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Abstract—One approach integrated with genetic algorithms schemes are suitable for different types of DOPs. For exampl
(GAs) to address dynamic optimization problems (DOPs) is to the elitism-based immigrants GA (EIGA) [15] has shown good
maintain diversity of the population via introducing immig rants. performance in slightly and slowly changing DOPs whereas
Many immigrants schemes have been proposed that differ on : .
the way new individuals are generated, e.g., mutating the st .random |mm|grants_GA (RIGA) has shown good performance
individual of the previous environment to generate elitismbased N severely and rapidly changing DOPs.
immigrants. This paper examines the performance of elitism In this paper, an adaptive immigrants GA (AIGA) is pro-
based immigrants GA (EIGA) with differentimmigrant mutati on  posed, which is an extension of the EIGA, to achieve better
probabilities and proposes an adaptive mechanism that tersl performance on more types of DOPs. More precisely, in
to improve the performance in DOPs. Our experimental study - . - -
shows that the proposed adaptive immigrants GA outperforms orde.r to gengrate elltlsm-based |mrn|grar?ts, the ellte. .ef Fh
EIGA in almost all dynamic test cases and avoids the tedious Previous environment is mutated with a fixed probability in
work of fine-tuning the immigrant mutation probability para m- EIGA, whereas in order to generate adaptive immigrants the
eter. elite of the previous environment is mutated with an adaptiv
probability in AIGA.

The rest of the paper is outlined as follows. Section I

Genetic algorithms (GAs) have proved that they are powetescribes the concept of immigrants schemes in GAs. Section
ful techniques for solving different optimization problsrin 1l describes the proposed AIGA. Section IV describes the
real-world applications with stationary environments [2l]. dynamic test environment constructed for the experiments.
However, in many real-world applications, we have to de&lection V presents the experimental results and analysis.
with dynamic environments in which the objective functionSection VI concludes this paper.
decision variables, problem instance, constraints, andrnso
may vary over time [16]. Il. GAS WITH IMMIGRANTS SCHEMES FORDOPs

When a dynamic change occurs, it may take some timeConventional GAs cannot adapt well in dynamic environ-
for a GA to adapt to the new environment due to prematuneents once they converge. This is because when a dynamic
convergence. A direct solution is to restart the GA whenevehange occurs it may take some time for the GA to escape
a dynamic change occurs and consider every dynamic chafigen the optimum that has currently converged to the pre-
as the arrival of a new problem instance that needs to beus environment and search for the optimum of the newly
solved from scratch [6]. However, this solution is not shiga generated environment.
because it generally requires substantial computatidifait.e Immigrants schemes have proved that they are good meth-
Therefore, it could be useful, in terms of computationabeff ods to integrate with GAs in order to enhance their per-
to utilize the information obtained in the previous enviment formance in DOPs [15], [22]-[24]. The basic principle of
to find new good solutions in the newly changed environmemtmigrants schemes is to introduce new individuals into the
This is usually true if the new environment is closely retateevolving population that replace a predefined portion of the
to the old one [5]. population (usually the worst individuals). In this waygeth

Different strategies have been proposed to address DO#isersity of the individuals within the population can be
such as maintaining diversity via immigrants [4], [15],]2B- maintained throughout the run.
crease diversity after a change [3], [10], memory schemgs [1 The traditional way to generate immigrants is randomly.
[19], multi-population schemes [2], [9], and memetic/hgbr RIGA has shown good performance in environments where
algorithms [11], [12]. Among these approaches, maintginirthe frequency is fast and the magnitude is severe since it
diversity via immigrants schemes are simple to implemeregnhances the diversity of the GA and addresses the premature
less computationally expensive, and they are validatedeto @onvergence problem [4]. However, the continuous adaytati
effective in DOPs [23], [24]. Generally, different immigra of GAs in dynamic optimization makes sense only when the

|I. INTRODUCTION



environments are similar, i.e., when the magnitude of chani is the same as a GA with random immigrants because all
is small to medium [1]. Therefore, random immigrants mathe generated individuals will be completely random from th
not be suitable in such dynamic cases because they nadije of the previous generation. Usuajl, has a very small
generate high diversity levels that may lead to randondmativalue, i.e.,p, = 0.01, and it is fixed in EIGA.
and disturb the optimization process. Considering the performance of RIGA and EIGA on previ-
To address these challenges, EIGA [13] and memorgus experimental studies [15], [23], it is natural to expeet
based immigrants GA (MIGA) [12] were proposed that geriiigher p, probabilities may work in favour of environments
erate elitism-based and memory-based immigrants, respeith severe changes, whereas lowgrprobabilities may work
tively, considering individual-information from previswenvi- in favour of environment with slight changes. In [15], it has
ronments. Their only difference is that MIGA uses inforroati been shown that the effect of, on the performance of the
from the best individual of a memory, whereas EIGA fromalgorithm depends on the DOP.
the best individual of the previous generation. Within EIGA Moreover, we believe that a fixeel, may not be the best
for each generation, after normal genetic operations (i.e.choice for EIGA because the algorithm may need different
selection and recombination), the elit#¢ — 1) from previous levels of diversity at different stages of the evolutionary
generation is used as the base to create immigrants. Bycess (generation). For example, in EIGA with the typical
mutating E(t — 1) bitwise with a probabilityp?,, a set of pi, = 0.01, the immigrants generated are more likely to
n' = r; xn individuals are iteratively generated, wherés the have similar fithess with the best individual of the previous
population size and; the immigrants replacement rate. Therenvironment. Apart from that these individuals may not be
the worst individuals in the current population are replacesuitable in cases where the environments are not similar;
with these newly introduced immigrants. EIGA has showthey may also transfer high levels of knowledge and start
good performance in environments where the frequencytig optimization in the new environment from a (or near)
slow and the magnitude is slight since it uses the idea a$mlit local optimum solution. Therefore, increasing the mutatio
to guide the immigrants towards the optimum of environmermrobability may address this issue, e.g., escaping frorfotta
Moreover, hybrid immigrants GA (HIGA) was proposed t@ptimum, and improve the performance.
improve the performance of EIGA in severe environmen . -
[17]. Every generation, within HIGA, apart from elitism-ded B Evaluating the Effect of Immigrants o
immigrants generated, random immigrants and dualismebase " Order to evaluate the effect of the newly generate indi-

immigrants are also generated. Dualism-based immigraats yiduals, their fitness is compared with the average fitness of

generated from mutating the dual of the elfiét — 1). The the actual po_pula_tion in every generat_ion. l_g(ett) denote the
dual of an individual is the one that is symmetric to it wittf{TeCt Of the immigrants generated at iteratiorand(¢) can

respect to the central point of the search space. be defined as follows:

Another way to maintain diversity via transferring knowl- €(t) = n'{FE(t)) > Fauy(t))} )
edge is the environmental-information-based immigramts G nt
(EIIGA) [22], which considers environmental-informationyhere n‘ is the number of immigrants generateﬂl’f(t) is
from the previous environment. Within EIIGA, the allelethe fithess of thé—th immigrant andF ., (t) is the average
distribution in the population is calculated at first andrthefitness of the current population. A similar method to measur
acts as the base to generate immigrants. For generatiofhe effect has been proposed in [24] to adapt the immigrants
after normal genetic operations, the allele distributi@eter replacement rate, i.er;, using the median of the population,
is extracted from the current population. For binary enegdi whereas in [8], [18] the average fitness of the population is
the frequency of ones over the population in a gene locdgnsidered to adapt the mutation probability of each gene
can be regarded as the allele distribution for that locugithin an individual.
Then a set ofn? environmental-information individuals are . . . .
generated by sampling the allele distribution vector. Moes, C. Adapting the Mutation Probability of Immigranis
environmental-information hybrid immigrants (EIHIGA) wa In case adaptive immigrants have a positive effect, using
proposed [22]. Every generation, within EIHIGA, in additio Equation (1), the mutation probability increases in ordemn-g
to the environmental-information immigrants generated vErate higher level of guided diversity; otherwise the niatat
sampling the allele distribution, more immigrants are geneProbability decreases to avoid randomization.

ated via sampling the complementary allele distribution. ~ Given the effect on the previous generation, ite-, 1, the
pt,(t) parameter is adapted as follows:

pi(t—1)+o, if&t—1)>0,

[1l. ADAPTIVE IMMIGRANTS SCHEME
A. The Role of p?, in Immigrants
The mutation probability of elitism-based immigrants, i.e pi(t) = PRt —1) —o, if {(t—1) <9, )
pt,, is responsible for the diversity generated in the popaitati pi(t—1), otherwise
If p{, = 0, then EIGA is the same as a GA with elitism of
sizer; because all the generated immigrants will be the samere pi (¢) is bounded in the interval of0,1], o is a
with the elite of the previous environment. f, = 1, then constant value that defines the step size of the mutation



Algorithm 1 AIGA the XORing mask that occurs incrementally and it is defined
1 t:=0 as follows:
2: initialize populationP(0) randomly M(k) =Mk —1) & T(k), (4)
3: evaluate the initial populatio®(0)
4: while termination conditiomot satisfieddo
P'(t) := selectForReproductiof(t))
crossoverP’(t), pc)
mutation®’(t), pm)
evaluate interim populatio®’(¢)
E(t—1):=theeliteinP(t—1)
10:  generatex’ immigrants by mutatindZ (t—1) with p? (¢)
11:  evaluate these adaptive immigrants
12:  replace the worst individuals iR’ (¢) with the generated
immigrants
13:  updatepi,(t) using Equation (2)
14:  P(t+1):= P'(¢)
15: end while

where f(k) is an intermediate binary template randomly
created withp x [ ones. Parametegse (0.0, 1.0) andr control

the magnitude and frequency of change of a DOP, respectively
Higher value ofp means severer dynamic changes, whereas a
lower value ofr means faster dynamic changes.

In this paper, three 100-bit binary encoded problems are
selected as the stationary problems to generate DOPs. Each
problem consists of 25 copies of 4-bit building blocks angeha
optimum of 100. The first one is the OneMax function, which
aims to maximize the number of ones in a chromosome. The
second one is the Plateau function, where each buildindbloc
contributes four (or two) to the total fitness if its unitatif.e.,
the number of ones inside the building block) is four (or é)re
otherwise, it contributes zero. The third one is the Dewgepti
function, where the building block is a fully deceptive sub-

. . . function. Generally, the difficulty of the three functionsr f
probability andd is a threshold that defines whether the effe As is increasing in the order from OneMax to Plateau to

of the immigrants generated is negative or positive. It can ti
bserved that a new parameter is introduced in the proposee epve. .
0 ynamic test environments are generated from the three

gahdalpttrl]veescheme.tHoyvevetr in Sectlc_)tp V-G, it can be obtservg rementioned binary-encoded function using the XOR DOP
at thef) parameter is not as sensitive as g parameter generator withr set to 10 and 50, indicating fast and slowly
to the performance of the GA : ) i

’ changing environments, respectively, andset to 0.1, 0.25,

D. Adaptive Immigrants GA (AIGA) 0.5 and 0.75, indicating slowly,to medium, to severe chaggi

. N . etnvironments, respectively. Totally, a series of 8 DOPs are
Different immigrants schemes perform better on dlﬁere%onstructed from each stationary function

conditions for DOPs [15], [23]. For example, RIGA performs y '
well on rapidly and severely changing environments and EIGA V. EXPERIMENTAL STUDY

(or MIGA) performs well on slowly and slightly changingA, Experimental Setup

environments. In the experiments, we investigate the EIGA with different

The proposed AIGA aims to perform well across differeny, oy i yajues and the proposed AIGA with an adaptive
DOPs due to its adaptive characten_sﬂcs. W'Fh'n AIGA, fograin(t) value. All GAs were set as follows: generational, uni-
each generation, after normal genetic operations, the elit

¢ h ) o q he b %orm crossover withp. = 0.6, flip mutation withp,, = 0.01,

E(t - 1.) rom the previous generation IS used as t_e ) ase 44 finess proportionate selection with elitism of size he T
create immigrants as in EIGA. By mutating( — 1) bitwise population sizex was set to 100 ang, was set to 0.3. Hence,
with a probabilityp?, (t), a set ofn* = r; x n individuals are ni = 30 for EIGA and AIGA. The initialp value ando
iteratively generated, where is the population size and is parameters in AIGA were set @01 m

the immigrants replacement rate. Every generagni!) iS " ror each GA on a DOP, 30 independent runs were executed
adapted using Equation (2) according to the effect of imMij, the same set of random seeds. For each run 1000 gen-
grants, calculated in Equation (1), of the previous gerat ¢ 4tions were allowed and the best-of-generation fitness wa

Then, the worst individuals in the current population argy.qrqed every generation. The overall offline performasfce
replaced with these newly introduced adaptive immigrants.s A on DOP is defined as:

The pseudocode of AIGA is presented in Algorithm 1.

© N a
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IV. DYNAMIC TEST ENVIRONMENTS Fpoc = & Z; N Z;FBOGU )
The DOP generator can construct dynamic environments = =
from any binary-encoded stationary functiofi(#)(z € WhereG is the total number generations, s the total number
{0,1}") by a bitwise exclusive-or (XOR) operator [14], [20].0f runs andFpog,, is the fitness of the best-of-generation
Suppose the environment changes in evenalgorithmic individual at generatiori of run j. Moreover, the diversity

generations, the dynamics can be formulated as follows: of the population was recorded every generation. The dveral
. - diversity of a GA on a DOP is defined as:
f(:C,t) = f(:C D M(k))v

G N
where® is the XOR operator (el ®1 =0,160 = 1, Tpry = 1 Z 1 ZDw,-j (6)
00 = 0), k = [t/7] is the index of the period andl (k) is G \NiI
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Fig. 1. Offline performance of EIGA with different mutatiomobabilities p?, on different DOPs.

whereG and N are defined as in Equation (5) adeiv;; is because the environment changes slowly and, thus, EIGA(O.1
the diversity at generationof run j, which is defined as:  may perform well whenr = 50 and p = 0.75. The low
n n and high levels of diversity of varyingi, from a smaller
Divij = #ZZHD@,Q) (7) to a bigger value can be also observed in Fig. 5, e.g., for
In(n —1) EIGA(0.01) and EIGA(1.0).
In contrast, the performance of EIGA(1.0) is not improved
asp increases in Deceptive DOPs, either whea: 10 or 7 =
50. It can be observed that the elitism mechanism performs
better in all dynamic cases of the Deceptive function begaus

B. Experimental Analysis on the Impact of pi in EIGA's a value0.0 < pi, < 0.1 always improves the performance of
Performance EIGA

. . The above observations support our claim in Section IlI-A
The offline performance of EIGA for all dynamic test caseg, PP

. . o . I at the value ofp’, depends orp, e.g., asp increases a
yv|th_d|fferent Immigrants mutation prpbapmtles 1S plexlt_ higherp!,, achieves better performance for EIGA. Moreover,
in Fig. 1, where the EIGA with the immigrants mutatio

e ; "he observations support the claim in [15] that the valug!pf
o 1 oo v o paance of E1GA(0 22 epends on he DOP, eg. te samersa difeen
) h i f EIGA he D i
degraded a9 increases for all OneMax and Plateau DOP pact on the performance of EIGA between the Deceptive

Yunction and the remaining functions.
For example, whemp = 0.1 it performs better or has similar g
performance from other GAs, whergag whens= 0.75 it has“ C. Experimental Analysis on the Impact of 0 in AIGA's
the worst performance clearly. This is because the e|ItISB’érf
) . - ormance

mechanism works only when the environments are similar.

The performance of EIGA(0.8) and EIGA(1.0) is improved The offline performance of AIGA for all dynamic test cases
as p increases for all OneMax and Plateau DOPs whenith different threshold values, used in Equation (2) istield
7 = 10. This is because the environment changes rapidly aimdFig. 2. An AIGA with different threshold values is denoted
there is not enough time to transfer knowledge. Therefor@s AIGA(Q).
the generation of random diversity via immigrants is more It can be observed that AIGA(0.9) achieves better perfor-
suitable. There is a similar observation in the case ef 50. mance in almost all cases. This is natural because the fitness
However there is no need to maintain too much diversityf each elitism-based immigrant generated is more likelygo

p=1 q#p

where! is the encoding lengthy is the population size and
HD(p,q) is the hamming distance between thth individual
and ¢-th individual.
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Fig. 2. The impact of thé value on the performance of AIGA on different DOPs.

TABLE |
EXPERIMENTAL RESULTS AND STATISTICAL TESTS REGARDING THE OFLINE PERFORMANCE OFAIGA AGAINST EIGA* WITH AN OPTIMIZED pin
VALUE IN DOPs. BOLD VALUES ARE SIGNIFICANT AT 0.05LEVEL OF SIGNIFICANCE BY WILCOXON RANK-SUM TEST

|| GAs & Functions || OneMax Plateau Deceptive ||

T=10, p = 0.1 025 0.5 0.75] 0.1 0.25 0.5 0.75] 0.1 0.25 0.5 0.75

AIGA 89.4 785 704 66.3| 786 584 459 421 | 686 59.4 563 597
EIGA* 87.7 758 67.7 66.9| 75.3 545 430 432 | 662 56.4 535 564
T =50,p= 01 025 05 07501 025 05 07501 025 05 075
AIGA 97.8 937 86.6 811 956 869 73.0 654 | 77.9 741 726 77.8
EIGA* 97.6 928 844 791 950 848 689 67.0| 77.8 727 701 76.0
better than the average fitness of the whole population.éfher ~ ,, __ t=10°p=01 _ 1S10.0707
fore, the effect of the immigrants, as measured in Equatipn ( . , | i -
is more likely to be high, and, thus, the immigrants generate § E
have positive effect. This observation supports the cldiat t & &
the performance of AIGA does not rely @h g g
There are some cases, e.g., DOPs with 10 andp = 0.75, = Pl T AL I (R
that A|GA(0.8) performs slightl_y better than_AIGA(O.Q) omet TR R e 5‘0:‘910 = b
Plateau function. However, this shows tifais generally not Generation Generation
sensitive because it does not affect the performance of the 1=50,p=01 1=50,p=075
algorithm. Probably, a larger step size, ie.= 0.05, may T = oy T opm
improve the performance, or even self-adapt the step size ma& [ pesemts % ooef T
improve the performance. g ‘ i g 1
A value0.8 < 0 < 0.9 can achieve satisfactory performance g 1 £ 1
for all DOPs. Therefore, the tedious work of fine-tuning 2 ; ’ ] 2 ; VI
the value of the immigrants mutation probability in algo- [ 07" T LN R T
rithms without adaptation in order to improve the perforean 00 et 00 et

slightly for a certain DOP can be avoided using AIGA. _
Fig. 3. Dynamic behaviour of thg!,, value of AIGA on DOPs withr = 10

. . . . andp = 0.1 and p = 0.75, respectively, and on DOPs= 50 andp = 0.1
D. EXpe”mental Analys's of Adaptlve Versus Non'Adapt|Ve and p = 0.75, respectively, for the first 100 generations.

Immigrants

The experimental results regarding the overall offline per-
formance of AIGA with the adaptive?, against EIGA with ) ) ,
the best fixedp: value for each dynamic case found irffynamic behaviour of the adapted, value of AIGA are
Fig. 1, denoted as EIGA*, are presented in Table | witAresented in Fig. 3. From the experimental results, several
the corresponding statistical results of Wilcoxon rankasu©bservations can be made by comparing the behaviour of the
test, at the 0.05 level of significance. Moreover, the dyramilgorithms.
behaviour of the algorithms regarding overall performaanue First, AIGA performs significantly better than EIGA* in
diversity are presented in Fig. 4 and Fig. 5, respectivehe Talmost all dynamic cases; see the comparisons in Table I. In
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Fig. 4. Dynamic overall offline performance of GAs on DOPshwit= 50 and p = 0.1 and p = 0.75, respectively, for the first 500 generations.
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some cases of OneMax and Plateau DOPs witk- 0.75 different DOPs.
Second, from Fig. 5 it can be observed that AIGA maintains

EIGA* performs significantly better than AIGA. This is be-
cause the adaptive mechanism in AIGA may not be able higher diversity than EIGA* throughout the execution for

increase the value of’, as high as in EIGA*, in which OneMax and Plateau functions. In fact, the difference betwe
pt, = 1.0 performs better in most severe DOPs; see Fig. the diversity of AIGA and EIGA* is much higher when

This behaviour can be observed from Fig. 3 where the valugs= 0.75 than whenp = 0.1. This shows that the adaptive
immigrants in AIGA are able to maintain the diversity in the

of the adapted parameter in AIGA 0 < pi,(t) < 0.2 in



TABLE I
EXPERIMENTAL RESULTS AND STATISTICAL TESTS REGARDING THE OFLINE PERFORMANCE OFAIGA AGAINST OTHER PEERGAS IN DOPs. BoLD
VALUES ARE SIGNIFICANT AT 0.05LEVEL OF SIGNIFICANCE BY THEWILCOXON RANK-SUM TEST.

|| GAs & Functions“ OneMax Plateau Deceptive ||
T =10, p = 0.1 0.25 0.5 0.75| 0.1 0.25 0.5 0.75| 0.1 0.25 0.5 0.75
SGA 739 679 645 63.0 588 470 39.7 369 553 520 511 52.0
RIGA 739 69.7 66.7 653 59.2 485 422 39.8 53.3 517 512 51.6
EIGA 87.7 738 632 581 753 511 372 341 662 550 516 548
AIGA 89.4 785 704 66.3 786 584 459 421 68.6 594 56.3 59.7

T =150, p = 0.1 025 0.5 0.75| 0.1 0.25 0.5 0.75| 0.1 0.25 0.5 0.75
SGA 827 778 724 685 755 664 56.3 499 645 603 587 611
RIGA 809 773 751 744 771 673 605 595 603 575 575 579
EIGA 975 928 832 734 949 848 663 537 77.8 727 701 758
AIGA 978 937 86.6 811 956 869 73.0 654 779 741 726 77.8

population depending on the DOP which can be observed frarther GAs. This is because AIGA maintains the appropriate
Fig. 3, where the mutation probability increases between tkevel of diversity during different stages of the evoluton
DOPs withp = 0.1 and p = 0.75, especially whern = 10. process, which is supported in the above experiments.

Third, AIGA maintains lower diversity in the Deceptive
function before the change occurs and higher after a change VI. CONCLUSIONS ANDFUTURE WORK
in all DOPs; see Fig. 5. This is probably because GAs benefittmmigrants schemes have been successfully applied in GAs
from the elitism mechanism as shown in the experiments i@ address DOPs. The performance of different immigrants
Section V-B and Fig. 1. Therefore, the adaptive mechanissaghemes depends on the characteristics of the DOP. In this
in AIGA may decrease the’ since it works in favour for paper, we propose an adaptive immigrants scheme for GAs
the Deceptive function. This can be supported from Fig. iB dynamic environments in which the elite of the previous
because the adaptef], reaches 0 level in many stages of thenvironment is used as the base to generated immigrants via
evolutionary process only in the Deceptive function. Mmerp mutation. The immigrants mutation probability is adapted i
this behaviour supports our claim in Section IlI-A that a fixeevery generation according to the effect of the immigraats t
value ofp!  may not be the best choice because the algorithire population.
may need different levels of diversity at different stagethe =~ From the experimental results on a series of DOPs, the
evolutionary process. following conclusions can be drawn. First, the immigrant
_ _ mutation probability is an important parameter, in termshef
E. Experimental Analysis of the Performance between AIGA performance for GAs, and depends on the DOP. Second, the
and Other Peer GAs best immigrant mutation probability varies at differeragsts

The experimental results regarding the overall offlineqerf of the evolutionary process. Third, AIGA outperforms other
mance of AIGA against other peer GAs are presented in Talg\s in all dynamic test cases. Finally, higher levels of gdid

Il with the corresponding statistical results of the Wiloox diversity does not always achieve better performance fos GA
rank-sum test at the 0.05 level of significance. In this secti in DOPs.

EIGA is applied with its traditionap, value, i.e., 0.01. In  For future work, it will be interesting to self-adapt the

order to have fair comparisons among GAs, the populatian sigtep size of the immigrant mutation rate, which might furthe

and ratios of immigrants were set such that each GA has lLgfprove the performance of AIGA for DOPs. Moreover,

fitness evaluations per generation as follows: the pomuatiother immigrants schemes also have tfie parameter, e.g.,

size n was set to 130 for standard GA (SGA) and 100 famemory-based immigrants [12], in which the proposed adap-

RIGA, EIGA and AIGA and the ratio; was set to 0.3 for tive mechanism can be applied. Another future work is to

EIGA and RIGA. The rest of the parameters are the same fasthermore investigate the impact pf, on the performance

in the experiments above. of GAs with different immigrants replacement rates, i.e.,
From Table Il, it can be clearly observed that the proposed [24]. Probably an adaptegi, value may require fewer

AIGA outperforms its competitors in all DOPs. This confirm$mmigrants and avoid the waste of function evaluations in

our expectation that AIGA may perform well on DOPs okvery generation.

different dynamics. For example, AIGA outperforms RIGA

in DOPs with rapidly and severely changing environments, ACKNOWLEDGMENT
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