
' ' in MIACO improves the performance which validates our
Fig. 3. Offline performance of RIACO and MIACO with differengplace- expectation; see the results in Fig. 4 froky;, = 0 to
ment ratesr. K; = 2 and K; = 4. On the other hand, the memory in
MEACO slightly improves the performance on some problem

in almost all dynamic test cases; see the results of MIASO instances and some dynamic test cases, whereas it degrades

RIACO and MIACO < MEACO in Table Il. MIACO is able the performance on the remaining ones. This may be due to
to guide the population of ants to old environments thatreill 1€ Use Ofkion,(t), in which MIACO uses the best ant to
appear again in the future using solutions frbg),,. To some generate memory-based immigrants to replace the worst ones
extent, this validates our expectation that MIACO inhetfits 1N Fshort(t), MEACO mergesisp.or:(t) andkion,(t), and then

merits from both memory and immigrants schemes, but vberomone trails are updated. The knowledge transferoed fr
furthermore investigate their effect. MIACO is more direct since a solution from one environment

is used, whereas from MEACO it is general since all the from
C. Experimental Results Regarding the Replacement Rateyarious environments are used.

In order to investigate the effectiveness of the immi- Generally, the performance of MEACO is inconsistent
grants schemes, further experiments have been performédtereas for MIACO it is consistent since it always improves.
on the same problem instances with the same parametérs similar with the effect found previously for the immi-
used before but with different replacement rates, irec grants schemes. From the experiments presented in Fig. 4
{0.0,0.2,0.4,0.6,0.8,1.0}. In Fig. 3, the offline performance and on the remaining ones, it is observed that increa&ipg
of RIACO and MIACO with the varying replacement rate fousually degrades the performance since the actual populati
f =100 andm = 0.1 andm = 0.75 for all problem instances is decreased for the sake of achieving the same number of
are presented. The experimental results of the remainiegaluations. As a result, the search capability of ACO is
dynamic test cases are similar, where= 0.0 means that degraded because fewer ants explore the search spacet,In fac
no immigrants are generated to replace ants,jp,;. Branke [2] observed that a standalone memory may not be

From the results, it can be observed that memory-basebugh to address DOPs, and, it should be combined with a
immigrants in MIACO improve the performance and validatdiversity method.
our expectation; see the results in Fig. 3 frem= 0.0 and
r > 0.0. On the other hand, random immigrants in RIACO
improve the performance on some problem instances and somiklemory-based immigrants have been successfully applied
dynamic test cases, whereas they degrade the performancéooevolutionary algorithms (EAs) to address different ljra
the remaining ones. This is because the random immigraetecoded DOPs [21], and to ACO to address DTSPs [15].
may disturb the optimization process of ACO because of tdo this paper, we apply MIACO to address the DVRP with
much randomization on the pheromone trails. traffic factor under cyclic environmental changes, which is
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Fig. 4. Offline performance of MEACO and MIACO with differentemory sizesk;.

a DOP closer to a real-world application. It combines thg7] L. M. Gambardella, E. Taillard and G. Agazzi. “MACS-VRRE A
merits of memory and immigrants schemes, where the first multiple ant colony system for vehicle routing problems hwiime
one is able to guide the population into previously visited

environment directly, and the second one is able to increass
and maintain diversity within the population to adapt well i

DOPs. The immigrant ants are generated using the best 3

from the memory as the base and replace the worst ones in
the population.

Comparing MIACO with other peer ACO algorithms on*¥
different test cases of DVRPs, the following concluding re-
marks can be drawn. First, memory-based immigrants péfll
form well in dynamic environments under cyclic changes.
Second, random immigrants and memory usually improves the]
performance of ACO for DVRPs, but they have inconsiste
behaviour. Finally, MIACO outperforms other peer ACO al
gorithms in almost all dynamic test cases, and shows that [its]
behaviour is consistent.

For future work, it would be interesting to apply MIACO
in DVRP with traffic factor where the environment changegs]
randomly and not cyclically, and compare it with other ACO-
based algorithms with immigrants schemes [14]. The knowkg
edge transferred by memory-based immigrants from previous
environments to the pheromone trails of the new one may

be useful, even if old environments are not guaranteed to

My

appear, when the changing environments are similar. Anothe

future work is to investigate the performance of MIACO i
dynamic environments with noise where the environmen

changes are undetectable.

REFERENCES

it

[29]

[1] E. Bonabeau, M. Dorigo and G. Theraul&gwarm Intelligence: From [20]

(2]

(3]

(4
(5]

(6]

Natural to Artificial SystemdOxford University Press, New York, 1999.
J. Branke, “Memory enhanced evolutionary algorithms &hanging
optimization problems,” irProc. 1999 IEEE Congr. on Evol. Comput.
vol. 3, 1999, pp. 1875-1882.

M. Dorigo and L. M. Gambardella, “Ant colony system: a peo-
ative learning approach to the travelling salesman propleEE
Trans. Evol. Computvol. 1 no. 1, pp. 53-66, 1997

M. Dorigo and T. Stutzle Ant Colony OptimizationThe MIT Press,
London, 2004.

M. Dorigo, V. Maniezzo and A. Colorni. “Ant system: optiration by a
colony of cooperating agentdEEE Trans. on Syst., Man and Cybern.,
Part B: Cybern, vol. 26, no. 1, pp. 29-41, 1996.

C. J. Eyckelhof and M. Snoek. “Ant Systems for a DynamicPTSn
Proc. of the 3rd Int. Workshop on Ant Algorith2002, pp. 88-99.

[21]

[22]

5‘]t M. Guntsch and M. Middendorf. “Pheromone modificatiomagtgies

windows,” in New Ideas in OptimizationD. Corne et al., Eds., 1999,
pp. 63-76.

M. Guntsch and M. Middendorf. “Applying population bas&CO to
dynamic optimization problems,” iRroc. of the 3rd Int. Workshop on
Ant Algorithms vol. 2463, 2002, pp. 111-122.

for ant algorithms applied to dynamic TSP,” EvoApplications 2001:
Appl. of Evol. CompuytLNCS 2037, 2001, pp. 213-222.

T. Guo and Z. Michalewicz. “Inver-over operator for th8P,” in Proc. of

the 5th Int. Conf. on Parallel Problem Solving from Naturk998,

pp. 803-812.

Y. Jin and J. Branke. “Evolutionary optimization in w@mtain environ-
ments - a survey,IEEE Trans. on Evol. Computvol. 9, no. 3, pp.
303-317, 2005.

P. Kilby, P. Prosser and P. Shaw. “Dynamic VRPs: A stuflyaenarios,”
University of Strathclyde, U.K., Tech. Rep. APES-06-199898.

M. Labbe, G. Laporte and H. Mercure. “Capacitated viehiouting on

trees,”Oper. Res.vol. 39, no. 4, pp. 616-622, 1991.

M. Mavrovouniotis and S. Yang. “Ant colony optimizatiovith immi-

grants schemes for dynamic environments,”Aroc. of the 11th Int.
Conf. on Parallel Problem Solving from NaturéNCS 6239, 2010,
pp. 371-380.

M. Mavrovouniotis and S. Yang. “Memory-based immigsarior ant

colony optimization in changing environments,” BvoApplications
2011: Appl. of Evol. CompytLNCS 6624, 2011, pp. 324-333.

M. Mavrovouniotis and S. Yang. “An immigrants schemesé@ on
environmental information for ant colony optimization fie dynamic
travelling salesman problemProc. of the 10th Int. Conf. on Atrtificial
Evolution (EA-2011), 2001, pp. 23-34.

?7] R. Montemanni, L. Gambardella, A. Rizzoli and A. DonatAnt

colony system for a dynamic vehicle routing problendgurnal of
Combinatorial Optimizationvol. 10, no. 4, pp. 327-343, 2005.

H. Psaraftis. “Dynamic vehicle routing: status andgmects,”Annals of
Oper. Res.vol. 61, pp. 143-164, 1995.

A. E. Rizzoli, R. Montemanni, E. Lucibello, and L. M Gaanlolella.
“Ant colony optimization for real-world vehicle routing giolems - from
theory to applications,"Journal of Swarm Intelligengevol. 1, no. 2,
pp. 135-151, 2007.

T. Stutzle and H. Hoos, “The MAX-MIN ant system and lbs@arch
for the traveling salesman problem,” iroc. 1997 IEEE Int. Conf. on
Evol. Comput. 1997, pp. 309-314.

S. Yang. “Genetic algorithms with memory and elitisnséd immigrants
in dynamic environments,Evol. Comput.vol. 16, no. 3, pp. 385-416,
2008.

S. Yang and X. Yao, “Population-based incrementalrigeay with asso-
ciative memory for dynamic environment$EEE Trans. Evol. Compuyt.
vol. 12, no. 5, pp. 542-561, 2008.

S. Yang, H. Cheng and F. Wang, “Genetic algorithms witimigrants
and memory schemes for dynamic shortest path routing prablie
mobile ad hoc networks EEE Trans. Syst., Man, and Cybern. Part C:
Appl. and Rey.vol. 40, no. 1, pp. 52-63, 2010.



