
Memory-based Multi-Population Genetic Learning
for Dynamic Shortest Path Problems

1st Yiya Diao
School of Automation

China University of Geosciences
Wuhan, 430074, China
diaoyiyacug@163.com

2nd Changhe Li?
School of Automation

China University of Geosciences
Hubei Key Laboratory of Advanced Control and

Intelligent Automation for Complex Systems
Wuhan, 430074, China
changhe.lw@gmail.com

3rd Sanyou Zeng
School of Electrical and Mechanical
China University of Geosciences

Wuhan, 430074, China
sanyouzeng@gmail.com

4th Michalis Mavrovouniotis
KIOS Research and Innovation Center of Excellence

and Department of Electrical and Computer Engineering
University of Cyprus, Nicosia, 2109, Cyprus.

mavrovouniotis.michalis@ucy.ac.cy

5th Shengxiang Yang
School of Computer Science and Informatics

De Montfort University
Leicester, LE1 9BH, United Kingdom

syang@dmu.ac.uk

Abstract—This paper proposes a general algorithm framework
for solving dynamic sequence optimization problems (DSOPs).
The framework adapts a novel genetic learning (GL) algorithm
to dynamic environments via a clustering-based multi-population
strategy with a memory scheme, namely, multi-population GL
(MPGL). The framework is instantiated for a 3D dynamic short-
est path problem, which is developed in this paper. Experimental
comparison studies show that MPGL is able to quickly adapt
to new environments and it outperforms several ant colony
optimization variants.

Index Terms—dynamic shortest path, dynamic sequence op-
timization, genetic learning, ant colony optimization, clustering-
based multi-population,

I. INTRODUCTION

The dynamic sequence optimization problem (DSOP) has
a wide range of applications in practice, e.g., the vehicle
navigation problem and the workshop scheduling problem.
The SOP, a typical combinatorial optimization problem, is to
find the best order for a number of given items [1]. Examples
of classical SOPs are the travel salesman problem (TSP), the
vehicle routing problem (VRP), and the shortest path problem
(SPP), etc.

The dynamic TSP (DTSP) is a typical benchmark for
DSOPs, where typical types of changes are changing the
sequence number of nodes in the graph [2] or changing the
distance between nodes [3]. The first type of changes can keep
the global optimum unchanged, which is helpful to analyse

This work was supported in part by the National Natural Science Foundation
of China under Grant No. 61673355, in part by the Fundamental Research
Funds for the Central Universities, China University of Geosciences (Wuhan)
under Grant 201705, in part by the Hubei Provincial Natural Science Founda-
tion of China under Grant 2015CFA010, and in part by the 111 project under
Grant B17040.

?The corresponding author.

the performance of an algorithm in dynamic environments but
hardly seen in real-world applications. The second type of
change is more practical but the global optimum is unknown.
It makes hard to analyse the performance of an algorithm. To
alleviate this issue, we propose a 3D dynamic shortest path
problem (DSPP) as a benchmark problem for DSOPs. This
problem is simple and can show some real-world characteris-
tics which are challenging to solve. The optimal solution can
be easily obtained by Dijkstra’s algorithm. These two features
make it suitable to test an algorithm’s performance.

The ant colony optimization algorithm (ACO), which stimu-
lates the ants’ foraging behaviors, is the mostly used algorithm
for DSOPs [4]. To make ACO effective in dynamic environ-
ments, several issues should be addressed: (1) The pheromone
trail contains previous information which may mislead the
search and make the algorithm hard to escape from the old
optimum when the environment changes; (2) The heuristic
information is needed but it is not always available or hard
to obtain in practice; (3) The parameters of ACO are hard to
tune. In this paper, a genetic learning (GL) [5] algoirthm is
used to solve DSOPs. The GL was initially proposed in [5],
updated in [6] for the static TSP and was later applied to the
static SPP in [7]. GL calculates the probability only based on
the current population, which enables the population to adapt
to dynamic environments quickly and does not require any
heuristic information.

When an algorithm converges, it is hard to find the new
optimum. Dynamism handling strategies are needed to help
an algorithm to improve the diversity loss issue to find
new optima. This paper proposes a multi-population strategy,
where each sub-population is responsible for searching for
one near-optimum. To improve the search ability of each sub-
population, we use a memory scheme in each sub-population

to make use of the information from all the individuals. Also,
this algorithm does not depend on the detection of the change
and can quick track the changing global optimum.

The rest of this paper is organized as follows. Section II de-
scribes the dynamic handling strategies that are mainly applied
to ACO. Section III defines the DSPP proposed in this paper.
Section IV gives the details of the proposed algorithm. Section
V presents the experimental studies. Finally, conclusions and
future work are presented in Section VI.

II. RELATED WORK

The basic idea of ACO is a probabilistic technique based
on sampling. It was inspired by the food foraging behaviors
of ants. Ants will release trail pheromones when they look
for foods and the pheromone trail will guide them to find
a shorter path to the food source. ACO was first published
in [8]. Ant colony system (ACS) [9] and MAX-MIN ant
system (MMAS) [10] are two widely used variants. Angus and
Hendtlass [11] showed that the conventional ACO algorithm
is able to solve a small DTSP instance. To extend ACO to
dynamic environments, the loss of diversity issue should be
addressed.

The goal for dynamic optimization is not only to find the
global optimum but also to track the changing optimum over
time. When a traditional evolutionary algorithm has converged,
it hardly finds new good solutions due to the loss of diversity.
Dynamism handling strategies are needed to improve diversity.
These strategies can be divided into five classes: adaptive,
diversity, prediction, memory and multi-population strategies
[4], [12].

Adaptive strategies adapt the parameters or operators to the
changing environments. For example, the pheromone evap-
oration rate ρ for ACO can be adaptive tuned. In [13], ρ
increases when the algorithm stagnates to increase the global
search ability of the algorithm. Later self-adaptive ρ was
proposed in [14], where ρ is optimized during the evolutionary
process. The two parameters α and β, which control the weight
of pheromone trails and heuristic information, can also be
adaptively tuned in ACO [15].

Diversity strategies aim to increase diversity after a change
is detected or to maintain diversity during the whole run.
Eyckelhof and Snoek [16] introduced a shaking method to
smoothen the pheromone trails when an environmental change
is detected. Immigrants strategy [3] in ACO is a popular
diversity strategy, which introduces immigrant ants, either
using random solutions (random immigrant ACO, RIACO)
or the best solutions from the previous environment (elitism-
based immigrants ACO, EIACO), to deposit pheromone trails.
Guo [17] used the crowding distance to select the global best
or the local best particle in particle swarm optimization (PSO)
to solve dynamic multi-objective vehicle routing problems.

Predictive strategies predict the changes and take action
in advance. In [18], the Kalman filters were used to predict
the movement of the global optimum. However, predictive
strategies work only when changes exhibit some predictable
patterns.

Memory strategies store and reuse useful information, which
is quite useful for periodical or recurrent changes. Population-
based ACO (PACO) [19] uses a memory of limited size to
record the best solution from each generation with a first-
in-first-out policy. Memory-based immigrants [3] combine
the memory strategy and immigrants with a memory of the
population, which includes the best solutions and immigrant
solutions. In [20], the memory was organized as a tree struc-
ture to reduce the computational cost and increase its capacity.

Multi-population strategies use each sub-population to track
different local optimum so that when the global optimum
change between different local areas, the algorithm can quickly
re-locate it. One of the key issue for the multi-population
is how to decide the number of sub-populations. A bottom-
up clustering method was used in [21] to determine the
original population size and then adapt it to the changing
environment during the evolutionary process. In [22], each
sub-population uses a separate pheromone table, which is
helpful to improve to the diversity of ACO. Bu [23] combined
the multi-population strategies particle and PSO to solve
dynamic constrained optimization problems.

Recently, there are some strategies that hybridize two or
more strategies introduced above. Luo [24] combined the
memory strategies and the multi-population strategies. In [24],
the retrieved memory individuals were classified according to
their fitness values and their distances to the closest population
and different operations were applied to them.

III. 3D DYNAMIC SHORTEST PATH PROBLEM

A 3D DSPP is proposed in this section. It has two advan-
tages to be a benchmark: (1) The problem is able to simulate
the progressive change of the practical problems; (2) The
global optimum is always available during changes.

A. Design of the DSPP

The design of the static 3D SPP was proposed in [7], where
a map is divided into W ×H grids (W and H are the map
width and height). Each grid can be seen as an item in the
DSOP. The problem is defined by:

min f(~x(t)) =
∑k−1

i=0 d(xi,xi+1),
s.t. xi+1 ∈ Nxi

, x0 = s, xk = e
(1)

where ~x = {x0,x1....,xk} is a solution (xi = (xi, yi, zi(t)),
xi, yi, zi(t) are the abscissa value, the ordinate value and
the height for xi, respectively), s and e are the starting grid
and the ending grid, respectively, d(xi−1,xi) is the Euclidean
distance between the two grids xi−1 and xi. The next move
from grid xi must be in the neighborhood of xi (written as
Nxi

), which is defined by:

Nxi
= {xj |‖xj − xi‖1 = |xj − xi|+ |yj − yi| ≤ 1} (2)

The generation function for the dynamic map at time t is
defined by:

z (x, y, t) =

5∑
i=1

φi (x, y) gi(t) +

4∑
j=1

ϕj (x, y) gj(t), (3)

φ ϕ

Fig. 1. Two basic functions for generating changes, where φ is for global
change and ϕ is for local change.

where z (x, y, t) is the height of the grid (x, y) of the map
at the time t, φ and ϕ are two basic functions for generating
two different types of changes (introduced later), g is used to
change the relative influence of φ and ϕ at time t.

The change in this paper has two types: global change
and local change. The global change means that the whole
environment changes while the local change means that only
a part of the environment changes. Fig. 1 shows that when φ
is added to a flat map, the height of almost all the grids on
the map will be changed and thus φ is used to generate the
global change. With ϕ, only the height of the grid near the
center will be changed, thus ϕ is used to generate the local
change.

The formulas of the two functions are:

φ (x, y) = h ∗ cos (x+ c) cos (y + c), (4)

ϕ (x, y) = h ∗ exp
(
(x+ c)

2 − (y + c)
2
)
, (5)

where h determines the relative height of the grids on the
map, (c, c) is a random center grid of the functions φ and
ϕ on the map, c is a uniformly distributed random number
c ∈ [0,min(W,H)].

To make the map changing smoothly, g is introduced to
gradually change the influence of φ and ϕ, which is defined
by:

g (t) =

0 t < t1

t−t1
2∗(t2−t1)

t1 ≤ t < t2−t1
2

t2−t
2∗(t2−t1)

t2−t1
2 < t ≤ t2

0 t2 < t

(6)

where t1 and t2 are two uniformly distributed random num-
bers. From the time t1 to t2−t1

2 , the influence of the function
changes from zero to one, and from the time t2−t1

2 to t2, the
influence changes from one to zero.

B. Characteristic of the DSPP

Fig. 2 shows how the dynamic map changes over 1,000
generations. The blue line shows the length change of the
global optimum and the red line shows the distance between
the global optimum and the path directly from s to e. Gener-
ally, the larger the length of the global optimum is, the more
difficult the problem is. From the blue line, we can see that
the problem is changing continuously and smoothly.

0 200 400 600 800 1000

Number of Iterations

400

600

800

f
(−→
x

∗

)

0

50

100

d
is
(−→
x

∗

,−→
l
)

Fig. 2. The figure shows how the dynamic map changes over 1,000
generations, where the blue line shows the change of length of global optimum
and the red line shows the distance between the global optimum and the direct
path from s to e.

The red line is the distance between the global optimal
solution (written as ~x∗) and the path direct from s to e (written
as ~l). The distance between two solutions ~x and ~y is defined
by:

dis(~x, ~y) =
k1

max
i=1

(
k2

min
j=1

dis(xi,yj)

)
, (7)

where ~x = {x0,x1....,xk1
} and ~y = {y0,y1....,yk2

} are
two solutions, both of which contain a path from s to e.
This distance is the maximum vertical distance between two
solutions on the map.

If the distance is around a large value, ~x∗ would be
far away from the relatively simple solution ~l and thus the
global optimum is more difficult to find. This means that
the test problem remains a certain difficulty during the whole
change. We can see that although the problem is continuously
changing, the change of the global optimum may be abrupt,
indicating that the global optimum may switch to another area.

IV. MULTI-POPULATION GENETIC LEARNING

A general framework for DSOPs is proposed in this section.
It consists of three parts: (1) the GL algorithm; (2) a clustering-
based multi-population strategy; (3) a local memory strategy.
Based on statistical learning, this algorithm uses individuals
from the current population to calculate the probability matrix
P used in GL so that the population can quickly adapt to
the changing environment. To avoid the situation that the
algorithm falls into a local optimum when the environment
changes, we use a clustering-based multi-population strategy
to improve the diversity of the algorithm. Also, to remember
some useful information used to guide the local search, a local
memory is used for each sub-population.

A. Framework of MPGL

Algorithm 1 is the framework of MPGL. To maintain
diversity during the search, we divide the whole population
into sub-populations and the probability matrix P is calculated
only based on the best individuals from each sub-population.

Algorithm 1 Multi-population genetic learning
1: Randomly initialize a population X;
2: while termination criteria not satisfied do
3: Divide the population X into sub-populations by Algo-

rithm 3;
4: Update the local memory for each sub-population using

Eqs. (12)-(14);
5: Set the best individual and the local memory for each

sub-population as B;
6: Calculate the probability matrix P based on B using

Eqs. (8)-(11);
7: for all individuals in each sub-population do
8: Create a new solution with P and its local memory

according to Algorithm 2;
9: end for

10: Put all individuals in X;
11: end while

Algorithm 2 Genetic learning
Input:

Individual ~xi, the probability matrix P and the local
memory;

Output:
A new solution for ~xi;

1: while the construction of ~xi is not completed do
2: if rand() ≤ ρ then
3: Select the next feasible item based on P by roulette

selection;
4: else
5: Select the next feasible item based on the local

memory;
6: end if
7: end while

To help a sub-population search for the near optimum nearby,
a local memory scheme is used to record the information
from its individuals. In MPGL, the probability matrix works
to maintain diversity for global search and the local memory
scheme focus on local search. With the two strategies, GL can
balance global search and local search during the evolutionary
process.

1) Genetic learning: Algorithm 2 shows the construction
of a solution in GL [6]. GL is based on solution construction
strategies. It uses the parameter ρ to balance local search and
global search (whether to learn from P or the local memory);

The gene recorded in GL can be regarded as an ordered pair
of two items πij in DSOPs. Its main idea is to use optimized
information to estimate the probability for each gene and use
this probability to guide the evolution. The probability matrix
P is used to record the weighted frequency of πij visited by
the historical best solution found by each individual.

The probability of πij is calculated as follows:

pij =
wij∑
wil

,∀l ∈ Nj , (8)

where Nj is the set of neighbor items of item j, pij means
the probability of each individual moves from the item i to
the item j, wij is the weight of πij .

The objective value for all individuals in the population is
normalized by:

ḟi =
fmax − fi + 1

fmax − fmin + 1
, (9)

where ḟi is the normalized objective value for the individual i
of objective value fi, fmax and fmin are the maximum and the
minimum objective values of all the individuals in the MPGL
population, respectively.

A weight ωi is assigned to the ith individual based on its
normalized objective value ḟi by:

ωi =
1

1 + e−ḟi
, (10)

The weighted frequency of πij is calculated by:

wij =

S∑
k=1

ωk ∗ oij , oij =
{

1, πij ∈ ~xk

0, else
(11)

where S is the population size, ~xk is the solution created by the
individual k. Note that, we only use the current population to
update P to enable GL to adapt to a new environment quickly.

2) Multi-population strategy: Although GL can quickly
adapt its probability matrix P to the changing environment, it
still suffers from the issue that when it converges, it can hardly
escape from the old optimum. Dynamic handling strategies are
needed to help GL to escape from old optimum. The multi-
population strategy inspired by [21] is designed in this paper.

In the multi-population strategy, how to generate multiple
populations is crucial, because the number of populations
should be different at the different time. For example, in the
proposed benchmark, current peaks may be gone and new
peaks may be formed as changes occur on the map. As a
result, local optima may disappear or appear as time goes on.

This paper uses a density-based top-down clustering idea
[25] to self-adaptively cluster individuals into multiple sub-
populations. There are two key ideas in [25]: (1) The points
with high density are more likely to be the center of a cluster;
(2) The center of each cluster should be far away from each
other. Similarly, in a population, we can use the two rules
to locate the near-optimum. A solution with a high fitness is
more likely to be a near-optimum and such solutions should
be far away from each other.

Algorithm 3 shows the framework of the clustering process.
Individuals are sorted based on fitness values to make sure that
individuals with high fitness are more likely to be chosen as
near-optima. We merge an individual with its nearest individ-
ual of higher fitness value. By this way, each near-optimum
is far away from each other. α is a parameter to separate two
sub-populations and can be regarded as the minimum distance
between two solutions in two different sub-populations.

Algorithm 3 Multi-population strategy
Input:

The whole population X;
Output:

The sub-populations;
1: Sort the whole population based on the fitness value from

the largest to the smallest;
2: for each solution ~x in the whole population do
3: for each solution ~y whose fitness value is smaller than

~x do
4: if dis(~x, ~y) ¡ α then
5: ~x and ~y belong to the same sub-population;
6: break;
7: end if
8: end for
9: if ~x does not belong to any sub-populations then

10: ~x is recorded as the center of a new sub-population;
11: end if
12: end for

3) Local memory: In the GL, the local memory is originally
used for local search. To make use of the information from
all the individuals, a local memory is proposed for each sub-
population to record the information from all the individuals
in the sub-population and each local memory works for local
search.

For πij in DSOPs, we remember ‘the best performance’ as a
local memory for each sub-population. For each πij there must
be the best solution that containing it. With this knowledge, we
can regard the objective value of the best solution associated
with each πij as a local memory for each sub-population and
store them in a matrix (M). Each element mk

ij records the
objective value associated with πij for the sub-population k.

When a new solution ~x with objective value f~x enters the
sub-population k, the memory matrix M is updated according
to the following equation:

mk
ij = min(mk

ij , f(~x)),∀πij ∈ ~x (12)

When two sub-populations a and b merge into one sub-
population c, their associated local memory Ma and Mb will
also merge into one local memory Mc by:

mc
ij = min(ma

ij ,m
b
ij) (13)

As this is a dynamic problem, the associated best objective
value for each πij would not stay the same as the problem
changes and old M may transfer the wrong information to
the next generation. To address this issue, inspired by the
evaporation mechanism in ACO, this paper increases the
objective value in M as follows:

mij = mij ∗ (1.0 + β), (14)

where 0 < β < 1 is a const parameter to determine the
uncertainty of the information from the last generation. The
information is more uncertain as β increases and the effect

Algorithm 4 Local update L

1: Input a solution ~x = {x0,x1....,xn} and a distance matrix
;

2: d = 0;
3: // d is the shortest distance from the current grid to e
4: for i = n− 1; i ≥ 1; i = i− 1 do
5: // To visit ~x from e to s;
6: d = d+ d(xi,xi+1);
7: if d < lxi then
8: lxi = d
9: else

10: d = lxi

11: end if
12: end for

of old knowledge will become weaker as time goes. All the
memory matrix M is updated at the end of each generation.

Note that, there are some differences between the
pheromone trail in ACO and the local memory in MPGL. The
pheromone trail in ACO needs to balance global search and
local search, and the evaporation speed is very important to
the search. The local memory in GL just focus on local search
for a local optimum. With Eqs. (12) - (14), when the algorithm
finds a newly better solution, M can be quickly updated with
the objective value.

B. Implementation on DSSP

With the domain knowledge on the DSSP, a distance vector
L is proposed to replace the local memory M. The vector L
records the historical shortest distance to e for each visited
grid on the map, i.e., each elements lki records the shortest
distance for the grid i to e for sub-population k.

Algorithm 4 works as a local search operator in MPGL
and tries to improve the local search ability for MPGL. The
distance from each grid to e would be changing, and the
distance vector L should be updated with a new solution as
Eq. (12).

In the multi-population strategy, when the best individuals
from different sub-populations are merged to the same sub-
population, their associated local memory, that is L also should
be merged by Eq. (13). L is updated as in Eq. (14) at each
generation. In MPGL, when an individual learns from the
local memory, it always selects the next feasible item with
the smallest li.

V. EXPERIMENTAL STUDIES

We carry out two sets of experimental studies. The first
shows the effect of different components of MPGL on DSPP.
The second compares the MPGL with other ACO variants.

A. Experimental setup

For the DSPP, the map size W = H = 50 was used. The
population size S = 60. The starting point s = (0, 0) is at the
left bottom grid and the ending point e = (W − 1, H − 1) is
at the left top grid on the map. A Change occurs after every

0 200 400 600 800 1000

Number of Iterations

0

1

2

3

4

5

R
E

×10-3 RE-Iteration

With Without

Fig. 3. Comparison of the performance between GL with and without the
local memory over a single run.

NC evaluations. We assume that the change in this problem
is progressive and we set the maximum change to one unit.
The maximum change means the maximum difference of the
height at each point in the map over two successive change.

In MPGL, there are three parameters:(1) The ratio of global
search ρ was recommended in [7]; (2) The minimum distance
α for population clustering was set to the average distance
between all individuals and the best individual of the sub-
population it belongs to. (3) The uncertainty factor β was set
to 0.1 for achieving the best overall performance.

The relative error (RE) is used to evaluate the performance.

RE = (f(~xb)− f(~x∗))/f(~x∗), (15)

where ~xb and ~x∗ are the best solution found by the algorithm
and the global optimum, respectively.

B. Component analysis

To analyse the relationship between the local memory or
the multi-population strategy with the environmental changes,
the map changes at every iteration of the MPGL.

1) Effect of the local memory on MPGL for DSPP: In
Fig. 3, the blue line and the red line show the change in the
RE of MPGL with and without local memory over a single run
of 1,000 generations. From the figure, we can see that L can
obviously help optimize the path and improve the accuracy of
the algorithm. In the process of path construction, L will be
updated gradually and thus help improve the solution. During
the path construction, the algorithm always selects a relatively
close grid to make a relative good solution. This can avoid the
potentially bad selection, and thus the constructed path has a
smaller relative error.

2) Effect of the multi-population strategy for DSPP: In
the top figure from Fig. 4, the blue line and the red lines
show the change in the RE of MPGL with and without the
multi-population strategy, respectively, over 1000 generations.
MPGL can adapt to the change more quickly. The multi-
population strategy makes the algorithm more stable. For

0 200 400 600 800 1000

Number of Iterations

0

0.1

0.2

R
E

RE-Iteration

0

0.1

0.2

With Without

0 200 400 600 800 1000

Number of Iterations

0

0.1

R
E

0

50

N
um

be
r

of
 p

op
ul

at
io

ns

Fig. 4. Comparison of the performance between MPGL with and without the
multi-population strategy over a single run.

example, around the 400th generation, there is a huge rise in
the RE of MPGL without the multi-population strategy while
the rise of MPGL is relatively smaller. It indicates that the
algorithm can effectively capture the local optimal when the
global optimum switches to other areas.

In the bottom figure from Fig. 4, the red line shows the
change in the number of populations over 1000 generations.
It can be seen that the number of sub-populations changes
as the environment changes. For example, around the 400th

generation, the RE gradually increases. However, before the
RE increases, the number of populations already increases.
It indicates that the multi-population can track environmental
changes. Before the global optimal moves to the other area, the
environment already changes and the number of populations
increases to help the algorithm capture the near-optima. When
the global optimal move between different local optimal, the
algorithm can quickly capture it.

C. Comparison with other algorithms

For a fair comparison, the local memory without problem
domain knowledge M is used in MPGL and we do not use
any local search based on the problem domain knowledge
because different ACO variants need different local search
operators, which have a significant impact on the performance

200 400 600 800 1000 1200 1400 1600 1800 2000

Number of Iterations

0

0.5

1

1.5

2

2.5
R

E
×104

AS
ACS

MMAS
MPGL

GL
PACO
RIACO

Fig. 5. Comparison between MPGL, GL and ACO variants, where W =
H = 50, NC = 10 over 30 independent runs.

TABLE I
AVERAGE RE AND STANDARD DEVIATION OF RE OVER 1000

EVALUATIONS FOR ALL ALGORITHM OVER 30 INDEPENDENT TESTS,
WHERE W AND H ARE THE WIDTH AND THE HEIGHT OF THE MAP,

RESPECTIVELY.

Algorithm W=50,H=50
NC=2 NC=10 NC=20

MPGL 10.45± 1.70 4.18 ± 0.78 2.98 ± 0.37
GL 7.10 ± 0.70 4.65± 0.50 3.65± 0.41

PACO 28.14± 1.31 26.67± 2.83 24.70± 1.57
RIACO 14.63± 2.22 14.93± 3.08 14.57± 3.17
MMAS 25.54± 2.79 23.19± 1.87 21.38± 2.12

AS 13.27± 1.53 15.24± 2.08 16.90± 2.11
ACS 29.12± 2.52 29.36± 2.18 26.70± 2.68

Algorithm W=100,H=100
NC=2 NC=10 NC=20

MPGL 20.64± 0.75 7.71 ± 0.50 6.72 ± 0.57
GL 15.94 ± 1.38 9.45± 0.45 7.66± 0.46

PACO 36.68± 1.24 40.35± 3.78 37.49± 1.82
RIACO 22.84± 4.18 25.80± 4.44 25.26± 4.45
MMAS 47.75± 2.02 43.25± 2.20 38.62± 2.68

AS 20.4± 3.49 20.03± 3.38 22.41± 3.45
ACS 54.33± 3.01 46.74± 2.60 46.56± 2.52

of an algorithm. For example, MMAS with a proper local
search operator even outperforms the state-of-art ACO variants
for DTSP [4]. Also, we would like to see the potential for
MPGL to solve other DSOPs, such as DTSP, DVRP through
a simple comparison with ACO variants. All the parameters
for ACO variants were recommended by their authors and the
parameters for MPGL and GL is the same in the DSPP.

From Fig. 5, we can see that GL and MPGL outperform the
ACO variants on the DSPP. Without the local memory M and
multi-population strategy, GL still works better than RIACO.
This is because they calculate the probability matrix P based
on the current population so that they can quickly adapt to the
changing environment. RIACO sometimes may find the best
solution because it has certain probability of finding new good
solutions, but its performance is quite unstable because of the
randomness.

From Table I, we can see that when the frequency of
the environmental changes is fast, GL is better than MPGL,
maybe the local memory M in MPGL may mislead the
individuals. However, when the speed of the environmental
changes becomes slow, MPGL performs much better than GL.
The average performances of GL and MPGL are much better
than other ACO variants.

VI. CONCLUSION

This paper proposes a multi-population genetic learning
framework, namely, MPGL, for DSOPs. This framework com-
bines the GL and a clustering-based multi-population strategy
with a memory scheme. The multi-population strategy works
to maintain the diversity and the memory scheme helps to
improve the local search ability.

From the experimental studies, we can see both MPGL and
GL outperform the ACO variants. It is mainly because that the
GL uses individuals from the current population to calculates
the probability so that it can adapt to the changing environ-
ment quickly. With the multi-population strategy, MPGL can
maintain the diversity during the whole search. Compared with
RIACO, we also find that with some randomness, algorithms
may have a better performance.

The relationship between the number of populations and the
environmental changes is not clear and we will take a further
study on it. We will also apply it to the other types of DSOPs,
e.g., DTSP and DVRP, with some appropriate local search
operators.

REFERENCES

[1] S. Raggl, A. Beham, V. A. Hauder, S. Wagner, and M. Affenzeller,
“Discrete real-world problems in a black-box optimization benchmark,”
in Proceedings of the Genetic and Evolutionary Computation Conference
Companion, GECCO 2018, Kyoto, Japan, July 15-19, 2018, 2018, pp.
1745–1752.

[2] L. Kang, A. Zhou, R. I. McKay, Y. Li, and Z. Kang, “Benchmarking
algorithms for dynamic travelling salesman problems,” in Proceedings
of the IEEE Congress on Evolutionary Computation, CEC 2004, 19-23
June 2004, Portland, OR, USA, 2004, pp. 1286–1292.

[3] M. Mavrovouniotis and S. Yang, “Ant colony optimization with immi-
grants schemes for the dynamic travelling salesman problem with traffic
factors,” Appl. Soft Comput., vol. 13, no. 10, pp. 4023–4037, 2013.

[4] M. Mavrovouniotis, C. Li, and S. Yang, “A survey of swarm intelligence
for dynamic optimization: Algorithms and applications,” Swarm and
Evolutionary Computation, vol. 33, pp. 1–17, 2017.

[5] Y. Xia, C. Li, and S. Zeng, “Three new heuristic strategies for solving
travelling salesman problem,” in Advances in Swarm Intelligence -
5th International Conference, ICSI 2014, Hefei, China, October 17-20,
2014, Proceedings, Part I, 2014, pp. 181–188.

[6] Y. Xia and C. Li, “Memory-based statistical learning for the travelling
salesman problem,” in IEEE Congress on Evolutionary Computation,
CEC 2016, Vancouver, BC, Canada, July 24-29, 2016, 2016, pp. 2935–
2941.

[7] Y. Diao, C. Li, Y. Ma, J. Wang, and X. Zhou, “A probabilistic learning
algorithm for the shortest path problem,” in Simulated Evolution and
Learning - 11th International Conference, SEAL 2017, Shenzhen, China,
November 10-13, 2017, Proceedings, 2017, pp. 631–643.

[8] M. Dorigo, “Optimization, learning and natural algorithms,” Thesis
Politecnico Di Milano Italy, 1992.

[9] M. Dorigo and L. M. Gambardella, “Ant colony system: a cooperative
learning approach to the traveling salesman problem,” IEEE Trans.
Evolutionary Computation, vol. 1, no. 1, pp. 53–66, 1997.

[10] T. Stützle and H. Hoos, “Improvements on the ant-system: Introducing
the max-min ant system,” in Artificial Neural Nets and Genetic Algo-
rithms. Vienna: Springer Vienna, 1998, pp. 245–249.

[11] D. Angus and T. Hendtlass, “Ant colony optimisation applied to a
dynamically changing problem,” in Developments in Applied Artificial
Intelligence, 15th International Conference on Industrial and Engineer-
ing, Applications of Artificial Intelligence and Expert Systems, IEA/AIE
2002, Cairns, Australia, June 17-20, 2002, Proceedings, 2002, pp. 618–
627.

[12] T. T. Nguyen, S. Yang, and J. Branke, “Evolutionary dynamic opti-
mization: A survey of the state of the art,” Swarm and Evolutionary
Computation, vol. 6, pp. 1–24, 2012.

[13] M. Mavrovouniotis and S. Yang, “Adapting the pheromone evaporation
rate in dynamic routing problems,” in Applications of Evolutionary Com-
putation - 16th European Conference, EvoApplications 2013, Vienna,
Austria, April 3-5, 2013. Proceedings, 2013, pp. 606–615.

[14] ——, “Ant colony optimization with self-adaptive evaporation rate in
dynamic environments,” in 2014 IEEE Symposium on Computational
Intelligence in Dynamic and Uncertain Environments, CIDUE 2014,
Orlando, FL, USA, December 9-12, 2014, 2014, pp. 47–54.

[15] M. Ankerl and A. Hämmerle, “Applying ant colony optimisation to
dynamic pickup and delivery,” in Computer Aided Systems Theory -
EUROCAST 2009, 12th International Conference, Las Palmas de Gran
Canaria, Spain, February 15-20, 2009, Revised Selected Papers, 2009,
pp. 721–728.

[16] C. J. Eyckelhof and M. Snoek, “Ant systems for a dynamic TSP,” in
Ant Algorithms, Third International Workshop, ANTS 2002, Brussels,
Belgium, September 12-14, 2002, Proceedings, 2002, pp. 88–99.

[17] Y. Guo, J. Cheng, S. Luo, D. Gong, and Y. Xue, “Robust dynamic
multi-objective vehicle routing optimization method,” IEEE/ACM Trans.
Comput. Biology Bioinform., vol. 15, no. 6, pp. 1891–1903, 2018.

[18] C. Rossi, M. Abderrahim, and J. C. Dı́az, “Tracking moving optima
using kalman-based predictions,” Evolutionary Computation, vol. 16,
no. 1, pp. 1–30, 2008.

[19] M. Guntsch and M. Middendorf, “Applying population based ACO to
dynamic optimization problems,” in Ant Algorithms, Third International
Workshop, ANTS 2002, Brussels, Belgium, September 12-14, 2002,
Proceedings, 2002, pp. 111–122.

[20] T. Zhu, W. Luo, and L. Yue, “Dynamic optimization facilitated by the
memory tree,” Soft Comput., vol. 19, no. 3, pp. 547–566, 2015.

[21] C. Li, T. T. Nguyen, M. Yang, M. Mavrovouniotis, and S. Yang, “An
adaptive multipopulation framework for locating and tracking multiple
optima,” IEEE Trans. Evolutionary Computation, vol. 20, no. 4, pp.
590–605, 2016.

[22] M. Mavrovouniotis, S. Yang, and X. Yao, “Multi-colony ant algorithms
for the dynamic travelling salesman problem,” in 2014 IEEE Symposium
on Computational Intelligence in Dynamic and Uncertain Environments,
CIDUE 2014, Orlando, FL, USA, December 9-12, 2014, 2014, pp. 9–16.

[23] C. Bu, W. Luo, and L. Yue, “Continuous dynamic constrained optimiza-
tion with ensemble of locating and tracking feasible regions strategies,”
IEEE Trans. Evolutionary Computation, vol. 21, no. 1, pp. 14–33, 2017.

[24] W. Luo, J. Sun, C. Bu, and H. Liang, “Species-based particle swarm
optimizer enhanced by memory for dynamic optimization,” Appl. Soft
Comput., vol. 47, pp. 130–140, 2016.

[25] R. Alex and L. Alessandro, “Machine learning. clustering by fast search
and find of density peaks,” Science, vol. 344, no. 6191, p. 1492, 2014.

