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Abstract—One approach integrated with genetic algorithms
(GAs) to address dynamic optimization problems (DOPs) is to
maintain diversity of the population via introducing immig rants.
Many immigrants schemes have been proposed that differ on
the way new individuals are generated, e.g., mutating the best
individual of the previous environment to generate elitism-based
immigrants. This paper examines the performance of elitism-
based immigrants GA (EIGA) with different immigrant mutati on
probabilities and proposes an adaptive mechanism that tends
to improve the performance in DOPs. Our experimental study
shows that the proposed adaptive immigrants GA outperforms
EIGA in almost all dynamic test cases and avoids the tedious
work of fine-tuning the immigrant mutation probability para m-
eter.

I. I NTRODUCTION

Genetic algorithms (GAs) have proved that they are power-
ful techniques for solving different optimization problems in
real-world applications with stationary environments [7], [21].
However, in many real-world applications, we have to deal
with dynamic environments in which the objective function,
decision variables, problem instance, constraints, and soon,
may vary over time [16].

When a dynamic change occurs, it may take some time
for a GA to adapt to the new environment due to premature
convergence. A direct solution is to restart the GA whenever
a dynamic change occurs and consider every dynamic change
as the arrival of a new problem instance that needs to be
solved from scratch [6]. However, this solution is not suitable
because it generally requires substantial computational effort.
Therefore, it could be useful, in terms of computational effort,
to utilize the information obtained in the previous environment
to find new good solutions in the newly changed environment.
This is usually true if the new environment is closely related
to the old one [5].

Different strategies have been proposed to address DOPs,
such as maintaining diversity via immigrants [4], [15], [22], in-
crease diversity after a change [3], [10], memory schemes [1],
[19], multi-population schemes [2], [9], and memetic/hybrid
algorithms [11], [12]. Among these approaches, maintaining
diversity via immigrants schemes are simple to implement,
less computationally expensive, and they are validated to be
effective in DOPs [23], [24]. Generally, different immigrants

schemes are suitable for different types of DOPs. For example,
the elitism-based immigrants GA (EIGA) [15] has shown good
performance in slightly and slowly changing DOPs whereas
random immigrants GA (RIGA) has shown good performance
in severely and rapidly changing DOPs.

In this paper, an adaptive immigrants GA (AIGA) is pro-
posed, which is an extension of the EIGA, to achieve better
performance on more types of DOPs. More precisely, in
order to generate elitism-based immigrants, the elite of the
previous environment is mutated with a fixed probability in
EIGA, whereas in order to generate adaptive immigrants the
elite of the previous environment is mutated with an adaptive
probability in AIGA.

The rest of the paper is outlined as follows. Section II
describes the concept of immigrants schemes in GAs. Section
III describes the proposed AIGA. Section IV describes the
dynamic test environment constructed for the experiments.
Section V presents the experimental results and analysis.
Section VI concludes this paper.

II. GA S WITH IMMIGRANTS SCHEMES FORDOPS

Conventional GAs cannot adapt well in dynamic environ-
ments once they converge. This is because when a dynamic
change occurs it may take some time for the GA to escape
from the optimum that has currently converged to the pre-
vious environment and search for the optimum of the newly
generated environment.

Immigrants schemes have proved that they are good meth-
ods to integrate with GAs in order to enhance their per-
formance in DOPs [15], [22]–[24]. The basic principle of
immigrants schemes is to introduce new individuals into the
evolving population that replace a predefined portion of the
population (usually the worst individuals). In this way, the
diversity of the individuals within the population can be
maintained throughout the run.

The traditional way to generate immigrants is randomly.
RIGA has shown good performance in environments where
the frequency is fast and the magnitude is severe since it
enhances the diversity of the GA and addresses the premature
convergence problem [4]. However, the continuous adaptation
of GAs in dynamic optimization makes sense only when the



environments are similar, i.e., when the magnitude of change
is small to medium [1]. Therefore, random immigrants may
not be suitable in such dynamic cases because they may
generate high diversity levels that may lead to randomization
and disturb the optimization process.

To address these challenges, EIGA [13] and memory-
based immigrants GA (MIGA) [12] were proposed that gen-
erate elitism-based and memory-based immigrants, respec-
tively, considering individual-information from previous envi-
ronments. Their only difference is that MIGA uses information
from the best individual of a memory, whereas EIGA from
the best individual of the previous generation. Within EIGA,
for each generationt, after normal genetic operations (i.e.,
selection and recombination), the eliteE(t−1) from previous
generation is used as the base to create immigrants. By
mutating E(t − 1) bitwise with a probabilitypim, a set of
ni = ri×n individuals are iteratively generated, wheren is the
population size andri the immigrants replacement rate. Then,
the worst individuals in the current population are replaced
with these newly introduced immigrants. EIGA has shown
good performance in environments where the frequency is
slow and the magnitude is slight since it uses the idea of elitism
to guide the immigrants towards the optimum of environment.
Moreover, hybrid immigrants GA (HIGA) was proposed to
improve the performance of EIGA in severe environments
[17]. Every generation, within HIGA, apart from elitism-based
immigrants generated, random immigrants and dualism-based
immigrants are also generated. Dualism-based immigrants are
generated from mutating the dual of the eliteE(t − 1). The
dual of an individual is the one that is symmetric to it with
respect to the central point of the search space.

Another way to maintain diversity via transferring knowl-
edge is the environmental-information-based immigrants GA
(EIIGA) [22], which considers environmental-information
from the previous environment. Within EIIGA, the allele
distribution in the population is calculated at first and then
acts as the base to generate immigrants. For generationt,
after normal genetic operations, the allele distribution vector
is extracted from the current population. For binary encoding,
the frequency of ones over the population in a gene locus
can be regarded as the allele distribution for that locus.
Then a set ofni environmental-information individuals are
generated by sampling the allele distribution vector. Moreover,
environmental-information hybrid immigrants (EIHIGA) was
proposed [22]. Every generation, within EIHIGA, in addition
to the environmental-information immigrants generated via
sampling the allele distribution, more immigrants are gener-
ated via sampling the complementary allele distribution.

III. A DAPTIVE IMMIGRANTS SCHEME

A. The Role of pim in Immigrants

The mutation probability of elitism-based immigrants, i.e.,
pim, is responsible for the diversity generated in the population.
If pim = 0, then EIGA is the same as a GA with elitism of
sizeri because all the generated immigrants will be the same
with the elite of the previous environment. Ifpim = 1, then

it is the same as a GA with random immigrants because all
the generated individuals will be completely random from the
elite of the previous generation. Usuallypim has a very small
value, i.e.,pim = 0.01, and it is fixed in EIGA.

Considering the performance of RIGA and EIGA on previ-
ous experimental studies [15], [23], it is natural to expectthat
higherpim probabilities may work in favour of environments
with severe changes, whereas lowerpim probabilities may work
in favour of environment with slight changes. In [15], it has
been shown that the effect ofpim on the performance of the
algorithm depends on the DOP.

Moreover, we believe that a fixedpim may not be the best
choice for EIGA because the algorithm may need different
levels of diversity at different stages of the evolutionary
process (generation). For example, in EIGA with the typical
pim = 0.01, the immigrants generated are more likely to
have similar fitness with the best individual of the previous
environment. Apart from that these individuals may not be
suitable in cases where the environments are not similar;
they may also transfer high levels of knowledge and start
the optimization in the new environment from a (or near)
local optimum solution. Therefore, increasing the mutation
probability may address this issue, e.g., escaping from thelocal
optimum, and improve the performance.

B. Evaluating the Effect of Immigrants

In order to evaluate the effect of the newly generate indi-
viduals, their fitness is compared with the average fitness of
the actual population in every generation. Letξ(t) denote the
effect of the immigrants generated at iterationt, andξ(t) can
be defined as follows:

ξ(t) =
ni{F k

I (t)) ≥ FAvg(t))}

ni
(1)

whereni is the number of immigrants generated,F k
I (t) is

the fitness of thek−th immigrant andFAvg(t) is the average
fitness of the current population. A similar method to measure
the effect has been proposed in [24] to adapt the immigrants
replacement rate, i.e.,ri, using the median of the population,
whereas in [8], [18] the average fitness of the population is
considered to adapt the mutation probability of each gene
within an individual.

C. Adapting the Mutation Probability of Immigrants

In case adaptive immigrants have a positive effect, using
Equation (1), the mutation probability increases in order gen-
erate higher level of guided diversity; otherwise the mutation
probability decreases to avoid randomization.

Given the effect on the previous generation, i.e.,t− 1, the
pim(t) parameter is adapted as follows:

pim(t) =















pim(t− 1) + σ, if ξ(t− 1) > θ,

pim(t− 1)− σ, if ξ(t− 1) < θ,

pim(t− 1), otherwise.

(2)

where pim(t) is bounded in the interval of[0, 1], σ is a
constant value that defines the step size of the mutation



Algorithm 1 AIGA
1: t := 0
2: initialize populationP (0) randomly
3: evaluate the initial populationP (0)
4: while termination conditionnot satisfieddo
5: P ′(t) := selectForReproduction(P (t))
6: crossover(P ′(t), pc)
7: mutation(P ′(t), pm)
8: evaluate interim populationP ′(t)
9: E(t− 1) := the elite inP (t− 1)

10: generateni immigrants by mutatingE(t−1) with pim(t)
11: evaluate these adaptive immigrants
12: replace the worst individuals inP ′(t) with the generated

immigrants
13: updatepim(t) using Equation (2)
14: P (t+ 1) := P ′(t)
15: end while

probability andθ is a threshold that defines whether the effect
of the immigrants generated is negative or positive. It can be
observed that a new parameter is introduced in the proposed
adaptive scheme. However in Section V-C, it can be observed
that theθ parameter is not as sensitive as thepim parameter
to the performance of the GA.

D. Adaptive Immigrants GA (AIGA)

Different immigrants schemes perform better on different
conditions for DOPs [15], [23]. For example, RIGA performs
well on rapidly and severely changing environments and EIGA
(or MIGA) performs well on slowly and slightly changing
environments.

The proposed AIGA aims to perform well across different
DOPs due to its adaptive characteristics. Within AIGA, for
each generationt, after normal genetic operations, the elite
E(t− 1) from the previous generation is used as the base to
create immigrants as in EIGA. By mutatingE(t− 1) bitwise
with a probabilitypim(t), a set ofni = ri × n individuals are
iteratively generated, wheren is the population size andri is
the immigrants replacement rate. Every generation,pim(t) is
adapted using Equation (2) according to the effect of immi-
grants, calculated in Equation (1), of the previous generation.
Then, the worst individuals in the current population are
replaced with these newly introduced adaptive immigrants.
The pseudocode of AIGA is presented in Algorithm 1.

IV. DYNAMIC TEST ENVIRONMENTS

The DOP generator can construct dynamic environments
from any binary-encoded stationary functionf(~x)(~x ∈
{0, 1}l) by a bitwise exclusive-or (XOR) operator [14], [20].
Suppose the environment changes in everyτ algorithmic
generations, the dynamics can be formulated as follows:

f(~x, t) = f(~x⊕ ~M(k)), (3)

where⊕ is the XOR operator (i.e.,1 ⊕ 1 = 0, 1 ⊕ 0 = 1,
0⊕ 0 = 0), k = ⌈t/τ⌉ is the index of the period and~M(k) is

the XORing mask that occurs incrementally and it is defined
as follows:

~M(k) = ~M(k − 1)⊕ ~T (k), (4)

where ~T (k) is an intermediate binary template randomly
created withρ×l ones. Parametersρ ∈ (0.0, 1.0) andτ control
the magnitude and frequency of change of a DOP, respectively.
Higher value ofρ means severer dynamic changes, whereas a
lower value ofτ means faster dynamic changes.

In this paper, three 100-bit binary encoded problems are
selected as the stationary problems to generate DOPs. Each
problem consists of 25 copies of 4-bit building blocks and have
optimum of 100. The first one is the OneMax function, which
aims to maximize the number of ones in a chromosome. The
second one is the Plateau function, where each building block
contributes four (or two) to the total fitness if its unitation (i.e.,
the number of ones inside the building block) is four (or three);
otherwise, it contributes zero. The third one is the Deceptive
function, where the building block is a fully deceptive sub-
function. Generally, the difficulty of the three functions for
GAs is increasing in the order from OneMax to Plateau to
Deceptive.

Dynamic test environments are generated from the three
aforementioned binary-encoded function using the XOR DOP
generator withτ set to 10 and 50, indicating fast and slowly
changing environments, respectively, andρ set to 0.1, 0.25,
0.5 and 0.75, indicating slowly,to medium, to severe changing
environments, respectively. Totally, a series of 8 DOPs are
constructed from each stationary function.

V. EXPERIMENTAL STUDY

A. Experimental Setup

In the experiments, we investigate the EIGA with different
fixed pim values and the proposed AIGA with an adaptive
pim(t) value. All GAs were set as follows: generational, uni-
form crossover withpc = 0.6, flip mutation withpm = 0.01,
and fitness proportionate selection with elitism of size 1. The
population sizen was set to 100 andri was set to 0.3. Hence,
ni = 30 for EIGA and AIGA. The initial pim value andσ
parameters in AIGA were set to0.01.

For each GA on a DOP, 30 independent runs were executed
on the same set of random seeds. For each run 1000 gen-
erations were allowed and the best-of-generation fitness was
recorded every generation. The overall offline performanceof
a GA on DOP is defined as:

F̄BOG =
1

G

G
∑

i=1





1

N

N
∑

j=1

FBOGij



 (5)

whereG is the total number generations,N is the total number
of runs andFBOGij

is the fitness of the best-of-generation
individual at generationi of run j. Moreover, the diversity
of the population was recorded every generation. The overall
diversity of a GA on a DOP is defined as:

T̄DIV =
1

G

G
∑

i=1





1

N

N
∑

j=1

Divij



 (6)
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Fig. 1. Offline performance of EIGA with different mutation probabilitiespi
m

on different DOPs.

whereG andN are defined as in Equation (5) andDivij is
the diversity at generationi of run j, which is defined as:

Divij =
1

ln(n− 1)

n
∑

p=1

n
∑

q 6=p

HD(p, q) (7)

where l is the encoding length,n is the population size and
HD(p, q) is the hamming distance between thep-th individual
andq-th individual.

B. Experimental Analysis on the Impact of pim in EIGA’s
Performance

The offline performance of EIGA for all dynamic test cases
with different immigrants mutation probabilities is plotted
in Fig. 1, where the EIGA with the immigrants mutation
probabilitypim is denoted as EIGA(pim).

It can be observed that the performance of EIGA(0.0) is
degraded asρ increases for all OneMax and Plateau DOPs.
For example, whenρ = 0.1 it performs better or has similar
performance from other GAs, whereas whenρ = 0.75 it has
the worst performance clearly. This is because the elitism
mechanism works only when the environments are similar.

The performance of EIGA(0.8) and EIGA(1.0) is improved
as ρ increases for all OneMax and Plateau DOPs when
τ = 10. This is because the environment changes rapidly and
there is not enough time to transfer knowledge. Therefore,
the generation of random diversity via immigrants is more
suitable. There is a similar observation in the case ofτ = 50.
However there is no need to maintain too much diversity

because the environment changes slowly and, thus, EIGA(0.1)
may perform well whenτ = 50 and ρ = 0.75. The low
and high levels of diversity of varyingpim from a smaller
to a bigger value can be also observed in Fig. 5, e.g., for
EIGA(0.01) and EIGA(1.0).

In contrast, the performance of EIGA(1.0) is not improved
asρ increases in Deceptive DOPs, either whenτ = 10 or τ =
50. It can be observed that the elitism mechanism performs
better in all dynamic cases of the Deceptive function because
a value0.0 ≤ pim ≤ 0.1 always improves the performance of
EIGA.

The above observations support our claim in Section III-A
that the value ofpim depends onρ, e.g., asρ increases a
higherpim achieves better performance for EIGA. Moreover,
the observations support the claim in [15] that the value ofpim
also depends on the DOP, e.g., the samepim has a different
impact on the performance of EIGA between the Deceptive
function and the remaining functions.

C. Experimental Analysis on the Impact of θ in AIGA’s
Performance

The offline performance of AIGA for all dynamic test cases
with different threshold values, used in Equation (2) is plotted
in Fig. 2. An AIGA with different threshold values is denoted
as AIGA(θ).

It can be observed that AIGA(0.9) achieves better perfor-
mance in almost all cases. This is natural because the fitness
of each elitism-based immigrant generated is more likely tobe
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Fig. 2. The impact of theθ value on the performance of AIGA on different DOPs.

TABLE I
EXPERIMENTAL RESULTS AND STATISTICAL TESTS REGARDING THE OFFLINE PERFORMANCE OFAIGA AGAINST EIGA* WITH AN OPTIMIZED pi

m

VALUE IN DOPS. BOLD VALUES ARE SIGNIFICANT AT 0.05LEVEL OF SIGNIFICANCE BY WILCOXON RANK-SUM TEST

GAs & Functions OneMax Plateau Deceptive

τ = 10, ρ ⇒ 0.1 0.25 0.5 0.75 0.1 0.25 0.5 0.75 0.1 0.25 0.5 0.75

AIGA 89.4 78.5 70.4 66.3 78.6 58.4 45.9 42.1 68.6 59.4 56.3 59.7

EIGA* 87.7 75.8 67.7 66.9 75.3 54.5 43.0 43.2 66.2 56.4 53.5 56.4

τ = 50, ρ ⇒ 0.1 0.25 0.5 0.75 0.1 0.25 0.5 0.75 0.1 0.25 0.5 0.75

AIGA 97.8 93.7 86.6 81.1 95.6 86.9 73.0 65.4 77.9 74.1 72.6 77.8

EIGA* 97.6 92.8 84.4 79.1 95.0 84.8 68.9 67.0 77.8 72.7 70.1 76.0

better than the average fitness of the whole population. There-
fore, the effect of the immigrants, as measured in Equation (1),
is more likely to be high, and, thus, the immigrants generated
have positive effect. This observation supports the claim that
the performance of AIGA does not rely onθ.

There are some cases, e.g., DOPs withτ = 10 andρ = 0.75,
that AIGA(0.8) performs slightly better than AIGA(0.9) on the
Plateau function. However, this shows thatθ is generally not
sensitive because it does not affect the performance of the
algorithm. Probably, a larger step size, i.e.,σ = 0.05, may
improve the performance, or even self-adapt the step size may
improve the performance.

A value0.8 ≤ θ ≤ 0.9 can achieve satisfactory performance
for all DOPs. Therefore, the tedious work of fine-tuning
the value of the immigrants mutation probability in algo-
rithms without adaptation in order to improve the performance
slightly for a certain DOP can be avoided using AIGA.

D. Experimental Analysis of Adaptive versus Non-Adaptive
Immigrants

The experimental results regarding the overall offline per-
formance of AIGA with the adaptivepim against EIGA with
the best fixedpim value for each dynamic case found in
Fig. 1, denoted as EIGA*, are presented in Table I with
the corresponding statistical results of Wilcoxon rank-sum
test, at the 0.05 level of significance. Moreover, the dynamic
behaviour of the algorithms regarding overall performanceand
diversity are presented in Fig. 4 and Fig. 5, respectively. The
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Fig. 3. Dynamic behaviour of thepim value of AIGA on DOPs withτ = 10

andρ = 0.1 andρ = 0.75, respectively, and on DOPsτ = 50 andρ = 0.1
andρ = 0.75, respectively, for the first 100 generations.

dynamic behaviour of the adaptedpim value of AIGA are
presented in Fig. 3. From the experimental results, several
observations can be made by comparing the behaviour of the
algorithms.

First, AIGA performs significantly better than EIGA* in
almost all dynamic cases; see the comparisons in Table I. In
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Fig. 4. Dynamic overall offline performance of GAs on DOPs with τ = 50 andρ = 0.1 andρ = 0.75, respectively, for the first 500 generations.
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Fig. 5. Dynamic overall diversity of GAs on DOPs withτ = 50 andρ = 0.1 andρ = 0.75, respectively, for the first 500 generations.

some cases of OneMax and Plateau DOPs withρ = 0.75
EIGA* performs significantly better than AIGA. This is be-
cause the adaptive mechanism in AIGA may not be able to
increase the value ofpim as high as in EIGA*, in which
pim = 1.0 performs better in most severe DOPs; see Fig. 1.
This behaviour can be observed from Fig. 3 where the values
of the adapted parameter in AIGA is0.0 ≤ pim(t) ≤ 0.2 in

different DOPs.
Second, from Fig. 5 it can be observed that AIGA maintains

higher diversity than EIGA* throughout the execution for
OneMax and Plateau functions. In fact, the difference between
the diversity of AIGA and EIGA* is much higher when
ρ = 0.75 than whenρ = 0.1. This shows that the adaptive
immigrants in AIGA are able to maintain the diversity in the



TABLE II
EXPERIMENTAL RESULTS AND STATISTICAL TESTS REGARDING THE OFFLINE PERFORMANCE OFAIGA AGAINST OTHER PEERGAS IN DOPS. BOLD

VALUES ARE SIGNIFICANT AT 0.05LEVEL OF SIGNIFICANCE BY THEWILCOXON RANK-SUM TEST.

GAs & Functions OneMax Plateau Deceptive

τ = 10, ρ ⇒ 0.1 0.25 0.5 0.75 0.1 0.25 0.5 0.75 0.1 0.25 0.5 0.75

SGA 73.9 67.9 64.5 63.0 58.8 47.0 39.7 36.9 55.3 52.0 51.1 52.0

RIGA 73.9 69.7 66.7 65.3 59.2 48.5 42.2 39.8 53.3 51.7 51.2 51.6

EIGA 87.7 73.8 63.2 58.1 75.3 51.1 37.2 34.1 66.2 55.0 51.6 54.8

AIGA 89.4 78.5 70.4 66.3 78.6 58.4 45.9 42.1 68.6 59.4 56.3 59.7

τ = 50, ρ ⇒ 0.1 0.25 0.5 0.75 0.1 0.25 0.5 0.75 0.1 0.25 0.5 0.75

SGA 82.7 77.8 72.4 68.5 75.5 66.4 56.3 49.9 64.5 60.3 58.7 61.1

RIGA 80.9 77.3 75.1 74.4 77.1 67.3 60.5 59.5 60.3 57.5 57.5 57.9

EIGA 97.5 92.8 83.2 73.4 94.9 84.8 66.3 53.7 77.8 72.7 70.1 75.8

AIGA 97.8 93.7 86.6 81.1 95.6 86.9 73.0 65.4 77.9 74.1 72.6 77.8

population depending on the DOP which can be observed from
Fig. 3, where the mutation probability increases between the
DOPs withρ = 0.1 andρ = 0.75, especially whenτ = 10.

Third, AIGA maintains lower diversity in the Deceptive
function before the change occurs and higher after a change
in all DOPs; see Fig. 5. This is probably because GAs benefit
from the elitism mechanism as shown in the experiments in
Section V-B and Fig. 1. Therefore, the adaptive mechanism
in AIGA may decrease thepim since it works in favour for
the Deceptive function. This can be supported from Fig. 3
because the adaptedpim reaches 0 level in many stages of the
evolutionary process only in the Deceptive function. Moreover,
this behaviour supports our claim in Section III-A that a fixed
value ofpim may not be the best choice because the algorithm
may need different levels of diversity at different stages of the
evolutionary process.

E. Experimental Analysis of the Performance between AIGA
and Other Peer GAs

The experimental results regarding the overall offline perfor-
mance of AIGA against other peer GAs are presented in Table
II with the corresponding statistical results of the Wilcoxon
rank-sum test at the 0.05 level of significance. In this section,
EIGA is applied with its traditionalpim value, i.e., 0.01. In
order to have fair comparisons among GAs, the population size
and ratios of immigrants were set such that each GA has 130
fitness evaluations per generation as follows: the population
size n was set to 130 for standard GA (SGA) and 100 for
RIGA, EIGA and AIGA and the ratiori was set to 0.3 for
EIGA and RIGA. The rest of the parameters are the same as
in the experiments above.

From Table II, it can be clearly observed that the proposed
AIGA outperforms its competitors in all DOPs. This confirms
our expectation that AIGA may perform well on DOPs of
different dynamics. For example, AIGA outperforms RIGA
in DOPs with rapidly and severely changing environments,
in which RIGA performs usually better than other GAs, and
AIGA outperforms EIGA in DOPs with slowly and changing
environment, in which EIGA performs usually better than

other GAs. This is because AIGA maintains the appropriate
level of diversity during different stages of the evolutionary
process, which is supported in the above experiments.

VI. CONCLUSIONS ANDFUTURE WORK

Immigrants schemes have been successfully applied in GAs
to address DOPs. The performance of different immigrants
schemes depends on the characteristics of the DOP. In this
paper, we propose an adaptive immigrants scheme for GAs
in dynamic environments in which the elite of the previous
environment is used as the base to generated immigrants via
mutation. The immigrants mutation probability is adapted in
every generation according to the effect of the immigrants to
the population.

From the experimental results on a series of DOPs, the
following conclusions can be drawn. First, the immigrant
mutation probability is an important parameter, in terms ofthe
performance for GAs, and depends on the DOP. Second, the
best immigrant mutation probability varies at different stages
of the evolutionary process. Third, AIGA outperforms other
GAs in all dynamic test cases. Finally, higher levels of guided
diversity does not always achieve better performance for GAs
in DOPs.

For future work, it will be interesting to self-adapt the
step size of the immigrant mutation rate, which might further
improve the performance of AIGA for DOPs. Moreover,
other immigrants schemes also have thepim parameter, e.g.,
memory-based immigrants [12], in which the proposed adap-
tive mechanism can be applied. Another future work is to
furthermore investigate the impact ofpim on the performance
of GAs with different immigrants replacement rates, i.e.,
ni [24]. Probably an adaptedpim value may require fewer
immigrants and avoid the waste of function evaluations in
every generation.
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