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Abstract—In this paper, the effect of the population size on
the performance of the MAX -MIN ant system for dynamic
optimization problems (DOPs) is investigated. DOPs are gen-
erated with the dynamic benchmark generator for permutation-
encoded problems. In particular, the empirical study investigates:
a) possible dependencies of the population size parameter with
the dynamic properties of DOPs; b) the effect of the population
size with the problem size of the DOP; and c) whether a larger
population size with less algorithmic iterations performs better
than a smaller population size with more algorithmic iterations
given the same computational budget for each environmental
change. Our study shows that the population size is sensitive to
the magnitude of change of the DOP and less sensitive to the
frequency of change and the problem size. It also shows that a
longer duration in terms of algorithmic iterations results in a
better performance.

I. INTRODUCTION

Ant colony optimization (ACO) is a metaheuristic inspired

by the foraging behaviour of real ant colonies [2], [4]. ACO

algorithms have been successfully applied to many NP-

hard combinatorial problems such as the travelling salesman

problem (TSP) [3] and vehicle routing problem (VRP) [8].

Although, there are many existing ACO variations in this

paper, we consider one of the state-of-the-art variations, i.e.,

the MAX -MIN Ant System (MMAS) [20].

The construction of solutions from ants is biased by existing

pheromone trails and heuristic information. Pheromone trails

are updated according to the search experience and towards

solution with good quality. This is similar to a learning

reinforcement scheme. The behaviour and performance of

MMAS algorithm depends strongly on the number of ants

used [5], [22]. When a given computational budget is available,

e.g., the maximum number of function evaluations, a smaller

number of ants will produce more algorithmic iterations

whereas a larger number of ants less. Hence, the population

size affects the duration of the learning reinforcement.

In [22], it was investigated that when fewer ants are used,

the algorithm may converge quickly at early stages of the

optimization but get stuck in the stagnation behaviour later

on. When more ants are used, the algorithm performs broader

search but may waste computational resources. For the TSP,

it was found that a higher number of ants performs better at

later stages of the optimization process. However, the effect of

the population size parameter on the performance ofMMAS

algorithm was only investigated for stationary optimization

problems.

In this paper, we investigate the effect of the population size

parameter on theMMAS algorithm for dynamic optimization

problems (DOPs), e.g., the dynamic TSP (DTSP) and dynamic

VRP (DVRP). In particular, we are interested to investigate: a)

the dependency of the population size with the dynamic prop-

erties of a DOP, i.e., magnitude and frequency; b) the effect

of the population size parameter with the problem size; and

c) whether a broader search with less learning reinforcement

time leads to better performance than a limited search with

more learning reinforcement time given the same computation

budget between environmental changes in DOPs. Several

dynamic test cases are generated using the dynamic benchmark

generator for permutation-encoded problems (DBGP) [16] for

our study.

The rest of the paper is organized as follows. Section II and

Section III describe the DOPs generated and the ACO algo-

rithm used for this study, respectively. Section IV discusses

the importance of the population size parameter. Section V

presents the experimental study and gives a discussion. Finally,

Section VI concludes this paper.

II. DYNAMIC ENVIRONMENTS

A. Dynamic Optimization Problems

1) Dynamic Travelling Salesman Problem (DTSP): The

DTSP is modelled by a fully connected weighted graph

G = (N,A), where N = {v1, . . . , vn} is a set of n nodes (e.g.,

cities) and A = {(vi, vj) | vi, vj ∈ N, i 6= j} is a set of arcs

(i.e., links), where n represents the size of a problem instance.

Each arc (vi, vj) ∈ A is associated with a non-negative value

dij ∈ R
+, which represents the distance between cities vi

and vj . The objective of the problem is to find the shortest



Hamiltonian cycle that starts from one node and visits each of

the other cities once before returning to the starting city.

The distance matrix of the DTSP is subject to changes,

which is defined as follows: D(t) = {dij(t)}n×n, where t
is the period of a dynamic change. A particular TSP solution

s=[s1, . . . , sn] in the search space is specified by a permuta-

tion of the nodes (cities) and it is evaluated as follows:

f(s, t) = dsns1(t) +

n−1
∑

i=1

dsisi+1
(t). (1)

2) Dynamic Vehicle Routing Problem (DVRP): The DVRP

is modelled with the same weighted graph G as with the DTSP

above but with an additional node v0 that represents the central

depot such that N = {v1, . . . , vn} ∪ {v0}, where A and D(t)
remain the same. In addition, each node (customer) vi ∈ N
is associated with a quantity qi of some goods that need to

be delivered by K vehicles. The objective of the problem

is to find the shortest routes for a fleet of K vehicles with

capacity Q all starting from and ending at the depot satisfying

the demands of all customers. For the central depot v0, the

quantity is always q0 = 0.

A particular VRP solution s in the search space is specified

by a permutation of nodes. More precisely, let Rj represent

a route of the jth vehicle that service particular customers

Rj = [sj
1
, . . . , sjz], where sj

1
is always the central depot, i.e.,

sj1 = v0. A complete solution is defined with the routes of all

K vehicles, i.e., s = [R1, R2, . . . , RK ]. The cost of a single

route of the jth vehicle at time t is computed as follows:

Cost(Rj , t) = d
s
j
zs

j
1

(t) +

z−1
∑

i=1

d
s
j

i
s
j

i+1

(t), (2)

subject to
∑

s
j

i
∈Rj

qi ≤ Q. (3)

The complete solution s in the search is evaluated as follows:

f(s, t) =

K
∑

j=1

Cost(Rj , t). (4)

B. Dynamic Benchmark Generators

Over the years, several dynamic benchmark generators have

been proposed for these problems that tend to model real-

world scenarios, such as the DTSP with traffic factors [7], [15],

[17], the DTSP with exchangeable cities [9], [10], the DVRP

with traffic factors [12], [13], and the DVRP with stochastic

demands [18]. These benchmark generators modify the fitness

landscape, whenever a dynamic change occurs, and cause the

optimum value to change.

In this paper, DBGP 1 is used [16], which can convert any

stationary permutation-encoded benchmark problem instance

to a DOP. The fitness landscape is not changed with DBGP,

and thus, the optimum value (if known) remains the same.

This is because DBGP shifts the population of the algorithm

1Available from www.tech.dmu.ac.uk/∼mmavrovouniotis/Codes/DBGP.zip.

Algorithm 1 DBGP(m,f )

1: INPUT: m % magnitude of change

2: INPUT: f % frequency of change

3: Read initial benchmark problem of size n
4: t← 0
5: ComputeDistances(D(t))
6: repeat

7: DoOptimization(t) % e.g., with MMAS

8: t← t+ 1
9: if (f%t = 0) then

10: num of swaps← ⌈m× n⌉
11: for (i = 1 to num of swaps) do

12: V [i]⊗ U [i]
13: end for

14: ComputeDistances(D(t))
15: end if

16: until (optimization not terminated)

to search to a new location in the fitness landscape. The main

advantage of using the DBGP rather than the other generators

is that one can observe how close to the optimum an algorithm

can perform when a dynamic change occurs. However, DBGP

sacrifices the realistic modelling of application problems for

the sake of benchmarking.

C. Construct Dynamic Test Environment

Considering the description of the problems above, each

node i ∈ N has a location defined by (x, y) and each arc

(vi, vj)∈A is associated with a non-negative distance dij(t)
at time t. DBGP generates the dynamic case as follows.

In every function evaluations f , a random vector ~V (T ) is

generated that contains exactly ⌈mn⌉ nodes where T = ⌈t/f⌉
is the index of the period of change, t is the evaluation count

of the algorithm, f determines the frequency of change, n is

the size of the problem instance, and m ∈ [0.0, 1.0] determines

the magnitude of change. Then, a randomly re-ordered vector

of ~V (T ) is generated, denoted ~U(T ), of the same size. In this

way, exactly ⌈mn⌉ pairwise swaps are performed and affect

the distance matrix (e.g., D(t)) using the two random vectors

(~V (T ) ⊗ ~U(T )), where “⊗” denotes the swap operator. The

pseudo code is presented in Algorithm 1.

III. MAX -MIN ANT SYSTEM

A. Construct Solutions

One of the best performing ACO variations is theMMAS

[20]. A colony of ω ants read pheromones in order to construct

their solutions and write pheromones to store their solutions.

Each ant k uses a probabilistic rule to choose the next node

to visit. The decision rule of the kth ant to move from node

vi to node vj is defined as follows:

pkij =
[τij ]

α
[ηij ]

β

∑

l∈Nk
i
[τil]

α
[ηil]

β
, if j ∈ N k

i , (5)

where τij and ηij are the existing pheromone trail and the

heuristic information available a priori between nodes vi and



vj , respectively. The heuristic information is defined as ηij =
1/dij(t), where dij(t) is defined as in Eq. (1). N k

i is the

neighbourhood of unvisited nodes available for ant k to select.

The main difference between constructing a TSP or a VRP

solution lies in the generation of N k
i . For the TSP, N k

i is

generated by the unvisited nodes incident to node i, whereas

for the VRP, N k
i is generated by the unvisited nodes incident

to node i in addition with the depot node (i.e. {0}). α and β
are the two parameters which determine the relative influence

of τij and ηij , respectively.

B. Pheromone Update

The pheromone trails in MMAS are updated by applying

evaporation as follows:

τij ← (1− ρ) τij , ∀(vi, vj), (6)

where ρ is the evaporation rate which satisfies 0 < ρ ≤ 1,

and τij is the existing pheromone value. After evaporation,

the best ant deposits pheromone as follows:

τij ← τij +∆τbestij , ∀(vi, vj) ∈ T best, (7)

where ∆τbestij = 1/Cbest is the amount of pheromone that the

best ant deposits and Cbest defines the solution quality of tour

T best. The best ant that is allowed to deposit pheromone may

be either the best-so-far, in which case Cbest = Cbs, or the

iteration-best, in which case Cbest = Cib, where Cbs and Cib

are the solution quality of the best-so-far and the iteration best

ant, respectively. The best-so-far ant is a special ant that may

not necessarily belong to the current population of ants as the

iteration best ant. Both update rules are used in an alternate

way in the implementation [21].

The lower and upper limits τmin and τmax of the pheromone

trail values are imposed. The τmax value is bounded by

1/(ρCbs), where Cbs is initially the solution quality of an

estimated optimal tour and later on is updated whenever a

new best-so-far ant solution quality is found. The τmin value

is set to τmin = τmax/2n.

Since only the best ant is allowed to deposit pheromone, the

population may quickly converge towards the best solution

found in the first iteration. Therefore, the pheromone trails

are occasionally reinitialized to the τmax value to increase

exploration. For example, whenever the stagnation behaviour

occurs or when no improved solution is found for a given

number of iterations, the pheromone trails are reinitialized.

C. Response to Dynamic Changes

MMAS is able to use knowledge from previous envi-

ronments via pheromone trails and can be applied directly

to DOPs without any modifications [1], [14]. For example,

when the changing environments are similar, the pheromone

trails of the previous environment may provide knowledge to

speed up the optimization process to the new environment.

However, the algorithm needs to be flexible enough to accept

the knowledge transferred from the pheromone trails, or elim-

inate the pheromone trails, in order to adapt well to the new

environment. In particular, pheromone evaporation enables the

algorithm to forget bad decisions made in previous iterations.

When a dynamic change occurs, evaporation eliminates the

pheromone trails of the previous environment from areas that

are generated on the old optimum and helps ants to explore

for the new optimum.

In case the changing environments are different, then

pheromone reinitialization may be a better choice rather than

transferring the knowledge from previous pheromone trails

[1], [9], [10], [14]. A detection mechanism is required to

reinitialize the pheromone trails whenever a dynamic change

occurs. The detection mechanism for the DTSPs generated by

DBGP is straightforward. A single solution is required to be

stored and re-evaluated every iteration. If there is a change to

the tour cost, it indicates that a dynamic change has occurred

[14].

IV. EFFECT OF THE NUMBER OF ANTS

The population size has a significant impact to the perfor-

mance of the MMAS algorithm. For example, if for a given

optimization problem only a certain computation budget, e.g.,

the maximum number of function evaluations, is available,

then the number of ants is a very critical parameter. This is

because it not only determines the number of iterations (e.g.,

less ants means more iterations), but also determines how

broad the search is at each iteration (e.g., more ants means

broader search). Hence, the number of ants needs to be tuned

accordingly in order not to waste computation resources and

degrade solution quality.

Up to now, the effect of the number of ants was only inves-

tigated for stationary optimization problems [22]. In particular,

the number of ants used shows a trade-off between the early

and later optimization process of the algorithm regarding the

solution quality. At early stages of the optimization process

fewer ants result to better performance, whereas at later

stages more ants result to better performance. With fewer ants

the algorithm seems to initially progress faster but leads to

stagnation behaviour at later stages. More ants give better

results only on later stages of the optimization process.

In this paper, we study the impact of the population size

on the performance of the MMAS algorithm for DOPs.

These kind of problems in a nutshell are a series of sta-

tionary optimization problems that all need to be optimized.

Therefore, it is straightforward that more challenges exist and

the population size will have impact to the performance of

the algorithm. This is because that not only determines the

number of iterations and the broadness of the search as in

stationary optimization problems, but also determines how

quickly the change occurs (in terms of algorithmic iterations).

For example, for a given DOP a predefined computation

budged is available between each environmental change that

is typically sychronized with the algorithm, i.e., every f
function evaluations a change occurs [16]. Therefore, a larger

population size means that the algorithm will perform less

iterations for each environmental change.

In summary, the experimental study investigates: a) the

dependency of the population size with the dynamic properties



TABLE I: Resulting population sizes (ω) of MMAS for each problem instance scaled according to

the problem size as defined in Eq. (8)

Problem Instance n Optimal Value δ = 1 δ = 2 δ = 5 δ = 10 δ = 25 δ = (n/2) δ = n

kroA100.tsp 100 21282 100 50 20 10 4 2 1

kroA150.tsp 150 26524 150 75 30 15 6 2 1

kroA200.tsp 200 29368 200 100 40 20 8 2 1

F-n45-k4.vrp 45† 724 50 20 15 8 2 2 1

F-n72-k4.vrp 72† 237 100 50 20 10 4 2 1

F-n135-k7.vrp 135† 1162 150 75 30 15 6 2 1

†Note that the resulting values are higher for the VRP instances to match the scales of the TSP problem instances

of a DOP, i.e., magnitude and frequency; b) the effect of the

population size parameter with the problem size, e.g., whether

more ants are needed for larger problem instances; and c)

whether a broader search with less learning reinforcement

time leads to better performance than a limited search with

more learning reinforcement time given the same computation

budget between environmental changes in DOPs.

V. EXPERIMENTAL STUDY AND DISCUSSION

A. Experimental Setup

To investigate the effect of the population size of MMAS

in dynamic environments, three TSP stationary bench-

mark instances (i.e., kroA100.tsp, kroA150.tsp and

kroA200.tsp) were obtained from TSPLIB2 and three

VRP stationary benchmark instances (i.e., F-n45-k4.vrp,

F-n72-k4.vrp and F-n135-k7.vrp) were obtained

from VRPLIB3, and corresponding DOPs are generated using

the DBGP generator (described in Section II) with f set to

600 and 6000 function evaluations, indicating quickly and

slowly changing environments, respectively, and m set to 0.1,

0.25, 0.5 and 0.75, indicating slightly, to medium, to severely

changing environments, respectively. The problem size and

global optimum values of the benchmark problem instances

are given in Table I. Totally, a series of 8 dynamic test cases

(or DOPs) are constructed from each stationary benchmark

instance for both DTSPs and DVRPs to systematically inves-

tigate the dependency (if any) of the population size with the

m and f parameters.

The population size was set proportionally to the size of the

problem instances as follows:

ω = ⌈n/δ⌉, (8)

where n is the problem size and δ defines the factor which

the population will be determined. For all problem instances,

δ was set to δ ∈ {1, 2, 5, 10, 25, (n/2), n}. This means that

when δ = 1 the population size will be equal to the problem

size, whereas when δ = n the population size will be equal to

one. The resulting population sizes ofMMAS for all problem

instances with the problem sizes (i.e., n) are given in Table I.

The remaining parameters were set to typical values for DOPs

as follows: α = 1, β = 5 and ρ = 0.8.

2http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/
3http://neo.lcc.uma.es/vrp/

B. Performance Measurement

For each DOP, 30 independent runs of the MMAS were

executed. For each run, 25 environments changes were allowed

and the best so far ant after a dynamic change was recorded.

The overall offline error [11] is defined as follows:

ĒOFF =
1

E

E
∑

i=1





1

R

R
∑

j=1

Errij



 , (9)

where E is the total number of function evaluations, R is the

number of runs, Errij is the best-so-far error value (i.e., the

difference between the tour cost of the best-so-far ant and the

optimum value for the fitness landscape) of iteration i of run j.

Note that this measurement is compatible with DBGP because

the optimal value of each benchmark instance is known (given

in Table I) and remains the same during the environmental

changes.

C. Results and Discussion

The offline error results of theMMAS algorithm on DOPs

with different population sizes are presented in Table II.

Statistical Kruskal–Wallis tests were applied, followed by

posthoc paired comparisons using Mann–Whitney tests with

the Bonferroni correction. The algorithms with bold values

indicate that are significantly better than the other algorithms

and insignificantly difference between them. In Figs. 1 and 2,

the dynamic offline error for slowly changing environments

against the function evaluations of the algorithms are plotted

to better understand the effect of different number of ants.

From the experimental results, the following observations can

be drawn.

First, the performance ofMMAS with different population

sizes generally depends on the dynamic properties of the DOP.

This can be observed from Table II since different population

sizes perform better in different dynamic test cases. More

precisely, in all problem instances (except F-n45-k4.vrp)

a larger population size has better performance in DOPs with

m = 0.1 and m = 0.25 whereas a smaller population has

better performance in DOPs with m = 0.5 and m = 0.75.

This can be observed from Figs. 1 and 2, where in all

cases with m = 0.1, the MMAS with more ants, i.e.,

δ = [1, 5], has better performance. Differently, in all cases

(except F-n45-k4.vrp) with m = 0.75, the MMAS with

less ants, i.e., δ = [10, 25], has better performance.



TABLE II: Experimental results regarding the offline error ofMMAS with different population sizes. Bold values indicate

the best results.

Dynamic Travelling Salesman Problem

Algorithms & DOPs kroA100.tsp kroA150.tsp kroA200.tsp

f = 600, m ⇒ 0.1 0.25 0.5 0.75 0.1 0.25 0.5 0.75 0.1 0.25 0.5 0.75

MMAS (δ = 1) 1165.7 3014.4 4303.1 4742.0 3284.8 5876.0 7093.5 7394.3 5230.3 7828.4 9121.4 9341.3

MMAS (δ = 2) 929.2 2367.5 3546.6 3947.1 2443.1 4767.9 5993.1 6368.7 3708.5 6722.2 7983.0 8315.2

MMAS (δ = 5) 827.2 1921.2 2817.2 3183.5 1938.0 3830.2 4820.9 5232.3 2660.7 5374.2 6601.8 6999.0

MMAS (δ = 10) 783.6 1661.0 2452.4 2762.7 1769.4 3233.6 4153.7 4509.9 2367.9 4548.7 5668.0 6131.3

MMAS (δ = 25) 1172.2 1823.2 2332.6 2561.7 1692.7 3012.7 3739.4 3980.7 2138.6 3966.6 4914.0 5300.7

MMAS (δ = (n/2)) 1875.3 2169.9 2449.5 2562.4 2920.9 3319.2 3617.5 3766.7 3346.7 3937.5 4431.7 4788.5

MMAS (δ = n) 2340.0 2486.4 2638.1 2730.8 3455.3 3640.8 3868.6 3988.0 4153.9 4446.0 4815.5 4966.9

f = 6000, m ⇒ 0.1 0.25 0.5 0.75 0.1 0.25 0.5 0.75 0.1 0.25 0.5 0.75

MMAS (δ = 1) 227.4 535.2 980.8 1211.4 659.8 1380.0 2190.4 2434.1 663.5 1957.4 3199.7 3678.4

MMAS (δ = 2) 228.7 448.1 794.5 979.5 610.7 1171.5 1737.9 1945.3 622.0 1432.3 2419.0 2771.6

MMAS (δ = 5) 404.5 491.0 693.9 817.5 553.0 972.8 1437.7 1595.8 530.9 1099.8 1879.2 2115.8

MMAS (δ = 10) 399.1 472.8 628.8 716.9 810.9 1017.9 1320.3 1413.6 802.4 1157.4 1597.4 1757.0

MMAS (δ = 25) 411.1 521.2 653.1 704.6 828.6 1087.9 1293.8 1364.5 773.5 1111.2 1508.8 1634.1

MMAS (δ = (n/2)) 807.6 847.8 888.8 909.4 1428.3 1554.1 1605.2 1612.1 1478.5 1660.3 1761.2 1816.4

MMAS (δ = n) 1290.7 1317.6 1317.8 1327.9 2147.3 2200.4 2206.9 2208.4 2510.5 2533.8 2597.0 2616.8

Dynamic Vehicle Routing Problem

Algorithms & DOPs F-n45-k4.vrp F-n72-k4.vrp F-n135-k7.vrp

f = 600, m ⇒ 0.1 0.25 0.5 0.75 0.1 0.25 0.5 0.75 0.1 0.25 0.5 0.75

MMAS (δ = 1) 87.9 100.0 108.3 112.9 27.7 40.4 46.4 50.4 146.6 200.4 229.8 241.6

MMAS (δ = 2) 99.7 103.9 110.5 114.4 27.4 37.8 42.8 46.5 135.8 187.5 217.9 227.2

MMAS (δ = 5) 98.8 107.5 110.3 116.9 27.2 35.5 40.1 43.2 143.4 185.4 208.2 216.3

MMAS (δ = 10) 105.1 111.4 115.7 120.5 29.2 35.1 39.2 41.0 145.6 184.0 204.2 212.0

MMAS (δ = 25) 122.0 125.9 128.0 130.1 34.8 37.4 39.9 41.5 169.7 193.9 209.8 214.9

MMAS (δ = (n/2)) 122.0 125.9 128.0 130.1 39.9 40.7 42.4 43.9 198.4 207.9 216.4 220.4

MMAS (δ = n) 129.3 131.5 131.2 132.5 44.8 44.7 45.8 46.3 203.8 206.9 211.1 212.2

f = 6000, m ⇒ 0.1 0.25 0.5 0.75 0.1 0.25 0.5 0.75 0.1 0.25 0.5 0.75

MMAS (δ = 1) 53.5 65.5 69.3 71.2 13.2 19.9 22.6 24.8 77.8 109.4 127.7 130.3

MMAS (δ = 2) 64.2 66.9 72.2 73.8 13.6 19.4 21.8 23.1 79.2 102.2 121.7 123.1

MMAS (δ = 5) 65.2 70.5 73.1 74.1 17.6 19.6 21.3 22.2 80.1 102.4 117.0 118.8

MMAS (δ = 10) 74.6 77.4 77.3 78.9 19.0 20.1 21.5 21.7 95.8 108.0 119.0 120.4

MMAS (δ = 25) 86.7 87.8 87.2 87.8 22.7 22.5 23.1 23.2 114.7 121.0 127.3 128.5

MMAS (δ = (n/2)) 86.7 87.8 87.2 87.8 27.4 26.7 27.0 27.4 145.2 146.2 146.8 147.9

MMAS (δ = n) 91.3 93.1 92.6 93.6 32.7 31.6 32.0 32.0 152.0 153.1 154.3 153.0

Second, for the F-n45-k4.vrp problem instance (which

is the smallest), a larger population size, i.e., δ = 1, results

in better performance for MMAS. This is probably because

the problem size is small and a broader search (e.g., with

a larger number of ants) has higher probability to locate a

good optimum. On the remaining problem instances, it can

be observed that a similar number of ants performs best in

DOPs of different sizes. For example,MMAS with δ = n/2
(meaning the number of ants is 2 for all problem sizes) has the

best performance on the kroA150.tsp and kroA200.tsp

problem instances for the same DOPs, i.e., f = 600 with

m = 0.5 and m = 0.75.

Third, it can be observed from Table II that when a single

ant is used withMMAS, i.e., when δ = n, the algorithm has

the worst performance in most DOPs with f = 6000. This

is probably because there is no collaboration between ants to

exchange information. In contrast, even when a single ant is

used it has better performance when compared with most cases

of MMAS that use more ants in most DOPs with f = 600.

This is because with more ants theMMAS will perform less

iterations for each dynamic change as discussed previously.

Hence, the time for learning reinforcement is not enough to

express its effect.

VI. CONCLUSION

MMAS is one of the state-of-the-art ACO algorithms.

The number of ants has a great impact to the performance

in stationary environments. In this paper, the impact of the

number of ants is investigated for dynamic environments.
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Fig. 1: Dynamic offline error of MMAS with different population sizes for DTSPs with f = 6000 and m = 0.1 (left) and

m = 0.75 (right)

Several dynamic test cases are generated using the DBGP and

the following concluding remarks can be drawn.

First, the population size parameter ofMMAS is sensitive

to the magnitude of change of the DOP: as the magnitude of

change increases, the number of ants must decrease. Second, a

high number of ants wastes computational resources in many

DOPs, especially when they change quickly. Third, the number

of ants is less sensitive on the problem size of the DOP. Finally,

the learning reinforcement requires time to express its effect

since fewer ants mean more algorithmic iterations.

In fact, the findings of this paper, i.e., fewer ants may

perform better even in large problem sizes, are important and

related to many real-world problems. This is because many

objective functions for such problems may require a lot of

time to compute [6], [19]. Hence, using a smaller population

size may be appropriate in such situations to reduce the

computation time and maintain the solution quality.

For future work, it would be interesting to investigate the
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Fig. 2: Dynamic offline error of MMAS with different population sizes for DVRPs with f = 6000 and m = 0.1 (left) and

m = 0.75 (right)

impact of the population size with other evolutionary algo-

rithms for dynamic environments. Another interesting work is

to adapt the population size since for different optimization

stages a different population size may be the best.
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