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Abstract—The integration of immigrants schemes with ant
colony optimization (ACO) algorithms showed promising results
on different dynamic optimization problems (DOPs). The princi-
ple of integrating immigrants schemes within ACO is to introduce
newly generated ants that will replace other ants in the current
population. One of the most advanced immigrants schemes is the
elitism-based immigrants scheme, where the best ant from the
previous environment is used as the base to generate immigrants.
So far, the replacement rate used for elitism-based immigrants
in ACO remained fixed during the execution of the algorithm. In
this paper the impact of the replacement rate on the performance
of ACO algorithms with elitism-based immigrants is examined. In
addition, an adaptive replacement rate is proposed and compared
with fixed and optimized replacement rates based on a series of
DOPs. The experiments show that the adaptive scheme provides
an automatic way to set a good value, although not the optimal
one, for the replacement rate within ACO with elitism-based
immigrants for DOPs.

I. INTRODUCTION

Ant colony optimization (ACO) algorithms have proved
to be powerful methods to address challenging combinato-
rial optimization problems [4], [5], [7], [20]. Most prob-
lems addressed by ACO have stationary environments where
the problems remain fixed during the optimization process.
However, many real-world problems are dynamic optimization
problems (DOPs) where the environment may change during
the execution of the algorithm.

When a dynamic change occurs, it may take some time
for ACO algorithms to adapt to the new environment [1],
[14]. This is because ACO algorithms are designed especially
to converge into a single optimum [2], [4]. Therefore, once
the population converges into an optimum, then it will be
difficult to escape from it and track the changing optimum. A
simple strategy to address this issue is to restart the algorithm
whenever a dynamic change occurs. However, this strategy
may be inefficient, especially in cases where the changing
environments are similar [10].

Immigrants schemes have proved that they are effective
strategies to enhance the performance of ACO on different
DOPs, including the dynamic travelling salesman problem
(DTSP) [11], [15] and dynamic vehicle routing problem

(DVRP) [13]. The principle of immigrants schemes is to
introduce newly generated ants (immigrants) to replace a small
portion of ants in the executing population. Traditionally,
immigrant ants are generated randomly and represent random
solutions. Another advanced immigrants scheme is where the
best solution of the previous environment is used as the base
to generate elitism-based immigrants.

One important parameter when integrating immigrants
schemes with algorithms is the replacement rate. Usually, the
replacement rate is set to a fixed value, e.g., a typical value is
0.2. However, the value of the replacement rate may vary under
different DOPs. The impact of fixed and adaptive immigrants
replacement rates was originally examined with evolutionary
algorithms (EAs) for dynamic binary encoded problems [23].
In this paper, we focus on ACO algorithms integrated with the
elitism-based immigrants scheme for dynamic routing prob-
lems, including the DTSP and DVRP. The dynamic benchmark
generator proposed in [17] is used to generate a series of dy-
namic test cases and experiments are systematically conducted.
The experiments show that the elitism-based immigrants ACO
(EIACO) with an adaptive replacement rate outperforms the
EIACO with a fixed replacement rate in most dynamic test
cases.

The rest of the paper is organized as follows. Section II
describes the DTSP and DVRP generated by the benchmark
generator. Section III describes the EIACO algorithm used for
the experiments. Section IV describes the adaptive mechanism
for the immigrants replacement rate. Section V gives the
experimental results. Finally, Section VI concludes this paper
with discussion on future work.

II. DYNAMIC TEST ENVIRONMENTS

A. Routing Problems

A routing problem can be presented using a weighted
graph. Let G = (N,A) be a weighted graph where N =
{1, . . . , n} is a set of n nodes and A = {(i, j) : i 6= j} is a
set of arcs. Each node i has a location defined by (x, y) and
each arc (i, j) is associated with a non-negative distance dij .
Usually, the distance matrix of a problem instance is defined
as D = (dij)n×n.



1) Travelling Salesman Problem (TSP): The TSP can be
described as follows: given a collection of cities, we need to
find the shortest path that starts from one city and visits each
of the other cities once and only once before returning to the
starting city.

Formally, the TSP is defined as follows. Let ψij denote the
binary decision variables defined as:

ψij =

{

1, if (i, j) is covered in the tour,

0, otherwise,
(1)

where ψij ∈ {0, 1}. Then, the objective of the TSP is defined
as:

f(x) = min

n
∑

i=1

n
∑

j=1

dijψij , (2)

where n is the number of cities and dij is the distance between
cities i and j.

2) Vehicle Routing Problem (VRP): The basic VRP can
be described as follows: given a number of u vehicles with
a fixed capacity Q, we need to satisfy the demand of all
the customers, starting from and finishing at the depot1. The
demand of customer i is defined as qi. A VRP without the
capacity constraint and with one vehicle can be seen as a TSP
described above.

Formally, the VRP is defined as follows. Let ψk
ij denote

the binary decision variables defined as:

ψk
ij =

{

1, if (i, j) is covered by vehicle k,

0, otherwise,
(3)

where ψk
ij ∈ {0, 1} for the k-th vehicle. Then, the objective

of the VRP is defined as:

f(x) = min

n
∑

i=0

n
∑

j=0

dij

u
∑

k=1

ψk
ij , (4)

subject to:

n
∑

i=0

qi

n
∑

j=0

ψk
ij ≤ Q, ∀k ∈ {1, . . . , u}, (5)

n
∑

i=0

ψk
il −

n
∑

j=0

ψk
lj = 0, ∀k ∈ {1, . . . , u}, l ∈ {1, . . . , n}, (6)

n
∑

i=1

ψk
i0 ≤ 1, ∀k ∈ {1, . . . , u}, (7)

n
∑

j=1

ψk
0j ≤ 1, ∀k ∈ {1, . . . , u}, (8)

where Eq. (5) is the capacity constraint that ensures that no
vehicle can be overloaded; Eq. (6) ensures that if a vehicle
arrives at a customer, it must also leave the customer; Eq. (7)
and Eq. (8) ensure that each vehicle is not scheduled more
than once.

1For VRP N ′ = {0} ∪ {1, . . . , n} where {0} indicates the depot

B. Dynamic Benchmark Generators

Over the years, several dynamic benchmark generators
have been proposed for the TSP and VRP that tend to model
a real-world scenario, such as the DTSP with traffic factors
[6], [15], [18], the DTSP with exchangeable cities [8], [9], the
DVRP with dynamic demands [19] and the DVRP with traffic
factors [13]. These benchmark generators modify the fitness
landscape, whenever a dynamic change occurs, and cause the
optimum value to change.

In this paper, the dynamic benchmark generator for
permutation-encoded problems (DBGP) proposed in [17] is
used, which can convert any stationary permutation-encoded
benchmark problem instance to a DOP. The fitness landscape
is not modified with DBGP, and thus, the optimum value
remains the same (if known). This is because DBGP shifts
the population of the algorithm to search to a new location
in the fitness landscape. The main advantage of using the
DBGP rather than the other generators is that one can observe
how close to the optimum an algorithm can perform when a
dynamic change occurs.

C. Constructing Dynamic Test Environments

Considering the TSP and VRP descriptions, each object,
i.e., city or customer, i ∈ N has a location defined by
(x, y). DBGP generates the dynamic case as follows. Every

f iterations a random vector ~V (T ) is generated that contains
exactly m × n objects, where T = ⌈t/f⌉ is the index of the
period of change, t is the iteration count of the algorithm,
f determines the frequency of change, where n is the size
of the problem instance, and m determines the magnitude of
change. More precisely, m ∈ [0.0, 1.0] defines the degree of

change, in which only the first m×n of ~V (T ) object locations

are swapped. Then, a randomly re-ordered vector ~U(T ) is

generated that contains the objects of ~V (T ). Therefore, exactly
m × n pairwise swaps are performed in D using the two

random vectors (~V (T )⊗ ~U(T )), where “⊗” denotes the swap
operator.

III. ELITISM-BASED IMMIGRANTS SCHEME FOR DOPS

A. Description of ACO

ACO algorithms were initially developed to address sta-
tionary routing problems [4]. Within ACO, a population of
µ ants construct feasible solutions on their forward mode,
and update pheromone trails on their backward mode every
iteration. Hence, after several iterations high concentrations of
pheromone will be generated into a trail that corresponds to a
near to the optimum (or the optimum) solution of the routing
problem, e.g., the TSP or VRP.

Each ant k constructs a feasible solution using a proba-
bilistic rule to move from object i to object j as follows:

pkij =
[τij ]

α[ηij ]
β

∑

l∈Nk

i

[τil]α[ηil]β
, if j ∈ N k

i , (9)

where τij is the existing pheromone trail between objects i and
j, ηij = 1/dij is the heuristic information available a priori,
dij is the distance between objects i and j and N k

i denotes
the objects that ant k is allowed to select from object i. Note



that the main difference when constructing a TSP or a VRP
solution lies in the generation of N k

i . For the TSP, N k
i is

generated by the unvisited cities incident to city i, whereas for
the VRP, N k

i is generated by the unvisited customers incident
to customer i in addition with the depot object.

B. ACO for DOPs

ACO algorithms can transfer knowledge via the pheromone
trails generated from the previous environment when the
changing environments are similar. If the dynamic change
is severe, the pheromone trails of the previous environment
may misguide the population to search into areas far from the
optimum; otherwise, the pheromone trails of the previous envi-
ronment may provide knowledge to speed up the optimization
to the new environment.

ACO algorithms suffer from the stagnation behaviour when
addressing DOPs. For example, once the population converges
quickly into an optimum, then it is difficult for the population
to escape from the old optimum in order to adapt to the new
optimum when an environmental change occurs. More specif-
ically, the pheromone trails generated around the optimum
before the dynamic change may misguide ants not to track the
moving optimum. Therefore, ACO algorithms may need some
time to adapt to dynamic changes because of the stagnation
behaviour [14].

Over the years, several strategies have been proposed to
address this issue and enhance the performance of ACO algo-
rithms for DOPs, including maintaining diversity strategies [6],
[8], [14], increasing diversity via immigrants [11], [13], [15],
memory-based schemes [9], multi-colony schemes [18] and
memetic algorithms [12], [16]. The integration of immigrants
schemes within ACO algorithms has shown to be able to
enhance the performance of ACO on the DTSP [15] and DVRP
[13].

C. Elitism-based Immigrants ACO

Immigrants schemes mainly differ in the way immigrant
ants are generated. Traditionally, immigrants are generated
randomly and represent random solutions of the routing
problem. However, too much randomization may disturb the
optimization process. Elitism-based immigrants are generated
via transferring knowledge from the previous environment,
and hence the diversity generated is controlled. Elitism-based
immigrants have shown more consistent performance when
integrated with EAs for binary dynamic functions [22] and
the dynamic shortest path problem in mobile ad hoc networks
[3], with a CHC-based algorithm for the DTSP [21] and with
ACO on different combinatorial routing problems [13], [15].

In this paper, we focus on the integration of elitism-
based immigrants with an ACO algorithm, known as EIACO
[11], [15]. Within EIACO, the best ant from the previous
environment is used as the base to generate ri × ks elitism-
based immigrants to replace the worst ants in kshort(t), where
ri is the replacement rate. An elitism-based immigrant is
generate by swapping objects with a pim probability. For the
TSP, all the objects are allowed to be swapped whereas for the
VRP only the objects that belong to the same vehicle route are
allowed.

The solution construction of EIACO is the same as in
Eq. (9). Every iteration t, the pheromone table is associated
with a short-term memory of size ks, denoted kshort(t) in this
paper, and any change to kshort(t+1) causes an update to the
pheromone table. The ks best ants from the current iteration t
replace the ants in kshort(t− 1).

When the worst ants are replaced by elitism-based immi-
grant ants, the pheromone trails of each k-th worst ant are
removed, as follows:

τij ← τij −∆τkij , ∀ (i, j) ∈ T k, (10)

where T k represents the tour of ant k and ∆τkij = (τmax −
τ0)/ks, where τmax and τ0 denote the maximum and initial
pheromone values, respectively. Furthermore, the pheromone
trails of each k-th immigrant ant are added, as follows:

τij ← τij +∆τkij , ∀ (i, j) ∈ T k, (11)

where ∆τkij and T k are as defined in Eq. (10).

IV. ADAPTING THE REPLACEMENT RATE

A. The Role of the Replacement Rate

The replacement rate is an important parameter when
immigrants schemes are integrated with ACO to address DOPs.
As an evidence, the experiments with different fixed replace-
ment rates with EIACO on different DTSPs with traffic factors
showed that the performance of EIACO depends significantly
on the setting value of the replacement rate [15].

Since elitism-based immigrants transfer knowledge from
previous environments, it is natural to set the replacement
rate to a good value in order to have a positive effect on the
performance of ACO for DOPs. It is straightforward that the
optimization process cannot be disturbed by too much ran-
domization since elitism-based immigrants generate diversity
via transferring knowledge. However, too much knowledge
transferred may degrade the performance for DOPs because
it may start the re-optimization process near a local optimum
and get stuck to it.

A fixed replacement rate may not be the best choice,
because at different stages of the optimization process and
under different DOPs the most appropriate replacement rate
may vary. An adaptive replacement rate was initially inves-
tigated with EAs and showed promising results on binary-
encoded DOPs [23]. In this paper, we investigate the adaptive
replacement rate with ACO algorithms on dynamic routing
problems.

B. Evaluating the Effect of Immigrants

In order to evaluate the effect of elitism-based immigrants,
we use the adaptation method proposed in [23], where the tour
cost of the generated immigrants is compared with the median
tour cost of the actual population in every iteration t.

Let ξ(t) denote the effect the elitism-based immigrants
generated at iteration t, which can be defined as follows:

ξ(t) =
ni{T i(t) ≤ Tmed(t)}

ni
(12)



where ni = ri × ks is the number of immigrants generated,
T i(t) is the solution quality of the i-th immigrant and Tmed(t)
is the median solution quality of the current ant population.
This measurement gives a ratio of the immigrants that may
help to guide the population into promising areas. Therefore,
according to the number of elitism-based immigrants that have
the solution quality close to the best solution of the previous
environment the effect ξ(t) increases.

C. Adaptive Rules for the Replacement Rate

The effect calculated in Eq. (12) is considered in order to
adapt the replacement rate of elitism-based immigrants. More
precisely, if the effect is positive, then the replacement rate
should be increased; otherwise, it should be decreased. Let
ri(t) denote the replacement rate of immigrants at iteration
t. Then, using the current effect of immigrants ξ(t), the new
replacement rate ri(t+ 1) can be updated as follows:

ri(t+ 1) =















ri(t) + 0.1, if ξ(t) > θ,

ri(t)− 0.1, if ξ(t) < θ,

ri(t), otherwise.

(13)

where θ is a predefined threshold that defines whether there is
a positive or negative effect and ri(t) is bounded to the interval
[0.0, 1.0]. It can be observed that this adaptation method
introduces a new parameter, i.e., θ. However, we will show
later on that it is not a sensitive parameter comparing with the
replacement rate in terms of performance. Another possible
(non-parametric) adaptation way is to adjust the replacement
rate probabilistically, which deserves future investigation.

V. EXPERIMENTAL STUDY

A. Experimental setup

The EIACO algorithm is used2 to investigate whether an
adaptive or fixed replacement rate of immigrants schemes
performs better for DOPs. The EIACO with an adaptive
replacement rate is denoted as AR-EIACO and the EIACO
with a fixed replacement rate is denoted as FR-EIACO.

All common algorithmic parameters were set as follows:
α = 1, β = 5, the population size µ = 30, ks was
set to 10 and the elitism-based immigrant mutation proba-
bility pim was set to 0.01. In order to investigate ri’s ef-
fect in terms of performance, the replacement rate of FR-
EIACO was set in ri ∈ {0.0, 0.2, 0.4, 0.6, 0.8} (see Section
V-B) and the threshold θ of AR-EIACO was set in θ ∈
{0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9} (see Section V-C). For
AR-EIACO, the initial value ri(0) was set to 0.5.

DOPs are generated from three TSP stationary benchmark
instances obtained from TSPLIB3 and three VRP stationary
benchmark instances obtained from VRPLIB4 using the DBGP
generator with f set to 10 and 100 indicating quickly and
slowly changing environments, respectively, and m set to 0.1,

2Random immigrant ACO is not considered because according to the
adaptive rule, the effect in Eq. (12) will be zero for almost all of the times.
This is because the solution quality of a random immigrant, i.e., a random
solution, is more likely to be worse than the median solution quality of the
population.

3http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/
4http://neo.lcc.uma.es/vrp/

TABLE I. DYNAMIC OPTIMIZATION PROBLEM INDICES USED IN THE

EXPERIMENTS

DOP Settings m = 0.1 m = 0.25 m = 0.5 m = 0.75

f = 10 1 2 3 4
f = 100 5 6 7 8

0.25, 0.5 and 0.75, indicating slowly, to medium, to severely
changing environments, respectively. Totally, a series of 8
DOPs are constructed from each stationary instance for both
DTSPs and DVRPs. The index of each DOP is described in
Table I.

For each ACO algorithm on a DOP, 30 independent runs
were executed on the same set of random seeds. For each
run, 1000 iterations were allowed and the best so far ant after
a dynamic change was recorded every iteration. The overall
offline performance [10] of an ACO on a DOP is defined as
follows:

P̄OFF =
1

E

E
∑

i=1





1

R

R
∑

j=1

P ∗
ij



 , (14)

where E is the number of iterations, R is the number of runs,
P ∗
ij defines the tour cost of the best ant of iteration i of run j.

B. Effect of the Replacement Rate ri

The offline performance results of FR-EIACO with differ-
ent immigrants’ replacement rates are plotted in Fig. 1 and
Fig. 2 for DOPs with f = 10 and f = 100, respectively. It
can be observed that different replacement rates achieve better
performance on different DOPs. This support our claim that
the replacement rate is a sensitive parameter and affects the
performance of EIACO.

When ri > 0.0, the performance of FR-EIACO is better
than when ri = 0.0 in almost all test cases, except on some
DTSPs with f = 10. This is because elitism-based immigrants
often guide the process towards promising areas and speed up
re-optimization. However, in cases where the dynamic changes
occur quickly, there is a high risk to misguide the search
process. This may be due to the limited time available to gain
knowledge in quickly changing environments.

Another observation is that higher replacement rates, e.g.,
ri > 0.2, improve the performance of FR-EIACO on most
DVRPs and degrade the performance on most DTSPs. This
is natural because the swaps on the objects to generate the
elitism-based immigrants on the DTSP occur in a larger
dimension, e.g., kroA200 has one large block of objects of
size 200 where F-n135-k7 has many small blocks of objects
and the size depends on the number of vehicles used. In this
way, even a single swap on the best solution of the previous
environment in the DTSP has a higher probability to cause a
big change to the newly generated immigrant and misguide
the searching in the new environment.

C. Effect of the Threshold θ

The offline performance results of AR-EIACO with differ-
ent threshold values are plotted in Fig. 3 for all DOPs. The
meaning of θ in Eq. 13 is to define whether the effect measured
in Eq. 12 is positive or negative. Hence, it is natural that when
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Fig. 1. Offline performance of FR-EIACO with different replacement rate values in quickly changing DOPs.
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Fig. 2. Offline performance of FR-EIACO with different replacement rate values in slowly changing DOPs.

θ is set to a small value the immigrants are more likely to be
considered as having a positive effect, whereas when θ is set to
a large value the immigrants are more likely to be considered
as having a negative effect.

It can be observed that the parameter θ is more sensitive on
the DTSP because the performance of AR-EIACO is degraded

when θ < 0.5. It was observed before that the elitism-based
immigrants generated for the DVRP are more effective than the
elitism-based immigrants generated for the DTSP because of
the dimension that the object’ swaps occur (see Section V-B).
Therefore, a θ value that works in favour of a positive effect,
i.e., a small value, will degrade the performance of AR-
EIACO. In case that the elitism-based immigrants are always



 22000

 24000

 26000

 28000

 30000

 32000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

O
ff

lin
e 

Pe
rf

or
m

an
ce

θ

kroA100

1
2
3
4
5
6
7
8

 28000

 30000

 32000

 34000

 36000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

O
ff

lin
e 

Pe
rf

or
m

an
ce

θ

kroA150

1
2
3
4
5
6
7
8

 30000

 32000

 34000

 36000

 38000

 40000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

O
ff

lin
e 

Pe
rf

or
m

an
ce

θ

kroA200

1
2
3
4
5
6
7
8

 800

 820

 840

 860

 880

 900

 920

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

O
ff

lin
e 

Pe
rf

or
m

an
ce

θ

F-45-k4

1
2
3
4
5
6
7
8

 250

 260

 270

 280

 290

 300

 310

 320

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

O
ff

lin
e 

Pe
rf

or
m

an
ce

θ

F-n72-k4

1
2
3
4
5
6
7
8

 1250

 1300

 1350

 1400

 1450

 1500

 1550

 1600

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

O
ff

lin
e 

Pe
rf

or
m

an
ce

θ

F-n135-k7

1
2
3
4
5
6
7
8

Fig. 3. Offline performance of AR-EIACO with different threshold values in DOPs on different environmental indices.

effective (even when ri is large), e.g., on the DVRP case, any
θ value will have similar performance on the AR-EIACO.

Another observation is that when θ ≥ 0.5, the performance
of AR-EIACO is nearly the same for all DOPs. This shows that
the threshold is not a sensitive parameter, comparing with the
ri parameter, and a value θ ∈ [0.5, 0.9] can achieve satisfactory
performance for all DOPs, either DTSPs or DVRPs.

D. Adaptive versus Fixed and Optimized Replacement Rate

The experimental results regarding the offline performance
of the AR-EIACO algorithm with θ = 0.7 compared with the
FR-EIACO with the commonly used ri = 0.2 replacement
rate value and the best replacement value, denoted as FR-
EIACO*, for all DOPs are presented in Table II. The cor-
responding statistical results are presented in Table III, where
Kruskal–Wallis tests were applied followed by posthoc paired
comparisons using Mann–Whitney tests with the Bonferroni
correction. In Table III, the results are shown as “+”, “−”
and “∼” when the first algorithm is significantly better than
the second one, when the second algorithm is significantly
better than the first one, and when the two algorithms are
not significantly different, respectively. In Fig. 4, the offline
performance, together with the replacement rate values of AR-
EIACO, against the algorithmic iterations of the algorithms
are plotted to better understand the behaviour of the ACO
algorithms. From the experimental results, several observations
can be drawn.

First, AR-EIACO significantly outperforms FR-EIACO on
most DVRPs, except when f = 10 with m = 0.5 and
m = 0.75; see the comparisons of AR-EIACO ⇔ FR-EIACO
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Fig. 4. Dynamic behaviour of ACO algorithms in terms of the offline
performance with the corresponding replacement rate values of AR-EIACO
with θ = 0.7 on DOPs averaged over 30 runs for the first five environments.

in Table III. This is because the generated elitism-based im-
migrants maintain a good solution quality when the changing
environments give enough time to the algorithm to converge
into a good solution or when the changing environments are
similar to transfer knowledge. Therefore, they will have a
positive effect and increase the replacement rate. This can be
observed from Fig. 4, where AR-EIACO maintains a higher
replacement rate after the first environment. Moreover, it can



TABLE II. EXPERIMENTAL RESULTS REGARDING THE OFFLINE PERFORMANCE OF EIACO WITH ADAPTIVE VERSUS FIXED IMMIGRANTS

REPLACEMENT RATE

Travelling Salesman Problem

Algorithms & DOPs kroA100(Optimum=21282) kroA150(Optimum=26524) kroA200(Optimum=29368)

f = 10, m ⇒ 0.1 0.25 0.5 0.75 0.1 0.25 0.5 0.75 0.1 0.25 0.5 0.75

AR-EIACO 23791 24937 25465 25514 30203 31479 31968 32081 34080 35531 35998 36086

FR-EIACO 23677 24926 25503 25575 30077 31473 32006 32130 33887 35541 36048 36148

FR-EIACO* 23418 24865 25384 25429 29973 31423 31877 31978 33766 35461 35876 35959

f = 100, m ⇒ 0.1 0.25 0.5 0.75 0.1 0.25 0.5 0.75 0.1 0.25 0.5 0.75

AR-EIACO 22131 22564 22819 22811 27716 28486 28636 28674 30711 31402 31888 31894

FR-EIACO 22152 22471 22764 22805 27846 28415 28638 28641 30814 31377 31788 31866

FR-EIACO* 22119 22471 22764 22805 27846 28415 28638 28641 30814 31377 31788 31866

Vehicle Routing Problem

Algorithms & DOPs F-n45-k4(Optimum=724) F-n72-k4(Optimum=237) F-n135-k7(Optimum=1162)

f = 10, m ⇒ 0.1 0.25 0.5 0.75 0.1 0.25 0.5 0.75 0.1 0.25 0.5 0.75

AR-EIACO 827.5 848.4 857.8 864.0 276.9 285.2 289.2 291.2 1346.1 1408.9 1441.3 1461.6

FR-EIACO 844.7 848.3 857.5 863.6 278.9 284.9 288.8 290.7 1355.3 1411.1 1438.3 1458.4

FR-EIACO* 834.7 847.7 857.5 862.5 274.7 284.1 288.5 290.2 1343.1 1402.6 1436.2 1454.9

f = 100, m ⇒ 0.1 0.25 0.5 0.75 0.1 0.25 0.5 0.75 0.1 0.25 0.5 0.75

AR-EIACO 808.2 817.5 825.2 826.7 260.7 264.5 264.6 267.2 1288.9 1318.7 1345.7 1371.0

FR-EIACO 826.8 826.7 835.9 840.7 263.9 266.1 265.5 268.3 1301.3 1322.5 1347.9 1374.2

FR-EIACO* 813.9 819.3 826.7 828.6 260.3 264.2 264.4 266.7 1286.7 1314.2 1337.1 1365.3

TABLE III. STATISTICAL RESULTS REGARDING THE OFFLINE PERFORMANCE OF EIACO WITH ADAPTIVE VERSUS FIXED IMMIGRANTS REPLACEMENT

RATE

Travelling Salesman Problem

Algorithms & DOPs kroA100 kroA150 kroA200

f = 10, m ⇒ 0.1 0.25 0.5 0.75 0.1 0.25 0.5 0.75 0.1 0.25 0.5 0.75

AR-EIACO ⇔ FR-EIACO − ∼ + + − ∼ + + − ∼ + +

AR-EIACO ⇔ FR-EIACO* − − − − − − − − − − − −
FR-EIACO ⇔ FR-EIACO* − − − − − − − − − − − −

f = 100, m ⇒ 0.1 0.25 0.5 0.75 0.1 0.25 0.5 0.75 0.1 0.25 0.5 0.75

AR-EIACO ⇔ FR-EIACO ∼ ∼ ∼ ∼ + ∼ ∼ ∼ + ∼ ∼ ∼
AR-EIACO ⇔ FR-EIACO* ∼ ∼ ∼ ∼ + ∼ ∼ ∼ + ∼ ∼ ∼
FR-EIACO ⇔ FR-EIACO* ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼

Vehicle Routing Problem

Algorithms & DOPs F-n45-k4 F-n72-k4 F-n135-k7

f = 10, m ⇒ 0.1 0.25 0.5 0.75 0.1 0.25 0.5 0.75 0.1 0.25 0.5 0.75

AR-EIACO ⇔ FR-EIACO + ∼ ∼ ∼ + − − − + ∼ − −
AR-EIACO ⇔ FR-EIACO* + ∼ ∼ ∼ − − ∼ ∼ ∼ − − −
FR-EIACO ⇔ FR-EIACO* − ∼ ∼ ∼ − − − − − − − −

f = 100, m ⇒ 0.1 0.25 0.5 0.75 0.1 0.25 0.5 0.75 0.1 0.25 0.5 0.75

AR-EIACO ⇔ FR-EIACO + + + + + ∼ + + + ∼ ∼ ∼
AR-EIACO ⇔ FR-EIACO* + ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ − ∼
FR-EIACO ⇔ FR-EIACO* − − − − − − − − − ∼ − −

be observed that on the first environment the performance of
all algorithms is similar, whereas on the next environments
AR-EIACO performs significantly better.

Second, AR-EIACO significantly outperforms FR-EIACO
on DTSPs with f = 10 and m = 0.5 and m = 0.75
whereas FR-EIACO significantly outperform AR-EIACO on
DTSPs with f = 10 and m = 0.1. This is due to the reasons
explained in Section V-B that for the DTSP, elitism-based
immigrants may not maintain a good solution quality because
of the larger blocks. Therefore, they will have a negative effect
and decrease the replacement rate according to the adaptive
method in Eq. 12. A lower replacement rate works in favour
of FR-EIACO which can be observed from Fig. 1, where on
most DTSPs with f = 10 the EIACO with no immigrants, i.e.,

ri = 0.0, has the best performance. Differently, AR-EIACO is
comparable with FR-EIACO on most DTSPs with f = 100,
except when m = 0.1. This is because the replacement rate,
i.e., ri = 0.2, of FR-EIACO on DTSPs with f = 100 is
the optimized one, i.e., FR-EIACO*, on almost all cases,
which can be observed from Table II. When f = 100 and
m = 0.1 AR-EIACO significantly outperforms FR-EIACO and
FR-EIACO* on most DTSPs because the dynamic change is
small.

Third, FR-EIACO* significantly outperforms AR-EIACO
on most DOPs (both DTSPs and DVRPs), except on some
cases from F-n45-k4, kroA150 and kroA200 when m = 0.1;
see the comparisons of AR-EIACO ⇔ FR-EIACO* in Table
III. This is natural because the replacement rate of FR-EIACO*



is obtained via fine tuning whereas for AR-EIACO starts from
ri(0) = 0.5 and it is adapted during the execution as presented
in Fig. 4. The performance of AR-EIACO is still satisfactory
because it is usually not significantly worse than FR-EIACO*,
which can be observed from Tables II and III. Considering the
time consuming task of optimizing the replacement rate for
every DOP, it is worth using the adaptive replacement rate,
i.e., AR-EIACO with θ ∈ [0.5, 0.9], even if the performance
is slightly degraded.

VI. CONCLUSIONS AND FUTURE WORK

This paper investigates the impact of the replacement rate
within ACO algorithms with immigrants schemes for DOPs.
Experiments were conducted on ACO algorithms with the
well-known elitism-based immigrants scheme with an adap-
tive, fixed or optimized replacement rate. From the experi-
ments, several concluding remarks can be drawn.

First, the replacement rate is an important parameter for
EIACO when addressing DOPs. Second, different replacement
rate values perform well on different DOPs. Third, the adaptive
replacement rate performs better than the fixed replacement
rate on most DOPs. Fourth, the elitism-based immigrants
improve the performance of ACO on almost all DOPs, es-
pecially on DVRPs. Finally, the optimized replacement rate
outperforms the adaptive replacement rate on most DOPs.
However, it may be better to use an automatic adaptive re-
placement rate rather than a manual fixed replacement rate. The
optimization of the replacement rate parameter for each DOP
requires extensive computation time. Hence, for the sake of
convenience, it may be better to adopt the adaptive replacement
rate and slightly sacrifice the performance of the algorithm for
DOPs.

For future work it will be interesting to apply other ways,
i.e., non parametric, to adapt the immigrants replacement rate.
Another future work is to adapt other important parameters of
immigrants, e.g., the immigrants mutation probability pim in
EIACO.
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