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Abstract—This paper proposes a novel adaptive local search
algorithm for tackling real-valued (or continuous) dynamic
optimization problems. The proposed algorithm is a simple
single-solution based metaheuristic that perturbs the variables
separately to select the search direction for the following step
and adapts its step size to the gradient. The search directions
that appear to be the most promising are rewarded by a step
size increase while the unsuccessful moves attempt to reverse the
search direction with a reduced step size. When the environment
is subject to changes, a new solution is sampled and crosses over
the best solution in the previous environment. Furthermore, the
algorithm makes use of a small archive where the best solutions
are saved. Experimental results show that the proposed algorithm,
despite its simplicity, is competitive with complex population-
based algorithms for tested dynamic optimization problems.

I. INTRODUCTION

Deterministic or randomized local search is sometimes a
simple and yet powerful tool to tackle some optimization
problems. Moreover, local search can be one very appealing
option for those engineering problems characterized by a
modest hardware, see [8]. Efficient local search algorithms, if
combined with other algorithms or within a simple restarting
mechanism, are proven to offer a performance competitive
with that of complex metaheuristics. One extremely simple
and successful example of local search component is the so
called “S” algorithm. First introduced within a framework for
large scale optimization in [27] and then readjusted in [15]
with the name “Short Distance Exploration”, or simply “S”,
this operator is a powerful steepest-descent method employing
a perturbation logic derived from Hook-Jeeves [14]. This local
search operator is also used within a multiple local search
framework in [9] and [10], while in [8] S is implemented
in a multi-start local search method. Recently, two variants
of S, namely “S2” and “S3”, have been proposed in [17].
The S3 algorithm is a simple adaptive version of S that
performs moves along the axes by adjusting the step size to
the successful directions, i.e., by following the gradient.

This paper proposes a variant of S3, denoted “DynS3”, for
solving continuous dynamic optimization problems (DOPs),
where the fitness landscape changes over time. Many real-
world problems have such characteristics that makes DOPs
difficult problems to address. This is because the moving
optimum of DOPs needs to be tracked. Particularly, once
optimization algorithms converge to an optimum; they face

a serious challenge to escape from it and capture the new
optimum when a dynamic change occurs. Techniques that
transfer knowledge from previous environments and maintain
diversity are widely used to address DOPs [11], [13], [28].
Usually, these techniques are suitable only when the dynamic
changes are of “small to medium” magnitudes [4].

The difference of the proposed DynS3 with the standard
S3 lies in that the former algorithm incorporates an explicit
memory (archive) to store the solutions found by the local
search. DynS3 is applied to a single random solution whenever
the computational budget is exhausted; and repeats its opti-
mization task from a new random solution. When a dynamic
change occurs, explicit actions are taken to speed up the
re-optimization process by transferring knowledge from the
archive. Hence, DynS3 starts optimizing from the best solution
retrieved from the archive when a change occurs. A crowding
strategy is used to update the archive in order to maintain
diversity, which is an essential factor when addressing DOPs.

The experimental study of this paper is based on the
moving peaks benchmark (MPB) problem [4] to evaluate the
performance of the proposed local search algorithm in dynamic
environments. The performance of the proposed DynS3 algo-
rithm is compared with several state-of-the-art algorithms that
were developed for DOPs in the literature. Although DynS3
is not incorporated with any global search or multi-search
technique, the results show that the proposed algorithm is
competitive with evolutionary algorithms (EAs) and particle
swarm optimization (PSO) algorithms.

The rest of the paper is organized as follows. Section II de-
scribes the MPB which is the test suite used in the experiments.
Section III describes some of the existing algorithms applied to
DOPs. Section IV describes in detail the different components
of the proposed DynS3 algorithm. Section V-C presents the
experimental study and analyses the results. Finally, Section VI
concludes this paper with relevant future works and directions.

II. MOVING PEAKS BENCHMARK PROBLEM

Without loss of generality, in this paper we consider as our
ultimate goal the maximization of an objective function f(x),
where x = [x1, x2, . . . , xd] ∈ R

d is the decision vector and d
is the number of variables (dimensions). The feasible solution
space (or decision space D) is constrained by the lower bound
L = [l1, l2, . . . , ld] and the upper bound H = [h1, h2, . . . , hd]978-1-4799-7492-4/15/$31.00 c© 2015 IEEE



of the decision vector x. Since f is assumed to be a time-
variant function, the time parameter t is introduced such that
the objective function becomes f(x, t). Note that throughout
this paper, arrays are highlighted in the bold face while scalars
are in normal italic.

The MPB problem proposed by Branke [4] is one of
the most widely accepted test suits for dynamically changing
fitness landscapes. It has been widely used to analyse and com-
pare algorithms in dynamic environments. The MPB problem
is a maximization problem that consists of a number of peaks
that randomly vary their shape (e.q., width and height) and
position. Formally, the MPB function is defined as follows:

f(x, t) = max
i=1,...,m

Hi(t)

1 +Wi(t)
∑d

j=1(xj(t)−Xij(t))2
(1)

where Hi(t) and Wi(t) are the height and width of peak i
at time t, respectively, and Xij(t) is the jth element of the
location of peak i at time t. Every a function evaluations, the
height and width of every peak i are modified by adding a
normal distributed random number σ (with the mean 0 and
variation 1) as follows:

Hi(t) = Hi(t− 1) + height severity ∗ σ (2)

Wi(t) = Wi(t− 1) + width severity ∗ σ (3)

Moreover, the location of every peak i is moved in a random
direction by a vector ui of a distance s as follows:

Xi(t) = Xi(t− 1) + ui (4)

where ui is a linear combination of a random vector and the
direction of the previous move defined as follows:

ui(t) =
s

|r+ ui(t− 1)|
(1− λ)r + λui(t− 1)) (5)

where ui(t) is the shift vector, r is the random vector and
λ is the correlation coefficient parameter. Note that a and s
determine the frequency and magnitude of dynamic changes.

III. PREVIOUS WORKS

Most algorithms proposed to tackle the MPB problem
are multi-population based EAs and PSO algorithms. Such
algorithms are suitable for DOPs because they are inspired
from nature, which is a continuous adaptation process [16],
[23]. The first algorithm proposed to tackle the MPB problem
is the memory-based multi-population EA proposed by Branke
[4], where the best individuals are stored in an explicit memory.
When a dynamic change occurs, the memory individuals
are then merged to the evolving population. Another multi-
population EA based on the forking mechanism, called the
self organized scouts (SOS), was proposed in [5], [6]. This
algorithm starts from a single population (i.e., parent) that
explores the entire search space and allocates sub-populations
(children) to promising areas to track local optima.

Blackwell and Branke [2], [3] introduced two multi-swarm
algorithms, i.e., multi charged PSO (mCPSO) and multi-
quantum swarm optimization (mQSO), inspired from the atom
field. The former algorithm contains a sub-swarm of charged
particles that repel each other and circle around another sub-
swarm of neutral (conventional) particles. The latter algorithm

is a variation of the former algorithm, where the charged
particles move randomly within a fixed radius around the
particle with the best fitness (i.e., attractor). Both algorithms
use an exclusion radius to prevent sub-swarm to overlap.

Parrot and Li [24] proposed the speciation PSO (SPSO)
where close particles are considered as members of the same
sub-swarm (species). A fixed radius is defined to create the
sub-swarms, where each sub-swarm has a maximum thresh-
old of the swarm size. Whenever the number of members
within a sub-swarm exceeds the predefined threshold, the
worst members are reinitialized to random positions. Du and
Li [12] proposed another multi-swarm PSO with two fixed
sub-swarms, called multi-strategy ensemble PSO (MEPSO).
One sub-swarm is responsible for diversification (exploration)
whereas the other sub-swarm is responsible for intensification
(exploitation).

Mendes and Mohais [20] introduced a multi-population
dynamic differential evolution (DynDE) based on the exclusion
concept described above. Within the DynDE, individuals are
generated according to their types: named DE, entropy DE,
Quantum or Brownian, where the last three types aim to
maintain diversity. Lung and Dumitrescu [19] proposed a
hybridized algorithm that combines PSO and crowding DE,
called collaborative evolutionary-swarm optimization (CESO).
Populations of the two methods collaborate to achieve a good
balance between exploration and exploitation. The crowding
DE is responsible to maintain diversity by replacing the closest
individual only if it is fitter, whereas PSO is responsible
to locate and converge to the global optimum. Whenever a
dynamic change occurs, the PSO swarm is reinitialized to the
crowding DE population.

Moser and Hendtlass [21] investigated the use of local
search as a main feature to tackle DOPs by introducing the
multi-phase multi-individual extremal optimization (MMEO)
algorithm. The key idea of the MMEO algorithm is to stepwise
sample every dimension in equal distances [1]. The extremal
optimization algorithm is used to determine the initial solution
for the local search procedure by selecting the best sample.
The resulting solutions are stored in a memory that uses further
local searches to track the local optima when a dynamic change
occurs. Similarly, Lepagnot et al. [18] proposed a multi-agent
algorithm for dynamic optimization (MADO) that follows a
similar concept with MMEO. Their difference lies in that in
MADO multiple local searches are performed by a population
of agents.

IV. PROPOSED DYNS3 ALGORITHM FOR DYNAMIC

OPTMIZATION

A. The Framework of Dynamic S3 (DynS3)

The framework of DynS3 does not make use of any
population-based algorithm or multi-local search technique.
The DynS3 local search operator is iteratively applied to
a single solution in order to locate and track the moving
optimum. More precisely, DynS3 performs local search to a
random solution; moving from its current position to a better
one within its neighbourhood until the computational budget
(e.g., a maximum number of trials) is exhausted or no better
solution is available (hopefully reaching a local optimum).



Algorithm 1 DynS3 Framework

1: initialize archive A with random solutions
2: generate initial solution x0 randomly within D

3: xbest = ∅
4: while stop condition not met do
5: xs ← S3(x0)
6: if f (xs) > f (xbest) then
7: xbest ← xs

8: end if
9: if dynamic change is detected then

10: UpdateArchive(xbest)
11: xmem ← retrieve best archived solution
12: xs ← ExponentialCrossover(xmem)
13: x0 ← xs

14: else
15: // check status of S3 local search
16: if δ ≤ ǫ, (suggested value: ǫ = 0.001) then
17: reset δ values (using Algorithm 2 Lines 2–4)
18: end if
19: if budget is exhausted, (e.g., 50 trials) then
20: UpdateArchive(xs)
21: generate a random solution xr within D

22: x0 ← xr

23: end if
24: end if
25: end while

The solutions found are stored in an archive for two
main reasons: 1) to use a solution as a detector to detect
an environmental change and 2) to use the best solution as
the initial point for S3 local search to accelerate the re-
optimization process when the environment changes. However,
before the best archived solution is passed to the S3 for
optimization to the new environment an exponential crossover
is performed in order to help local search escape from a
possible local optimum.

The pseudocode of the overall framework of DynS3 is
described in Algorithm 1 and the components integrated are
described in detail in the following subsections. Since DynS3
is integrated with the MPB problem the stop condition of
the algorithm in line 4 is basically the maximum number of
function evaluations allowed.

B. Local Search Strategy

The pseudocode of the S3 local search strategy is shown
in Algorithm 2. The working of S3 is described as follows.
Given an initial starting point xs, S3 perturbs it by performing
asymmetric moves along both directions of each dimension.
These moves are ruled by a vector of step-sizes δ, whose
components for i = 1, 2, . . . d are indicated as δ[i]. For each
dimension i, the S3 algorithm at first attempts to calculate

xs[i]− δ[i]. (6)

If this move is successful, the perturbed solution xtrial replaces
the solution xs and the corresponding step-size δ[i] is expanded
by means of a multiplication factor ce ∈ (1, 2]. If, conversely,
the move is unsuccessful, the step-size δ[i] is reduced by a
contraction factor cc ∈ (0, 1] and the opposite direction is
explored. Hence, S3 expands step-sizes to accelerate the search

Algorithm 2 S3(x0)

1: xs ← x0

2: for i = 1 : d do
3: δ[i]← α (α ∈

(

0,xU[i]− x
L[i]

)

, suggested value: 1)
4: end for
5: while stop condition not met do
6: for i = 1 : d do
7: xtrial[i]← xs[i]− δ[i]
8: if f (xtrial) ≥ f (xs) then
9: xs ← xtrial

10: δ[i]← δ[i] ∗ ce (ce ∈ (1, 2], suggested value: 1.1)
11: else
12: δ[i]← −δ[i]∗cc (cc ∈ (0, 1], suggested value: 0.5)
13: end if
14: end for
15: end while
16: Output xs

in fruitful directions and both toggles the sign and contracts
step-sizes upon failing to yield an improvement.

Moreover, it must be remarked that S3 does not immedi-
ately evaluate an alternate solution upon failure, but defers the
evaluation to the next iteration. In this manner, step sizes are
gradually oriented towards improved fitness and this strategy
avoids precomputing alternate solutions in directions known to
be worse and thereby makes better use of the computational
budget. Finally, as explained in [17], this step-size adaptation,
despite its simplicity, appears to be effective at detecting the
most promising search directions (along the variables) and thus
tackling ill-conditioned optimization problems.

Fig. 1 illustrates the adaptive step size behaviour of S3.
After a successful attempt in one direction (horizontal in the
example), S3 increases the step size by a factor ce. When the
next move is unsuccessful, S3 reduces the step size by a factor
cc and attempts to perturb the variable in the opposite direction
in the next round of local search.

C. Archive Maintenance

Every time S3 exceeds the given computational budget, it
is restarted from a new random solution. The purpose of the
archive A is to store and maintain the solutions found by the
local search algorithm before it is restarted and the best so far
solution just before an environmental change occurs. The size
of A (denoted na) is fixed and initially A contains random
solutions.

Every time a solution needs to be stored, the archive is
updated (see Algorithm 3) as follows: the closest solution
within A, i.e., xclosest is replaced if the fitness of the solution
to be stored, i.e., xbest is better. Note that the xbest could
be either the best solution found before restarting S3 from a
new random solution or the best so far solution just before an
environmental change (in case it is not maintained); see lines
11 and 21 in Algorithm 1. The distance ξ(xa,xs) between the
two solutions xclosest and xbest in the d-dimension space is
based on the Euclidean distance defined as follows:

ξ(xclosest,xbest) =

√

√

√

√

d
∑

i=1

(xclosest[i]− xbest[i])2 (7)



Fig. 1. Illustration of the S3 search logic.

Algorithm 3 UpdateArchive(xbest)

1: j ← 0
2: xclosest ← A[j]
3: min← ξ(xclosest,xbest)
4: i← 1
5: while i < na, (suggested value: na = 10) do
6: xclosest ← A[i]
7: if min < ξ(xclosest,xbest) then
8: min← ξ(xclosest,xbest)
9: xclosest ← xbest

10: j ← i
11: end if
12: i← i+ 1
13: end while
14: if f(xbest) > f(xclosest) then
15: A[j]← xbest

16: end if

where a value closer to 0 indicates that the two solutions are
identical. This way, the archive eliminates duplicate solutions
and maintains a diverse set of solutions that can be used when
an environmental change occurs.

D. Detecting Environmental Changes

The detection of changes is important for algorithms in
order to tackle efficiently dynamic environments [26]. This
is because explicit actions need to be taken to help the
optimization process escape from the previous optimum and
locate the new one.

A change in the fitness landscape on the MPB problem will
affect the solutions stored in the archive. Based on this fact,
the detection of an environmental change is straightforward: a
single solution stored in the archive is re-evaluated. If there is
a change in the fitness, then a dynamic change occurred. Note
that, whenever a dynamic change occurs, all the solutions in
the archive are re-evaluated to be compatible with the new
environment.

Algorithm 4 ExponentialCrossover(xmem)

1: xs ← xmem

2: generate a random solution xr within D

3: generate i← round (d ∗ rand (0, 1))
4: xr[i]← xs[i]
5: while rand (0, 1) ≤ Cr, (suggested value: Cr = 0.3) do
6: xr[i]← xs[i]
7: i← i+ 1
8: if i == d then
9: i← 1

10: end if
11: end while
12: xs ← xr

13: if f(xmem) > f(xs) then
14: xs ← xmem

15: end if
16: Output xs

E. Handling Environmental Changes

Every time an environmental change is detected, a new
solution xr is sampled at random within the decision space D.
Then, an exponential crossover in a DE fashion, e.g., see [25],
is performed between xr and the best solution from the archive
xs. This crossover occurs in the following way. One variable
from xs is randomly selected. Note that the round function
in line 3 rounds the number to its nearest integer value. This
variable replaces the corresponding variable within the solution
xr. Then, a set of random numbers between 0 and 1 are
generated. As long as rand (0, 1) ≤ Cr, where the crossover
rate Cr is a predetermined parameter, the design variables from
the solution xs are copied into the corresponding positions of
the random solution xr. The first time that rand (0, 1) > Cr,
the copy process is interrupted. The newly generated solution is
then used for the subsequent S3 activation in the new environ-
ment, i.e., xs is used for the new environment. The pseudocode
of the exponential crossover is shown in Algorithm 4.

According to our interpretation, this operation allows to



TABLE I. DEFAULT SETTINGS FOR SCENARIO 2 OF THE MOVING

PEAKS BENCHMARK

Parameter Value

Number of peaks (m) 10

Dimension (d) 5

Peak heights (H) [30.0, 70.0]

Peak widths (W ) [1, 12]

Peak shape cone

Basic function false

Frequency of change (a) 5000 evaluations

Severity of change (s) 1.0

Height severity 7.0

Width severity 1.0

Correlation coefficient (λ) 0.0

Number of changes (T ) 100

partially use the quality of the solution in the previous en-
vironment combined with a certain degree of randomization.
The new environment/scenario is expected to be different from
the previous one, but still related to it. This would be the
situation also in practical problems where a change varies
the optimization problem without a dramatic variation of the
problem features. Moreover, due to its inner structure, the
exponential crossover maintains sections of the solution thus
displaying a high exploitation of the search, see [22] and [15].
Hence, the new individual can be seen as the best solution
found in the previous environment after a perturbation that
modifies a section of the solution but partially maintains the
structure of the previous best solution xs.

V. EXPERIMENTAL STUDY

A. Experimental Setup

Two sets of experiments were carried out based on the MPB
problem [4] described previously. The objective of the first set
of experiments is to investigate the different components of the
proposed DynS3 algorithm (see Tables II). In the second set
of experiments, the performance of DynS3 is compared with
a number of peer algorithms taken from the literature. The
selected algorithms include MMEO [21], CESO [19], MADO
[18], mQSO [2], mCPSO [2], MEPSO [12] and SPSO [24].
Note that the results reported in this paper for these algorithms
are the ones reported in their original papers since they were
performed on the same MPB problem. For some cases, the
results are not reported and they are indicated as “n/a” in the
tables (see Tables III, IV and V later on).

Three sets of parameters (i.e., three scenarios) were pro-
posed for the MPB problem in [4]. The most commonly used
set of parameters appears to be scenario 2, and thus, it is used
in this paper. The default settings for scenario 2 are given in
Table I. From Table I, it can be observed that each algorithm
performs 5× 105 evaluations (e.g., T ×a). When dealing with
dynamic environment, it is not useful to simply compare the
best so far solution because the global optimum is changing
over time [16]. Hence, the modified offline error is used to
evaluate the performance of the algorithms, which averages
over the best so far solution found since the last dynamic
change [6]. The modified offline error is defined as follows:

Eoffline =
1

T

T
∑

i=1





1

a

a
∑

j=1

e∗ij



 (8)

TABLE II. TRIALS WITH AND WITHOUT INDIVIDUAL COMPONENTS

Variation description Offline Error ± Standard Error

DynS3 2.32 ± 0.01

DynS3NoCrossover 2.47 ± 0.01

DynS3NoArchive 4.40 ± 0.04

DynS3NoDetection 10.29 ± 0.09

DynS1 7.72 ± 0.25

DynS2 7.70 ± 0.23

where T and a are defined in Table I, e∗ij is the difference
(error) between the value of the optimal solution for the i-th
environment and the value of the best solution found by the
algorithm since the last dynamic change. All reported results
are averaged over 50 runs with different random seeds for the
algorithm but on the same MPB function.

All the results are expressed in terms of average over
the performed runs and corresponding standard deviation.
Furthermore, statistical comparisons of two-tailed t-Test with
0.05 confidence level have been performed. The results of
the t-Test are also reported next to each average fitness
± standard deviation. The statistical outperformance of the
proposed DynS3 with respect to each competitor is indicated
with a “+”. On the contrary “−” indicates that DynS3 is
outperformed.

B. Results of Analysing Different Components in DynS3

Since S3 was proposed for stationary environments,
many components were combined with S3, i.e., exponen-
tial crossover, dynamic change detection mechanism and an
archive, to make it sufficient for dynamic environments. The
experiments in this section report the contribution, regarding
the offline error, for each individual component within DynS3.

DynS3 is the proposed algorithm with all the components.
DynS3NoCrossover omits the exponential crossover. Hence,
the best solution selected from the archive is not modified.
DynS3NoArchive does not maintain an archive of the best
solutions found by S3. This means that when a dynamic change
occurs the algorithm is restricted to select only the best solution
of the previous environment and use it for the re-optimization
process. Note that exponential crossover is also performed
in the DynS3NoArchive variation. DynS3NoDetection does not
contain any mechanism to detect a dynamic change. Therefore,
the archive is not used because no solution is used to re-
optimize when a dynamic change occurs.

Furthermore, DynS3 is compared with the dynamic variants
of two other local search algorithms, denoted DynS1 and
DynS2, respectively, which are local search algorithms S and
S2 reported in [17] endowed with the mechanisms for detecting
and handling the environmental changes as well as the archive
used in DynS3. In other words, DynS1, DynS2, and DynS3
work with the same components for dynamic problems but
different search logic. The DynS1 algorithm does not expands
and contract the step sizes (see also [9]) while DynS2 checks
each variable along both the directions before selecting the
new xs, see [17] for details.

Table II summarizes the results of DynS3 against its
variants mentioned above as well as against DynS1 and DynS2
on the MPB for scenario 2 (see Table I). Furthermore, Fig. 2
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Fig. 2. Dynamic performance of local search algorithms.

presents the dynamic behaviour of DynS1, DynS2 and DynS3
on the first 10 environments.

From Table II, it can be observed that, when the detection
mechanism is omitted, the performance of DynS3NoDetection

is degraded significantly when compared with the performance
of DynS3. This is natural because DynS3NoDetection is ba-
sically the plain S3 with restart designed to tackle static
environments. Hence, when a dynamic change occurs, the
algorithm may continue optimizing to a non-promising area
until it restarts from a new random solution. In addition, the
S3 algorithm is always restarted from a random solution since
knowledge from previous environments is not performed. The
archive component is also important since the performance
of DynS3NoArchive is also degraded significantly (but not to
the level of DynS3NoDetection). It is not always the case that
the best so far solution of the previous environment will be
still quite fit for reusing for the new environment. Hence,
maintaining an archive of promising solutions may increase the
chances of choosing a fit solution. In contrast, the exponential
crossover is slightly affecting the performance because the
performance of DynS3NoCrossover is slightly degraded when
compared with the performance of DynS3.

When other local search strategies are used the perfor-
mance is also degraded. This is supported from the offline error
results of DynS1 and DynS2 when compared with DynS3.
From Fig. 2, it can be observed that DynS3 locates the
global optimum faster than its competitors. DynS1 and DynS2
have a similar behaviour and need more time to locate the
optimum which can be observed from the behaviour of the
initial environment. Hence, DynS1 and DynS2 are unable to
store fit solutions to the archive and negatively affect their
performance on the next environments. In contrast, DynS3 usu-
ally maintains very low offline error during the environmental
changes (except when the third dynamic change occurs). These
results conform the comparison study reported in [17], which
has shown how the adaptive step logic is effective in diverse

TABLE III. COMPARISON WITH OTHER ALGORITHMS ON THE MOVING

PEAKS BENCHMARK WITH THE DEFAULT SETTINGS (TABLE I) AND

DIFFERENT d VALUES

Algorithm Offline Error ± Standard Error (t-Test result)

d ⇒ 5 100

MADO [18] 0.59 ± 0.10 − 34.64 ± 2.72 +

MMEO [21] 0.66 ± 0.20 − 480.5 ± 70.1 +

CESO [19] 1.38 ± 0.02 − 24.60 ± 0.25 −

mQSO [2] 1.72 ± 0.06 − n/a

mCPSO [2] 2.05 ± 0.07 − n/a

DynS3 2.32 ± 0.01 28.04 ± 0.10

SPSO [24] 2.51 ± 0.09 + n/a

MEPSO [12] 4.02 ± 0.56 + n/a

problem conditions.

C. Results on Comparing DynS3 with Peer Algorithms

1) Varying the Number of Dimensions: In Table III, the
results of the proposed DynS3 algorithm compared with other
peer algorithms are presented for 5 (default) and 100 dimen-
sions. The higher the dimensionality of the problem, the more
increasing complexity the problem becomes. Therefore, it is
straightforward that the offline error of the algorithms increases
significantly from 5 to 100 dimensions.

DynS3 performs better than SPSO and MEPSO under
5 dimensions whereas it is outperformed by the remaining
algorithms. The best results under 5 dimensions are achieved
by MADO and MMEO. However, DynS3 outperforms these
algorithms under 100 dimensions.

2) Varying the Severity of Change: In the default settings,
the severity of change was set to 1. Here, we vary the value
from 1 to 6 to further investigate the performance of the
algorithms. The results with respect to the offline error are
presented in Table IV.



TABLE IV. COMPARISON WITH OTHER ALGORITHMS ON THE MOVING PEAKS BENCHMARK WITH THE DEFAULT SETTINGS (TABLE I) AND DIFFERENT s

VALUES

Algorithm Offline Error ± Standard Error (t-Test result)

s ⇒ 1.0 2.0 3.0 4.0 5.0 6.0

MADO [18] 0.59 ± 0.10 − 0.87 ± 0.12 − 1.18 ± 0.13 − 1.49 ± 0.13 − 1.86 ± 0.17 − 2.32 ± 0.18 −

MMEO [21] 0.66 ± 0.20 − 0.86 ± 0.21 − 0.94 ± 0.22 − 0.97 ± 0.21 − 1.05 ± 0.21 − 1.09 ± 0.22 −

CESO [19] 1.38 ± 0.02 − 1.78 ± 0.02 − 2.03 ± 0.03 − 2.23 ± 0.05 − 2.52 ± 0.06 − 2.74 ± 0.10 −

mQSO [2] 1.72 ± 0.06 − 2.40 ± 0.06 − 3.00 ± 0.06 − 3.05 ± 0.10 − 4.24 ± 0.10 − 4.79 ± 0.10 −

mCPSO [2] 2.05 ± 0.07 − 2.80 ± 0.07 − 3.57 ± 0.08 + 4.18 ± 0.09 + 4.89 ± 0.11 + 5.53 ± 0.13 +

DynS3 2.32 ± 0.01 2.84 ± 0.01 3.45 ± 0.03 4.00 ± 0.04 4.62 ± 0.04 5.33 ± 0.04

SPSO [24] 2.51 ± 0.09 + 3.78 ± 0.09 + 4.96 ± 0.12 + 5.65 ± 0.13 + 6.76 ± 0.15 + 7.68 ± 0.16 +

MEPSO [12] 4.02 ± 0.56 + n/a n/a n/a n/a n/a

TABLE V. COMPARISON WITH OTHER ALGORITHMS ON THE MOVING PEAKS BENCHMARK WITH THE DEFAULT SETTINGS (TABLE I) AND DIFFERENT m

VALUES

Algorithm Offline Error ± Standard Error (t-Test result)

m ⇒ 1 10 20 30 40 50 100 200

MADO [18] n/a 0.59 ± 0.10 − n/a n/a n/a n/a n/a n/a

MMEO [21] n/a 0.66 ± 0.20 − n/a n/a n/a n/a n/a n/a

CESO [19] 1.04 ± 0.00 + 1.38 ± 0.02 − 1.72 ± 0.02 − 1.24 ± 0.01 − 1.30 ± 0.02 − 1.45 ± 0.01 − 1.28 ± 0.02 − n/a

mQSO [2] 5.07 ± 0.17 + 1.72 ± 0.06 − 2.74 ± 0.07 + 3.27 ± 0.11 + 3.60 ± 0.08 + 3.65 ± 0.11 + 3.93 ± 0.08 + 3.86 ± 0.07 −

mCPSO [2] 4.93 ± 0.17 + 2.05 ± 0.07 − 2.95 ± 0.08 + 3.38 ± 0.11 + 3.69 ± 0.11 + 3.68 ± 0.11 + 4.07 ± 0.09 + 3.97 ± 0.08 +

DynS3 0.22 ± 0.00 2.32 ± 0.01 2.65 ± 0.03 3.03 ± 0.03 2.88 ± 0.05 3.27 ± 0.02 1.98 ± 0.01 2.11 ± 0.01

SPSO [24] 2.64 ± 0.10 + 2.51 ± 0.09 + 3.21 ± 0.07 + 3.64 ± 0.07 + 3.85 ± 0.08 + 3.86 ± 0.08 + 4.01 ± 0.07 + 3.82 ± 0.05 +

MEPSO [12] 0.53 ± 0.15 + 4.02 ± 0.56 + 4.19 ± 0.57 + 4.27 ± 0.83 + n/a 4.20 ± 0.47 + n/a n/a

Generally, as the severity increases the offline error of the
algorithm increases. This is natural because the higher the s
value, the more severe the change, and thus, the more difficult
the problem becomes to address. The rankings regarding the
performance of the algorithms are similar with when the
default values (s = 1) are set.

3) Varying the Number of Peaks: In the default settings,
the number of peaks was set to 10. Obviously, it is easier to
find the global optimum when the number of peaks is smaller.
Hence, we vary the number to 1, 20, 30, 40, 50, 100 and
200 to further investigate the performance of the algorithms.
The results with respect to the offline error are presented in
Table V.

For DynS3, the best results are obtained when a single peak
exists, whereas achieves the second best results (following
CESO) when the number of peaks is more than 10. MADO
and MMEO have the best results when the number of peaks is
10 followed by CESO. Although DynS3 is beaten by mCPSO
and mQSO when the number of peaks is 10, it beats them
when a larger number of peaks are present.

In summary, it should be appreciated that DynS3 is a fairly
simple light component in terms of the complexity of the
operator and memory employment especially when compared
with complex population based schemes. Despite its simplicity,
DynS3 appears to display a respectable performance on a range
of dynamic problems. Thanks to these features, DynS3 can
be seen as a simple but yet efficient operator to be used as
stand alone when the hardware limitations impose it such as
in a robot control card, see [22], or integrated within a more
complex framework when a high performance is the main
priority of the problem. In the light of the latter category,
DynS3 can be seen as a heuristic within a hyper-heuristic, see
[7], or as a local search operator within a memetic computing
framework, see [10].

VI. CONCLUSIONS

This paper proposes a local search algorithm, DynS3, for
handling real-valued dynamic environments. The proposed
algorithm performs moves along the axes and incorporates
a simple adaptive mechanism to quickly exploit the most
promising search directions. In addition, DynS3 makes use
of a re-sampling mechanism when an environment change is
detected. This re-sampling generates a new initial solution by
partially using the information on the best solution within the
previous environment. Furthermore, DynS3 uses a memory
archive to ensure that the best solutions are stored before the
environmental change and maintain the diversity.

The proposed algorithm is relatively simple and still quite
effective when compared to some complex population-based
algorithms representing the state-of-the-art in dynamic opti-
mization. The efficiency of DynS3 is especially evident when
the environment contains many moving peaks.

This study can be seen as a preliminary work towards
the harmonic inclusion of multiple search algorithms within a
framework for dynamic optimization. Ideally, the coordination
of the components would occur according to an automatic
mechanism able to detect the proper algorithmic components
to tackle the specific problem features. The proposed local
search algorithm can be effectively used in those real-world
applications where the hardware available imposes the use of
a simple algorithm, especially in terms of memory employment
or within a more complex framework that balances global and
local search.
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