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Abstract—In this work we consider the scheduling problem
for charging a fleet of electric vehicles (EVs) within a station
such that the total tardiness of the problem is minimized. The
generation of a feasible and efficient schedule is a difficult task
due to the physical and power constraints of the charging station,
i.e., the maximum contracted power and the maximum power
imbalance between the lines of the electric feeder. The ant colony
optimization (ACO) metaheuristic is applied to coordinate the
charging process of the EVs within the charging station by
generating efficient schedules. The behaviour and performance
of ACO is analyzed and compared against state-of-the-art ap-
proaches on a benchmark set inspired by real-world scenarios.
The experimental results show that the application of ACO is
highly effective and outperforms other approaches.

Index Terms—Electric vehicles, scheduling, ant colony opti-
mization

I. INTRODUCTION

Nowadays, there is a growing interest of using electric

vehicles (EVs) instead of fuel-based vehicles due to their

positive impact on the environment in reducing CO2 emis-

sions. However, their sustainable deployment requires new

technologies (e.g., improving their battery capacity [1] and

recharging batteries faster [2]), as well as new infrastructures

to accommodate the charging of large fleets of EVs [3].

In this paper, we address a challenging scheduling problem,

which is motivated by a charging station designed to be

installed in a parking area where it can be used by a fleet

of EVs both as a parking slot but also as a power source

to recharge their batteries [4]. The aim of the problem is

to coordinate the charging process of the EVs parked in the

parking area by generating efficient schedules. In fact, several

studies have shown that when the EVs’ charging process is not

properly coordinated in a charging station, several problems

may occur, such as increase in the peak load period, decrease

in service quality, degradation of the voltage profile, overload

of circuits, and increase in energy losses [5], [6].

It is well known that EVs’ bottleneck is their batteries that

often require very high charging times and their capacity is

relatively low for EVs to operate in large mileages. Therefore,

deploying charging stations that can properly coordinate the

charging process of EVs may contribute in addressing some

of these issues. Apart from the EV issues regarding their

battery technology, there are additional issues with the charg-

ing stations (e.g., they often have restrictions based on their

power and physical constraints). Particularly, the distributed

power within the charging station must be balanced because

of the economical and electro-technical reasons mentioned

previously [7]. These constraints must be encompassed in the

scheduling problem.

The afformentioned scheduling problem is NP-hard [8],

and, thus, the use of efficient scheduling algorithms is required

to generate quickly schedules that maximize the utilization of

the charging station resources while satisfying the charging

demands of the EVs such that the total tardiness is minimized

(in other words the total delay in charging EVs on time). A

number of methodologies have been used to solve this prob-

lem including problem decomposition approches [4], simple

dispatching rules (e.g., first come first serve [4] and latest

starting time [8]) and metaheuristics (e.g., artificial bee colony

[9] and genetic algorithm [10]). A comprehensive review of

optimization techniques on relevant scheduling problems can

be found in [11]. Among the approaches, metaheuristics have

showed the best performance due to their ability to efficiently

provide the optimal or near to the optimal solutions in real-

world sized instances.

In this paper, we design and investigate the application of

another metaheuristic, that is, ant colony optimization (ACO)

[12], that has shown good performance in different scheduling

problems [13]–[15] but also in similar EV charging scheduling

problems [16]. Hence, it would be interesting to investigate the

application of ACO in the aforementioned scheduling problem,

which is much more challenging and realistic, and compare it

with existing applications. The rest of the paper is organized

as follows. Section II reviews existing charging scheduling

models. Section III describes in detail the scheduling problem

of the EV charging station considered in this work. Section

IV describes the ACO application for the scheduling problem.

The experimental results and analysis are presented in Section

V. Finally, Section VI concludes this paper.

II. BACKGROUND

The coordination of EV charging within a station raises

challenging scheduling problems. In the last few years, several

charging scheduling models have been proposed (a compre-

hensive review of such charging approaches can be found in

[17]). In general, two main architectures are used to coordinate

EV charging in existing scheduling models: 1) decentralized



control architectures, and 2) centralized control architectures.

The former type of architectures offers great flexibility to EV

owners, allowing them to decide the period to start charging

their EVs. In the latter type of architectures, all the decisions

are taken by the central control system of the charging station

using information provided by the EV owners. Although the

centralized architecture is not very flexible, it is more secure

than the decentralized architecture. This is because with the

centralized architecture the overall system can be controlled

in such a way to prevent overloading of the power grid and

to minimize power losses.

Depending on the characteristics and goals of each EV

charging station different models and scheduling problems

arise. For example, a number of objective functions have been

considered in existing scheduling models such as minimizing

the total tardiness [9], [10], total cost [18], [19], energy losses

[4], [8], grid congestion [20] or optimizing more than one

objectives simultanesouly [21]. Also some models consider

variable charging rates of the EVs [20], variable charging

power of the station [22], or variable electricity prices [23].

Other models, allow the control system of the charging station

to decide the assignment of EVs to the charging (or parking)

slots [6] whereas in other models the assignment is agreed in

advanced (e.g., each EV owner reserves a specific slot in the

charging station) [8].

III. ELECTRIC VEHICLE CHARGING SCHEDULING

PROBLEM

A. EV Charging Station

Suppose that a charging station utilizing a centralized con-

trol architecture was designed to be installed in a private

parking in which EVs have their own space to use as a

parking slot and at the same time to charge their batteries [4].

A general structure of a charging station with a three-phase

electric power source is shown in Fig. 1.

When EVs enter the charging station the control system of

the station must create a feasible and efficient schedule for

the charging process of the EVs, so that the total tardiness

is minimized. There are two main constraints that the control

system of the charging station must take into account. First,

there is limited contracted power, and so there is a maximum

number of charging points that can be active at the same time

in any given line. Second, the power consumed by the lines

must be balanced at any given time to avoid energy losses [7].

For example, in Fig. 1 the charging station uses a three-

phase electric power source, hence three lines connect the

charging points. If we assume that each line is limited to a

maximum four active charging points at the same time, then

all the EVs that are currently parked in the station can start

charging, while at the same time, the power distribution in the

lines is balanced assuming that the power is transferred at a

constant rate.

B. Problem Formulation

The charging station consists of n charging points (or

parking slots) that are connected by L lines. Each line i

Fig. 1. A general structure of a charging station with three lines and multiple
charging points (or parking slots).

connects P i charging points where each point is also the

private parking of an EV. Even though the charging station

has n charging points available, they cannot be all active

at the same time. In particular, the maximum number of

active charging points for each line must satisfy the following

constraints:
P i

∑

j=1

xi
j ≤ N, i = {1, . . . , L}, (1)

|
∑P i

j=1
xi
j −

∑P l

q=1
xl
q |

N
≤ ∆, i, l = {1, . . . , L}, i 6= l, (2)

xi
j =

{

1, if charging point j on line i is active;

0, otherwise;
(3)

where Eq. (1) ensures that each line can only have N charging

points active to charge N EVs at the same time, Eq. (2)

controls the maximum imbalance ∆ (∆ ∈ [0, 1]) between the

lines, and Eq. (3) defines a decision binary variable.

For each EV j, using the charging station, there is an arrival

time tj (tj ≥ 0), a charging time pj (pj > 0), and a due date

dj (dj ≥ tj + pj) denoting the departure time of the EV.

The goal is to generate a sequence of EVs to coordinate their

charging, satisfying the two constraints in Eq. (1) and Eq. (2),

and minimizing the total tardiness defined mathematically as

follows:
n
∑

j=1

max{0, CTj − dj}, (4)

where CTj is the completion time of EV j which is calculated

as CTj = sj + pj where sj (sj ≥ tj) is the assigned starting

time for the charging of EV j.

It must be noted that no preemption is allowed (i.e., an EV

cannot be disconnected before the completion time CTj is

reached). Other assumptions imposed to simplify the model

include: all EVs charging at the same constant rate and the

contracted power in the charging station to be constant over

time. Also we assume that the profiles of the EVs (i.e., tj ,

pj and dj) are known in advance, since a static model is

considered.



IV. ANT COLONY OPTIMIZATION

In the ACO metaheuristic a colony of ω (artificial) ants

iteratively constructs solutions for the problem under consid-

eration using (artificial) pheromone trails which are associated

with appropriately defined solution components and heuristic

information [24]. A skeleton of the ACO metaheuristic is

presented in Algorithm 1. Ants modify the pheromone trails

during the algorithm’s execution based on the quality of the

constructed solution. In this paper, we apply Ant Colony Sys-

tem (ACS) [12], one of the best performing ACO algorithms in

minimizing the total tardiness for several scheduling problems

[25]–[27], to the scheduling problem of the charging station

described above.

A. Constructing Solutions

In ACS, each ant starts with an empty set of scheduled

EVs and then incrementally appends unscheduled EVs to the

partial set of the scheduled EVs so far, until all EVs are

scheduled. A constructed solution is basically a sequence of

EVs (i.e., a permutation of EV indices). It must be noted

that a charging schedule is generated based on the order in

which the EVs are placed in the permutation in the same way

as the scheduler algorithm proposed in [10]. Specifically, to

sequentially schedule all EVs in the permutation, assigning

for each EV the earliest possible starting time, such that

all constraints are satisfied with respect to the previously

scheduled EVs.

Ant k selects the unscheduled EV j to be added in the

permutation at position i according to the following decision

rule:

j =

{

argmaxl/∈Sk [τil]
α [ηil]

β , if q ≤ q0,

J , otherwise,
(5)

where τil is the pheromone trail associated to the assignment

of EV l in position i and ηil is the heuristic information

of assigning EV l in position i, Sk is the partial set of

scheduled EVs, α is a parameter that controls the influence

of the pheromone trails, β is a parameter that controls the

influence of the heuristic information, q is a random variable

uniformly distributed in [0, 1], q0(q0 ∈ [0, 1]) is a parameter

that controls the exploration of the decision rule, and J is a

random variable (representing an EV index) selected according

to the following probability distribution:

pkij =
[τij ]

α [ηij ]
β

∑

l/∈Sk [τil]
α [ηil]

β
, if j /∈ Sk, (6)

In other words, with probability q0 the ant makes the best

decision as indicated by the pheromone trails and the heuristic

information (exploitation), while with probability (1− q0) the

ant makes a random decision biased by the pheromone trails

and the heuristic information (exploration).

The heuristic information ηij of assigning EV j in position i
in the schedule is computed by the earliest due date rule [28].

This dispatching rule sorts EVs in increasing order of their

due dates dj (i.e., the requested departure times of the EVs).

Algorithm 1 ACO Metaheuristic Outline

1: Set parameters

2: Initialize pheromone trails

3: Initialize heuristic information

4: while (termination condition not satisfied) do

5: ConstructSolutions

6: PheromoneUpdate

7: end while

8: OUTPUT: the best-so-far solution

Hence, in our case ηij = 1/dj . In other words, the heuristic

information will favour the EVs that need to leave earlier than

other EVs. In the experiments in Section V the impact of using

this heuristic information is further investigated.

B. Updating Pheromones

In ACS, two types of pheromone updates are applied, one at

the global level and the other at the local level. In the global

pheromone trail update after each algorithmic iteration only

the best-so-far ant1 is allowed to add pheromone to its solution

components. In particular, the pheromone trails associated with

the solution components represented by the best-so-far ant are

updated as follows:

τij ← (1− ρ)τij + ρ∆τbsij , (7)

where ρ (ρ ∈ (0, 1]) is the pheromone evaporation rate and

∆τbsij = 1/Cbs, where Cbs is the total tardiness value of the

best-so-far solution. It must be noted that ACS terminates

whenever the total tardiness of the best-so-far solution be-

comes zero (which is the minimum value according to Eq. (4)).

Therefore, a division by zero is never allowed.

In the local pheromone trail update, ACS applies a step-

by-step pheromone update rule immediately after an ant has

added a new solution component (i.e., an EV j in position

i). In particular, the pheromone trails associated with the

aforementioned solution components are updated as follows:

τij ← (1− ξ)τij + ξτ0, (8)

where ξ (ξ ∈ (0, 1]) is a parameter that controls the influence

of the local pheromone update and τ0 is the initial pheromone

value. Note that a good value for τ0 was found to be 1/rCedd,

where r is the total number of EVs and Cedd is the total

tardiness value of the solution generated by the earliest due

date rule [26]. All pheromone trails are uniformly initialized

at the start of the execution. The effect of the local updating

rule is to make the decision of assigning EV j in position

i less desirable for the other ants to favour assignments of

other EVs on that position. In this way, the exploration of

the search is promoted. In the experiments in Section V these

two pheromone update types (i.e., local and global) are further

investigated.

1A special ant that represents the global best solution and may not
necessarily belong in the current constructing colony.



V. EXPERIMENTAL STUDIES

A. Experimental Setup

In the experimental studies, we consider the real-world

benchmark set proposed in [8], representing a charging station

of three lines (as in Fig. 1), each one connecting 60 charging

points. In total the charging station consists of 180 charging

points (also parking slots). Specifically, the L and n parameters

in Section III are defined as follows: L = 3 and n = 180.

The data of the benchmark set consists of the profiles of 180

EVs (and hence the r parameter is set to r = 180), including

their arrival times, due dates and demands of the EVs (based

on the behaviour of real users). The benchmark instances are

accessible at http://www.di.uniovi.es/iscop.

Two types of instances exist in the benchmark set (30

different instances for each type) that differ in the distribution

of the EVs on the lines. In Type 1 instances 60 EVs arrive

at each line during the day (in a 24-hour period) demanding

charging, while in Type 2 instances 108 EVs arrive in line 1,

54 in line 2 and 18 in line 3. Different values of the maximum

number parameter for EVs that can charge at the same time

in a line, i.e., N ∈ {20, 30, 40} defined in Eq. (1), and

different values of the maximum power imbalance parameter,

i.e., ∆ ∈ {0.2, 0.4, 0.6, 0.8} defined in Eq. (2), are considered

for each problem instance, resulting in 720 different test cases

(12 different test cases for each instance).

ACO performs 30 independent runs for each test case

because of its stochastic nature and the averaged total tardiness

(in hours) is recorded. The colony size of ACO was set to

ω = 200 and the remaining parameters are further investigated

in the next section.

B. ACO Parameter Settings

In order to achieve a good balance between the exploration

and exploitation for ACO on this scheduling problem, several

parameters, e.g., α, β, ρ, ξ and q0, require further investigation.

The parameter tuning was performed on 24 test cases (i.e., the

first instance of the benchmark set for each different test case

in Table I).

1) Effect of Pheromone trails: The value of the α parameter

is set either to 0, indicating no pheromone bias, and to 1,

indicating pheromone bias. The experimental results regarding

the total tardiness with different α values are given in Fig. 2.

It can be observed that when the solutions are constructed

without any guidance from the pheromone trails (i.e., when

α = 0) the total tardiness increases. This is because the

solutions are constructed without utilizing the experience

learned so far, which is stored in the pheromone trails. The

pheromone trails have the effect of increasing the probabilities

of the promising positions in the schedule for an EV (which is

the solution component associated with a pheromone value).

2) Effect of Heuristic Information: The value of the β
parameter is varied as follows: β ∈ {0, 2, 5, 10}. The ex-

perimental results regarding the total tardiness with different

β values are given in Fig. 3. It can be observed that when

heuristic information is utilized (i.e., when β > 0) the total
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tardiness improves in almost all cases (except in test case

13). This shows that the heuristic information (based on the

earliest due date of the EV) is beneficial in the construction

of solutions because it favours EVs that must leave earlier

than other EVs. In many Type 2 test cases, that promote the

imbalance between the lines, when β = 10 the total tardiness

is worse than when β = 0. This is because of the power

and imbalance constraints in Eq. (1) and Eq. (2) that affect

the validity of the information provided to the search by the

earliest due date rule. On the contrary, in Type 1 test cases

these constraints are less likely to be violated, hence, a stronger

influence by the heuristic information (e.g., when β = 10) can

guide the search in the promising areas of the search space. It

must be noted that selecting higher values of β (not presented

here) did not have significant improvements in Type 1 test

cases, but significantly increased the total tardiness in most

Type 2 test cases.

3) Effect of Decision Rule: The value of the q0 parameter

is varied as follows: q0 ∈ {0.0, 0.5, 0.9, 0.95, 1.0}. The exper-

imental results regarding the total tardiness with different q0
values are given in Fig. 4. It can be observed that as the q0
value increases the total tardiness improves. This is because
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the pheromone trail policy described in Section IV promotes

exploration. For example, with the local pheromone update

rule it is less likely for the ants to construct similar solutions.

Therefore, a decision rule that further promotes exploration

(i.e., when q0 = 0.0) will not be beneficial. In particular, it

can be observed that when q0 = 0.9 or q0 = 0.95 the total

tardiness is better than when q0 = 0.5 and q0 = 0.0 in most

test cases. However, an extreme value of q0 (i.e., q0 = 1.0) is

not beneficial because it leads the search to no exploration at

all.

4) Effect of Pheromone Evaporation: The value of the ρ
parameter is varied as follows: ρ ∈ {0.0, 0.1, 0.2, 0.4, 0.6}.
The experimental results regarding the total tardiness with

different ρ values are given in Fig. 5. It is interesting to

observe that when no pheromone evaporation is used (i.e.,

when ρ = 0.0) the total tardiness increases. This is because

the pheromone trails representing the best-so-far solution are

never reduced. Hence, there is a potential risk of continuously

increasing these trails and getting trapped in a (possibly poor)

local optimum from the initial stages of the search, resulting in

premature convergence. This can be easily observed in Fig. 5,

when ρ > 0.0 the total tardiness significantly improves. On

the contrary, the total tardiness does not show any significant

improvement when the evaporation rate is higher than 0.2. It

must be noted that higher values of ρ (i.e., ρ > 0.6) have been

investigated with no significant improvements, and, thus, are

not included in Fig. 5.

5) Effect of Local Pheromone Update: The value of the

ξ parameter is varied as follows: ξ ∈ {0.0, 0.1, 0.2, 0.4}. The

experimental results regarding the total tardiness with different

ξ values are given in Fig. 6. It can be observed that when

local pheromone update is not used (i.e., when ξ = 0.0) the

total tardiness is the worst especially in Type 2 test cases in

which the imbalance constraint is promoted. For this type of

test cases, it is easier for ACO to make several undesirable

assignments because of the imbalance constraint. Hence, using

the local pheromone update these assignments will be quickly

ignored as their pheromone trails will be reduced, while the
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ants are selecting components during the construction of their

solutions. It must be noted that higher values of ξ (i.e., ξ >
0.4) have been investigated with no significant improvements,

and, thus, are not included in Fig. 6.

C. Comparison with Other Approaches

In this section we compare the proposed ACO (with its

parameters set to α = 1, β = 5, ρ = 0.4, ξ = 0.1 and

q0 = 0.95)2 with a problem decomposition (PD) approach [4],

three dispatching rules: 1) first come first serve (FCFS) [4], 2)

latest starting time (LST) [8], and 3) earliest due time (EDT)

[28], and a state-of-the-art genetic algorithm (GA) [10], which

is a metaheuristic method, on the full benchmark set. FCFS,

EDT, and LST approaches sort in ascending order the EVs

based on their arrival time tj , their due date dj and the rule

given by (dj − pj), respectively. Then, the schedule will be

generated according to the ordering given by the corresponding

dispatching rule. The PD approach decomposes the problem

and aims to generate a schedule for each line separately. On

2Note that different parameter settings may result in much better perfor-
mance in individual test cases. However, these parameter settings were found
to achieve reasonable performance over most test cases.



TABLE I
COMPARISON OF ACO WITH OTHER APPROACHES. EACH VALUE IS THE SUM OF THE (AVERAGED OVER 30 RUNS FOR GA AND ACO) TOTAL TARDINESS

OF THE 30 INSTANCES OF EACH TEST CASE. THE VALUES ARE GIVEN IN HOURS. THE BEST VALUES FOR EACH TEST CASE ARE INDICATED IN BOLD.

Test Case FCFS [4] LST [8] EDT [28] PD [4] GA [10] ACO

Number Type N ∆

1 1 20 0.2 21807 19326 21667 7720 5442 5391

2 0.4 8909 6801 7410 4240 2680 2592

3 0.6 7104 5476 5563 3849 2300 2261

4 0.8 7012 5332 5406 3807 2239 2214

5 30 0.2 8892 5822 7571 1782 997 906

6 0.4 1538 454 799 490 92 82

7 0.6 1045 168 494 458 50 44

8 0.8 1004 158 487 458 49 41

9 40 0.2 3587 1928 2847 646 364 264

10 0.4 82 26 51 28 0 0

11 0.6 11 0 1 9 0 0

12 0.8 11 0 1 9 0 0

13 2 20 0.2 228816 226647 232109 127614 124380 123882

14 0.4 102396 100355 96408 46254 45263 44852

15 0.6 49899 48867 45988 23008 21206 20914

16 0.8 27581 27421 25703 14808 13031 12856

17 30 0.2 149857 148926 146673 72460 71129 70168

18 0.4 49941 48844 45872 21427 20630 20324

19 0.6 19340 18385 17405 8079 7188 7108

20 0.8 9518 8201 7688 4501 3607 3577

21 40 0.2 102396 100355 96408 46096 45216 44864

22 0.4 25814 25019 23819 10932 10011 9822

23 0.6 9078 7711 7127 3520 2917 2873

24 0.8 3765 2286 2365 1659 923 882

the contrary, the GA generates a schedule for the entire system

using search operators specifically designed for the scheduling

problem described in Section III. Similar to the proposed ACO

approach, the GA approach performs 30 independent runs for

each instance and the average total tardiness (in hours) is

recorded. The two metaheuristic approaches (i.e., ACO and

GA) use the same number of individuals3 (i.e., 200) and the

same termination conditions (i.e., when the best solution is

not improved for 25 consecutive iterations, or if zero total

tardiness is reached). It must be noted that the parameters of

the GA are also optimized in [10] under the same test cases as

ACO was optimized in Section V-B and they are set as follows:

crossover probability 0.8, mutation probability 0.1 and the size

of the tournament selection was set to 8. Table I shows the

results of the experiments. The values reported are the sum of

the total tardiness of the 30 instances of each test case of the

algorithms.

3This is a general term that is used to represent “ants” in ACO and
“chromosomes” in GA.

From Table I, it can be observed that all algorithms obtain

a significantly lower total tardiness in Type 1 test cases

(i.e., number 1–12) than Type 2 test cases (i.e., number

13–24). As described above, in Type 1 test cases, EVs are

uniformly distributed whereas in Type 2 test cases they are

not. Consequently, this feature imposes more challenges to the

algorithms when solving Type 2 test cases because they have

to control in many situations the power imbalance among the

lines when building the schedule. Also, it can be observed that

as the N and ∆ parameters increase the total tardiness of all

algorithms decreases. In fact, for several Type 1 test cases the

total tardiness is approaching 0, which is the minimum value

according to the objective function in Eq. (4). This is because

the values of the constraints in Eq. (1) and Eq. (2) are large

enough, hence, they are less likely to be violated causing an

increase in the total tardiness. In other words, the more times

these constraints are violated the higher the total tardiness.

Furthermore, from Table I it can be observed that FCFS,

LST, and EDT are not performing as good as GA and ACO.

This is natural because no optimization is performed within



the three aforementioned dispatching rules. Also, it can be

observed that both GA and ACO significantly outperform

PD in all test cases as it was expected. This is because PD

evaluates schedules for each line separately, and, thus, may

overlook some situations of addressing the power imbalance

without necessarily violating the constraint. As a result, the

charging of the EVs will be unnecessarily delayed because

the imbalance constraint is violated causing an increase in

the total tardiness. On the other hand, this situation is less

likely to occur in ACO and GA. These results validate that

metaheuristics are suitable for the scheduling problem arising

in the EV charging station.

Also, it is interesting to observe that ACO outperforms the

GA approach in all test cases. The advantage of ACO against

GA lies on its structural difference. In particular, ACO can be

seen as an iterative constructive heuristic that generates new

solutions in every iteration on the basis of learned data (i.e.,

the pheromone trails). Therefore, the risk of beginning with

poor initial solutions (as with GA) or getting trapped in a

(possibly poor) local solution later on is limited with ACO.

VI. CONCLUSIONS

EVs and their technologies have received increased interest

due to their positive impact on the environment. In this work,

we consider a scheduling problem arising in a charging station

to address the coordination of the charging process for a

fleet of EVs. The generated schedules need to satisfy the

physical and power constraints of the charging station. These

constraints make the scheduling problem harder to solve using

simple dispatching rules (e.g., first come first serve [4] or latest

stating time [8]). In this paper, we apply ACO to generate fea-

sible schedules for EVs to minimize the total tardiness of the

scheduling problem. Experimental results using a benchmark

set with various real-world inspired scenarios showed that the

ACO approach is more suitable for the scheduling problem,

compared to simple dispatching rules and other approaches,

mainly because of its intrinsic characteristics.

For future work, we plan to extend the model considered

in this work with additional realistic constraints (e.g., variable

charging rates) and integrate a local search operator to further

improve the performance of ACO. In fact, the performance

of other metaheuristics has been significantly enhanced with a

local search in [29], [30] on the described scheduling problem.

Recall that in Table I the metaheuristic approaches are not

utilizing any local search operator. Therefore, for future work

it would be interesting to compare the performance of the

existing metaheuristics with local search against the proposed

ACO with local search. Also, another interesting direction is to

solve the problem dynamically, assuming that the information

of the EVs is not known a priori as in [4], [10].
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[29] J. Garcı́a-Álvarez, M. n. González, C. Rodrguez Vela, and R. Varela,
“Electric vehicle charging scheduling by an enhanced artificial bee
colony algorithm,” Energies, vol. 11, no. 10, pp. 115–124, 2018.
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