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Abstract—Several logistic companies started utilizing electric
vehicles (EVs) in their daily operations to reduce greenhouse
gas pollution. However, the limited driving range of EVs may
require visits to recharging stations during their operation. These
potential visits have to be addressed, avoiding unnecessary long
detours. We formulate the electric capacitated vehicle routing
problem (E-CVRP), which incorporates the possibility of EVs
visiting a recharging station while satisfying the delivery demands
of customers. The energy consumption of the EVs is proportional
to their cargo load which is an important constraint in real-
world logistics applications. A new set of benchmark instances
is proposed for the E-CVRP. As solution methods to these new
benchmarks, we apply the ant colony optimization metaheuristic
method and an exact method. Experimental results on the E-
CVRP demonstrate the high complexity of the problem and the
efficiency of the applied metaheuristic solution method.

Index Terms—Electric vehicle, capacitated vehicle routing
problem, benchmark instance

I. INTRODUCTION

In recent years, there is a growing interest of logistic
companies in utilizing electric vehicles (EVs) for their daily
operations due to the greenhouse effect. Therefore, a problem
of routing a fleet of EVs has emerged, namely the electric
vehicle routing problem (EVRP) [1]. The EVRP aims to find
the best possible routes for a fleet of EVs so that a set of
customers is visited once and only once by an EV, ensuring
that the EVs will never run out of energy. Several variations
of the EVRP have been introduced that mainly differ on their
constraints such as the EVRP with time windows [2], the
EVRP with pick up and delivery [3], the EVRP with multiple
depots [4], the EVRP with service times [5] and the EVRP
with backuals [6]. Refer to the comprehensive survey in [7]
for further details.

The common constraint of all EVRP variations, is the
consideration of visiting a recharging station due to the limited
driving range of EVs. In this work, we formulate the electric
capacitated vehicle routing problem (E-CVRP) as a mixed-
integer linear program (MILP) where each EV has a limited
cargo load to satisfy the delivery demands of the customers
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and the energy consumption rate of the EV is proportional to
that cargo load. Existing EVRP formulations assume that the
energy consumption rate is fixed [2], [8], or it is estimated
using longitudinal dynamics model [9]. In this work we
emphasize on the effect the cargo load of the EV has on its
energy consumption.

In addition, a new benchmark set of E-CVRP problem
instances is proposed to represent the complexity of the prob-
lem. The allocation of the charging stations in the benchmark
instances is optimized to ensure energy coverage for EVs from
any customer locations. Experiments are conducted in order to
provide an initial set of results to this new benchmark set. As
E-CVRP extends the well-known capacitated vehicle routing
problem (CVRP), the high complexity of the problem makes
exact solution methods inefficient for solving realistically sized
problem instances [10]. Hence, as an approximation solution
method, we apply the ant colony optimization (ACO) meta-
heuristic [11], which is successfully used to solve world-scale
instances of similar problems [12], [13]. The newly generated
E-CVRP benchmark set consists of small-sized instances,
that they can be solved (within a reasonable time) using
the proposed MILP formulation with the Gurobi solver [14]
in order to asses the performance of approximation solution
methods (i.e., the deviation of the approximation solution
from an upper bound solution that could be the optimal),
and realistic-sized instances in order to study the efficiency
of approximation solution methods.

The rest of the paper is organized as follows. Section II
describes the E-CVRP and provides the MILP formulation
of the problem. Section III describes the two aforementioned
approaches for solving the E-CVRP. Section IV describes a
method to generate E-CVRP problem instances from existing
CVRP problem instances. Initial results obtained on the newly
generated benchmark set are presented in Section V. Section
VI gives the conclusions and future work of the paper.

II. THE ELECTRIC CAPACITATED VEHICLE ROUTING
PROBLEM (E-CVRP)

A. Problem Description

The E-CVRP is a challenging NP-hard combinatorial op-
timization problem as it is an extension of the conventional



CVRP problem incorporating additional hard constraints [10].
The problem can be described as follows: given a fleet of
EVs with limited battery charge level and limited cargo load
capacity, we need to find the best possible route for each EV,
starting and ending to the central depot, satisfying the delivery
demands of a set of customers.

The E-CVRP can be defined on a complete weighted graph
G = (N,A), where N = {0} ∪ I ∪ F ′ is a set of nodes and
A = {(i, j) | i, j ∈ N, i 6= j} is a set of arcs connecting these
nodes. A non-negative value dij is associated with each arc
which represents the euclidean distance between nodes i and
j. Node 0 denotes the central depot. The set I ⊂ N denotes
the set of customers, where each customer i ∈ I is assigned a
positive value δi indicating the customer’s delivery demand1.
The set F ′ ⊂ N denotes the set of βi node copies of each
charging station i ∈ F (i.e., |F ′| =

∑
i∈F βi), which are used

to permit multiple visits to each charging station i ∈ F (if
required) [15]. The upper bound on the number of node copies
for each charging station is equal to βi = 2|I|, because in the
worst case an EV for each customer is needed and a visit to
a charging station before and after serving it is required [16].

Each EV2 has a cargo load, ui (0 ≤ ui ≤ C), where C
is the maximal cargo load of an EV and ui is the remaining
cargo load of an EV on arrival at node i. In addition, each
EV has a battery charge level yi (0 ≤ yi ≤ Q), where Q
is the maximal battery charge level of an EV and yi is the
remaining battery charge level of an EV on arrival at node i.
Each traveled arc consumes the amount hidij of the remaining
battery charge level, where hi denotes the energy consumption
rate of an EV traversing that arc. The energy consumption rate
is proportional to the current cargo load of an EV (i.e., the
heavier the EV the more energy will be consumed) defined as
follows:

hi = r +
ui
C
, (1)

where r is a constant value of the energy consumption rate,
ui is the remaining cargo load of an EV on arrival at node i,
and C is the maximal cargo load of an EV. There are other
minor factors that may affect the energy consumption rate [5],
but in this work we focus on the weight of the EV which is
one of the most important factors [17].

The objective function of the E-CVRP is to find a set of
EV routes that minimize the total distance traveled where:

• Every customer is visited once and only once by exactly
one EV.

• All EVs start and end at the depot.
• All EVs always start fully charged from the depot, e.g.,
y0 = Q.

• All EVs always start with fully loaded cargo from the
depot, e.g., u0 = C.

• For every EV route the total delivery demand of cus-
tomers does not exceed the EV’s maximal cargo load C.

1For the central depot and charging stations the demand is set to zero, i.e.,
δ0 = 0 ∧ δi = 0, ∀i /∈ I .

2A homogeneous fleet of EVs is considered.

• The battery charge level on each traveled arc is never
negative.

• EVs always leave a charging station fully charged.
• The charging stations can be visited multiple times by

any EV.

B. MILP Problem Formulation

To solve the E-CVRP, a binary decision variable is defined,
i.e., xij , ∀i, j ∈ N , denoting whether arc (i, j) is traversed by
an EV (i.e., xij = 1) or not (i.e., xij = 0). The mathematical
model of E-CVRP is formulated as:

min
∑

i∈N,j∈N,i6=j

dijxij , (2a)

s.t.
∑

j∈N,i6=j

xij = 1,∀i ∈ I, (2b)∑
j∈N,i6=j

xij ≤ 1,∀i ∈ F ′, (2c)∑
j∈N,i6=j

xij −
∑

j∈N,i6=j

xji = 0,∀i ∈ N, (2d)

uj ≤ ui − δjxij + C(1− xij),∀i ∈ N, ∀j ∈ N, i 6= j,
(2e)

uj ≥ ui − δjxij − C(1− xij),∀i ∈ N, ∀j ∈ N, i 6= j,
(2f)

0 ≤ ui ≤ C, ∀i ∈ N, (2g)
u0 = C, (2h)
yj ≤ yi − hidijxij +Q(1− xij),∀i ∈ I, ∀j ∈ N, i 6= j,

(2i)
yj ≤ Q− hidijxij ,∀i ∈ F ′,∀j ∈ N, i 6= j, (2j)
0 ≤ yi ≤ Q, ∀i ∈ N, (2k)
y0 = Q, (2l)
xij ∈ {0, 1}, ∀i ∈ N, ∀j ∈ N, i 6= j, (2m)

where Eq. (2a) defines the E-CVRP objective function, Eq.
(2b) enforces the connectivity of customer visits, Eq. (2c)
handles the connectivity of visits to recharging stations, Eq.
(2d) establishes the flow conservation by guaranteeing that
at each vertex, the number of incoming arcs is equal to the
number of outgoing arcs, Eq. (2e), Eq. (2f) and Eq. (2g)
guarantee delivery demand fulfillment at all customers by
assuring a non-negative cargo load upon arrival at any vertex,
Eq. (2h) ensures that EVs start with full cargo load from the
depot, Eq. (2i), Eq. (2j) and Eq. (2k) ensure that the battery
charge level never falls below 0, Eq. (2l) ensures that EVs
start fully charge from the depot, and Eq. (2m) is the binary
decision variable described previously.

III. SOLVING THE E-CVRP

In order to provide an initial set of results (e.g., optimal
values, upper bounds, or best known values) for each problem
instance of the new benchmark set we use the MILP formu-
lation in Eqs. (2) and the ACO metaheuristic, described in
Algorithm 1, as solution methods for the E-CVRP.



A. Using the MILP Formulation

Although the formulation defined in Eqs. (2) fully describes
the E-CVRP problem, it cannot be handled by standard
mathematical optimization solvers, such as the Gurobi solver
[14]. This is because that formulation does not adhere to any
MILP standard form, because of the constraints in Eq. (2i) and
Eq. (2j) as they involve a product of a continuous and a binary
variable, that is, uixij . Recall that the current cargo load ui is
used to calculate the variable energy consumption rate hi in
Eq (1). To cope with this issue, the continuous variable mij

is introduced to replaced the product, mij = uixij , so that it
will be equivalently transformed to a set of MILP inequalities
according to the big “M” notation [28] as follows:

mij ≤ ui, (3a)
mij ≤Mxij , (3b)
mij ≥ 0, (3c)
mij ≥ ui −M(1− xij), (3d)

with M ≥ C.
To summarize, the problem presented in Eqs. (2) can be

reformulated into a MILP problem by replacing the product
of variables (i.e., uixij) in Eq. (2i) and Eq. (2j) with mij

and adding Eqs. (3). As a result, we get a transformed
mathematical program that involves only linear constraints.

B. Using the ACO Metaheuristic

The MAX -MIN Ant System (MMAS) [19] variant is
used which is one of the most-studied ACO variants and has
already proven its good performance on relevant EVRPs [5],
[20]. In this section we describe the application of MMAS
to the E-CVRP, including the proposed method to construct
feasible solutions.

1) Initialization: A colony of ω ants is initially positioned
at the central depot, i.e., component 0. All the solution
components of the problem are associated with a pheromone
trail value which is uniformly initialized at the start of the
execution as follows:

τij ← τ0,∀(i, j) ∈ A, (4)

where τij is the pheromone trail value associated with arc
(i, j) connecting solution components i and j, and τ0 is the
initial pheromone trail value. A good value for τ0 was found
to be 1/ρCnn, where ρ is the evaporation rate (more details
are provided later on) and Cnn is the solution quality of the
solution generated by the nearest-neighbor heuristic [21].

2) Solution Construction: Each ant k represents a complete
E-CVRP solution T k (i.e., the routes of all EVs) and makes
selections biased by the existing pheromone trails and some
heuristic information associated with the solution components
of the problem, until all the components (i.e., customers) are
selected.

The probability distribution with which ant k selects the next
customer component j from solution component i is defined
as follows:

pkij =


[τij ]

α[ηij ]
β∑

l∈Nk
i
[τil]

α[ηil]
β , if j ∈ N k

i ,

0, otherwise,
(5)

where τij and ηij = 1/dij are, respectively, the existing
pheromone trail and the heuristic information available a priori
between components i and j. α and β are the two parameters
which determine the relative influence of τij and ηij , respec-
tively. N k

i is the set of unselected customers components for
the k–th ant adjacent to component i. Note that the depot and
charging station components are not included in the N k

i set
(the selection of these components is described later in Section
III-B3).

The selected customer component j must satisfy the EV’s
capacity constraints defined in Eqs. (2e) and (2g), and the
energy constraints defined in Eqs. (2i), (2j), and (2k). It is
worth mentioning that the construction method proposed in
this section can be utilized in other constructive or local search
heuristics to construct feasible solutions when addressing
similar EVRPs. The following section describes in more detail
the handling of the aforementioned constraints.

3) Constraints Handling: To construct a feasible solution
the next customer component j to be selected, using Eq. (5),
must satisfy all the following criteria:

1) The delivery demand of the customer component j, i.e.,
δj , must not cause the cargo load to fall below zero, that
is:

i, j ∈ N ∧ ui − δj ≥ 0. (6)

2) The energy consumption to travel from solution com-
ponent i to customer component j must not cause the
energy level, i.e., yi, to fall below zero, that is:

i, j ∈ N ∧ yi − hidij ≥ 0. (7)

3) The customer component j must have at least one
charging station or the central depot within its energy
range [5], that is:

i, j ∈ N ∧ yi − hidij − hjdjl ≥ 0,∃ l ∈ F ∪ {0}. (8)

When the next customer violates the delivery demand
criteria in Eq. (6), then the depot component is added to the
E-CVRP solution to close the route of the EV (i.e., denotes
the return of the EV to the central depot). In case this return
to the depot violates the energy criteria in Eq. (7), then the
EV visits a recharging station prior to its return to the depot.
When the next customer violates any of the energy criteria in
Eq. (7) or the range criteria in Eq. (8), then the closest energy
recharging station s from the current solution component i to
the (potentially) next customer j is selected as follows:

s = arg min
l∈F
{dil + dlj}, (9)

and is added to the E-CVRP solution (i.e., denotes the visit
to an energy recharging station). Then, the next customer to



Algorithm 1 ACO for E-CVRP
1: Cbs ←∞
2: for each arc (i, j) do
3: τij ← InitializePheromoneTrails(τ0) {Eq. (4)}
4: end for
5: while maximum number of iterations not exceeded do
6: Cib ←∞
7: for k = 1 to ω do
8: T k ← ∅
9: T k ← InsertDepotComponent()

10: while ant k has not selected all customers do
11: i← GetLastInsertedComponentFrom(T k)
12: N k

i ← GenerateUnselectedCustomerSetFrom(i)
13: j ← SelectNextCustomerComponentUsing(N k

i )
{Eq. (5)}

14: if j satisfies all the criteria then
15: T k ← InsertCustomerComponent(j)
16: else if j violates the capacity constraint in Eq. (6)

then
17: T k ← InsertDepotComponent(0)
18: else if j violates the energy constraint in Eq. (7)

or in Eq. (8) then
19: s← FindClosestStationFromTo(i, j) {Eq. (9)}
20: T k ← InsertStationComponent(s)
21: end if
22: end while
23: T k ← InsertDepotComponent(0)
24: Ck ← Evaluate(T k) {e.g., Eq. (2a)}
25: if Ck is better than Cib then
26: T ib ← T k

27: Cib ← Ck

28: end if
29: end for
30: if Cib is better than Cbs then
31: T bs ← T ib

32: Cbs ← Cib

33: τmax ← CalculateMaximumTrailLimit()
34: τmin ← CalculateMinimumTrailLimit()
35: end if
36: T best ← T ib {occasionally set T best ← T bs}
37: for each arc (i, j) ∈ A do
38: τij ← PheromoneEvaporation(ρ) {Eq. (10)}
39: if arc (i, j) ∈ T best then
40: τij ← PheromoneDeposit(T best) {Eq. (11)}
41: end if
42: τij ← PheromoneTrailLimits(τmin,τmax) {Eq. (12)}
43: end for
44: if stagnation behavior is detected then
45: for each arc (i, j) do
46: τij ← InitializePheromoneTrails(τmax)
47: end for
48: end if
49: end while
50: OUTPUT: T bs

be visited will be most probably j if all three criteria defined
in Eq. (6), Eq. (7) and Eq. (8) are now satisfied, otherwise
another customer satisfying all the aforementioned criteria will
be selected. The possibility of not having enough energy to
travel to any energy recharging station or back to the central
depot is eliminated because the customer component must
always satisfy the range criteria in Eq. (8).

4) Pheromone Update: In the MMAS variant [19], [21],
[22], the pheromone trails are updated by first decreasing the
pheromone trails on all arcs (using pheromone evaporation),
and then increasing the pheromone trails on the arcs of the
solution constructed by the best ant (using pheromone deposit).
The pheromone evaporation is applied as follows:

τij ← (1− ρ)τij ,∀(i, j) ∈ A, (10)

where ρ (ρ ∈ (0, 1]) is the evaporation rate.
After pheromone evaporation, the best ant deposits

pheromone on the arcs of its solution components as follows:

τij ← τij + ∆τ bestij ,∀(i, j) ∈ T best, (11)

where ∆τ bestij = 1/Cbest is the amount of pheromone that the
best ant deposits and Cbest is the quality of the best solution
T best. The “best” ant that is allowed to deposit pheromone
may be either the best-so-far ant3, in which Cbest = Cbs,
or the iteration-best ant, in which case Cbest = Cib. These
two ants are allowed to deposit pheromone in an alternate
way. More precisely, the iteration-best ant deposits pheromone
at each iteration and the best-so-far ant deposits pheromone
occasionally (i.e., every 25 iterations in this work, more details
are provided in [22]). Pheromone evaporation enables the
algorithm to gradually decrease the pheromone trails on the
arcs that belong to low-quality solutions so that the pheromone
trails on the arcs that belong to high-quality solutions consist
of higher values (e.g., they will be increased regularly because
of pheromone deposit).

Since only the best ant is allowed to deposit pheromone
the search is focused on a specific area of the search space.
Hence, there is consequent danger of getting trapped in search
stagnation4 from the early stages of the optimization process.
To address this issue, the lower and upper limits of the
pheromone trail values are explicitly imposed, preventing in
this way the excessive growth of pheromone trails on the arcs
of the best ant, as follows:

τij ←


τmax, if τij > τmax,

τmin, if τij < τmin,

τij , otherwise,

∀(i, j) ∈ A, (12)

where τmin and τmax are, respectively, the minimum and
maximum pheromone trails. The τmax value is bounded

3A special ant that represents the best solution from all iterations so far and,
hence, may not necessarily belong in the constructing colony at the current
iteration.

4A behavior in which all ants follow the same path and construct the same
solution over and over again.



Algorithm 2 Convert CVRP to E-CVRP
1: INPUT: Classical CVRP benchmark instance
2: Read initial benchmark problem of size n
3: Define maximal battery charge level (i.e., Q)
4: Add charging stations
5: OUTPUT: Electric CVRP benchmark instance

by 1/ρCbs, where Cbs is the solution quality of the best-
so-far ant5. The τmin value is set to τmin = τmax(1 −
n
√

0.05)/((avg − 1)n
√

0.05) where avg is the average number
of different choices available to an ant at each solution
construction step and n is the size of the problem instance.
Note that the τmax and τmin values are updated whenever
whenever a new best-so-far ant is discovered.

In addition, all the pheromone trails are uniformly re-
initialized to the τmax value whenever the stagnation behavior
occurs or when no improved solution is found for a given
number of iterations. The stagnation behavior is detected
using the λ-branching factor that measures the distribution
of the pheromone trail values [23]. The λ-branching factor
is given by the number of arcs incident to node i satisfying
the following condition: τij ≥ τ imin +λ(τ imax− τ imin), where
τ imax and τ imin are, respectively, the maximum and minimum
pheromone values on arcs incident to node i, and λ ∈ [0, 1]
is a constant. The average λ-branching factor from all nodes’
λ-branching factors indicates whether the search has entered
stagnation behavior or not.

IV. E-CVRP BENCHMARK TEST SUITE

A. Converting CVRP to E-CVRP

In this section, we provide the algorithmic steps followed
to convert a CVRP problem instance to an E-CVRP problem
instance with the basic procedures outlined in Algorithm 2.
More specifically, at the first step we import the classical
CVRP problem instance where each customer node i ∈ I
represents a point in the Cartesian plane (e.g., lines 1-2). In
the sequel, the maximum battery charge level Q is defined as
follows:

Q = γd̄, (13)

where d̄ is the maximum euclidean distance between the depot
and all other customer nodes, i.e., d̄ = arg maxi∈I{d0i}, and
γ is a user defined constant.

The goal of stations placement (Algorithm 2, line 4) is
to find the minimum number of charging stations together
with their positions so that all customer nodes are covered
by at least one charging station. This procedure ensures that
problem instances with remote customer nodes stay feasible.
In particular, it is assumed that each charging station covers
an area of a circle with a specific radius R = φQ, where φ
is a user selected constant. Increasing the value of φ results
in a larger coverage area of charging stations. Each customer
i ∈ I can be covered from at least one charging station placed

5Cbs is initialized with the solution quality of the estimated optimal tour
Cnn.

within the area of the circle that has radius R with customer i
being the center of the circle. All potential positioning points
are in the convex-hull area of all customer points that can be
computed by the Quickhull method [18]. The set P denotes
any potential discrete point in the above convex area in which
a charging station can be potentially placed (excluding all the
points of customer nodes). Furthermore, the set Ai,∀i ∈ I ,
determines all the potential charging stations points in set P
that cover each customer i ∈ I (i.e., the area of the circle).

To optimally solve the described charging station placement
problem we introduce a MILP formulation that aims to select
the minimum number (together with their position) to cover
each customer node. Let the variable ψj ∈ {0, 1}, j ∈ P ,
denote whether the potential point j ∈ P is selected to place
a charging station (ψj = 1) or not (ψj = 0). The related
mathematical formulation is as follows:

min
∑
i∈P

ψi, (14a)

s.t.
∑
j∈Ai

ψj ≥ 1,∀i ∈ I, (14b)

ψi ∈ {0, 1}, ∀i ∈ P, (14c)

where Eq. (14a) is the objective function as described previ-
ously, Eq. (14b) is responsible to ensure that each customer
i ∈ I is covered from at least one charging station and
Eq. (14c) defines the binary decision variable. Finally, in line
5 of Algorithm 2 the defined maximum battery charge level
value and the positioning of the charging stations are used to
generate the E-CVRP benchmark instance.

B. Description of E-CVRP Problem Instances

Four different sets of CVRP benchmark instances are used
to generate the new E-CVRP benchmark instances in the
experiments6, including the popular instances of Christofides
and Eilon [24], Christofides et al. [25], and Fisher [26], and the
recent instances of Uchua et al. [27]. The details for converting
a CVRP instance to an E-CVRP instance are given in Section
IV. The converted E-CVRP benchmark problem instances are
described in Tables I, II, III, IV, where the columns (starting
from the left) denote the name7 of the problem instance, the
number of customers (#customers), the number of charging
stations (#stations), the minimum number of EV routes a
solution can have8 (#routes), the maximum cargo load of an
EV (C), and the maximum battery charge level of an EV
(Q). Note that all E-CVRP benchmark instances consist of
a single central depot. To generate reasonable (i.e., enforcing
EVs to visit charging stations) E-CVRP instances the γ and
φ parameters are set to γ = 2 and φ = 0.125. Increasing the

6The generated instances of the E-CVRP benchmark set can be downloaded
from https://github.com/KIOS-Research/e-cvrp benchmark instances

7The numbers after n, k, and s letters in the instance name identifies
the size of the problem, the minimum number of routes and the number of
charging stations, respectively.

8A lower bound based on the total customer delivery demands and the
maximum cargo load of the EV.



TABLE I
DETAILS OF THE E-CVRP INSTANCES GENERATED FROM THE CVRP

BENCHMARK SET OF [24].

instance name #customers #stations #routes C Q

E-n29-k4-s7 21 7 4 6000 99
E-n30-k3-s7 22 7 3 4500 162
E-n35-k3-s5 29 5 3 4500 138
E-n37-k4-s4 32 4 4 8000 238
E-n60-k5-s9 50 9 5 160 88
E-n89-k7-s13 75 13 7 220 87
E-n112-k8-s11 100 11 8 200 100

TABLE II
DETAILS OF THE E-CVRP INSTANCES GENERATED FROM THE CVRP

BENCHMARK SET OF [25].

instance name #customers #stations #routes C Q

M-n110-k10-s9 100 9 10 200 118
M-n126-k7-s5 120 5 7 200 199

M-n163-k12-s12 150 12 12 200 100
M-n212-k16-s12 199 12 16 200 100

TABLE III
DETAILS OF THE E-CVRP INSTANCES GENERATED FROM THE CVRP

BENCHMARK SET OF [26].

instance name #customers #stations #routes C Q

F-n49-k4-s4 44 4 4 2010 260
F-n80-k4-s8 71 8 4 30000 53
F-n140-k5-s5 134 5 5 2210 307

TABLE IV
DETAILS OF THE E-CVRP INSTANCES GENERATED FROM THE CVRP

BENCHMARK SET OF [27].

instance name #customers #stations #routes C Q

X-n147-k7-s4 142 4 7 1190 2762
X-n221-k11-s9 213 7 11 944 1204
X-n360-k40-s9 351 9 40 436 1236
X-n469-k26-s10 458 10 26 1106 1230
X-n577-k30-s4 577 30 4 210 2191
X-n698-k75-s13 698 13 75 408 1336
X-n759-k98-s10 748 10 98 396 1367
X-n830-k171-s11 818 11 171 358 1385
X-n920-k207-s4 915 4 207 33 2773
X-n1006-k43-s5 1000 5 43 131 2536

value of γ and decreasing the value of φ results in a higher
number of charging stations.

V. EXPERIMENTAL RESULTS

A. Experimental Setup

In order to provide an initial set of results to the new bench-
mark, experiments have been conducted with the MMAS
approach described in Section III-B and the MILP approach

defined in Section III-A. The experiments were performed
under a Linux System with an Intel Core i7-3930K 3.20GHz
processor with 12MB cache and 16GB RAM.

The MILP approach was solved using the Gurobi solver
[14] and a time limit of approximately 3 weeks was imposed.
The MMAS approach performs 25000n evaluations9 for 10
independent executions (with different random seeds), where n
is the problem size. The total distance traveled of the solution
with the best quality together with the CPU time are recorded.
The colony size of MMAS was set to ω = n ants. The
evaporation rate was set to ρ = 0.02 and the two parameters
of the decision rule were set to typical values as follows: α = 1
and β = 2.

B. Analysis of the Results

The experimental results for small-scale problem instances
of MMAS and MILP approaches are given in Table V,
whereas the experimental results for large-scale problem in-
stance are given in Table VI. Note that the MILP approach
was not able to provide a solution for the large-scale problem
instances within the pre-determined time limit, and, thus, only
the results of the MMAS approach are reported in Table VI.
“UB” is the best upper bound within the time limit found by
the MILP approach (in some cases the given upper bound is
also the optimal). “best”, “worst”, “mean” and “stdev” are,
respectively, the minimum, maximum, average and standard
deviation values found by MMAS from its 10 independent
runs. Furthermore, “tavg” is the CPU time required (averaged
over 10 runs) for MMAS to find the solution with the best
quality. The “UB” and “best” values also include the number
of routes that the solution consists of within the brackets.

From Table V it can be observed that the MILP approach
can find better solutions than the MMAS10 approach on
most of the smallest problem instances. Nevertheless, the
deviation of the solution quality of the MMAS approach
from the upper bound solution found by the MILP approach on
E-n29-k4-s7, E-n30-k3-s7 and E-n35-k3-s5 prob-
lem instances (which is also the optimal solution for these
cases) is very small. However, theMMAS approach requires
a few seconds whereas the MILP approach requires weeks. As
the problem size increases it can be observed that theMMAS
approach can find better solutions than the MILP approach
(e.g., on the E-n60-k5-s9 problem instance) because the
pre-determined time appears to be short. This observation was
expected considering the high complexity of the E-CVRP.

From Table VI it can be observed that the MMAS ap-
proach was able to find a solution for all E-CVRP problem
instances, requiring a few minutes for most problem instances
(with less than 300 nodes) and couple of hours for the
remaining problem instances. This observation demonstrates
the efficiency of the MMAS approach against the MILP

9The same termination condition was proposed at the 2020 Congress
on Evolutionary Computation competition for the Electric Vehicle Routing
Problem [8], where each evaluation is of complexity O(n2).

10MMAS is not utilizing any local search improvements in these experi-
ments.



TABLE V
SOLUTION QUALITY AND CPU TIME (IN SECONDS) RESULTS OBTAINED FROM

THE MILP ANDMMAS APPROACHES FOR SMALL-SCALE E-CVRP PROBLEM
INSTANCES.

E-CVRP instance name MILP MMAS

UB best mean±stdev worst tavg

E-n29-k4-s7 383(4)† 383(4) 384.5±0.7 385 0.1
E-n30-k3-s7 577(3)† 582(3) 582.0±0.0 582 3.1
E-n35-k3-s5 527(3)† 530(4) 533.0±1.4 534 2.2
E-n37-k4-s4 865(4) 865(4) 868.5±1.6 871 3.4
E-n60-k5-s9 585(5) 544(5) 557.0±6.4 562 20.7
F-n49-k4-s4 740(4) 769(4) 775.7±6.9 791 8.9

† indicates optimal value.

TABLE VI
SOLUTION QUALITY AND CPU TIME (IN SECONDS) RESULTS OBTAINED FROM THE
MMAS APPROACH FOR LARGE-SCALE E-CVRP PROBLEM INSTANCES.

E-CVRP instance name MMAS

best mean±stdev worst tavg

E-n89-k7-s13 724(7) 739.4±2.9 748 31.8
E-n112-k8-s11 860(8) 878.3±14.6 910 71.6
M-n110-k10-s9 914(10) 923.7±9.7 937 57.6
M-n126-k7-s5 1099(7) 1103.6±5.7 1119 63.7

M-n163-k12-s12 1109(12) 1129.2±8.9 1139 158.4
M-n212-k16-s12 1398(17) 1419.2±11.8 1436 266.1

F-n80-k4-s8 240(4) 243.9±2.8 249 23.7
F-n140-k7-s5 1229(7) 1233.8±2.9 1239 92.5
X-n147-k7-s4 17704(5) 17792.3±89.7 17884 104.5
X-n221-k11-s9 12235(12) 12487.9±109.4 12586 161.0
X-n360-k40-s9 27701(41) 28034.4±168.6 28252 1119.4
X-n469-k26-s10 26881(26) 27391.7±257.0 27675 1905.2
X-n577-k30-s4 55266(30) 55627.6±209.4 55856 3182.0
X-n698-k75-s13 75048(77) 75646.6±323.7 76051 5511.7
X-n759-k98-s10 84996(101) 85683.7±558.8 86349 7258.8
X-n830-k171-s11 167575(181) 168465±376.1 168927 6612.6
X-n920-k207-s4 345214(216) 346619.4±901.3 347946 6774.9
X-n1006-k43-s5 80765(43) 81549.3±568.8 82442 8380.6
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Fig. 1. Illustration of the solution generated by the MMAS approach on
the E-n29-k4-s7 problem instance with solution quality 385. •, I, and �
represent the depot, customer and station components, respectively.

approach which requires several days for even smaller problem
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Fig. 2. Illustration of the optimal solution generated by the MILP approach
on the E-n29-k4-s7 problem instance with solution quality 383. •, I, and
� represent the depot, customer and station components, respectively.

instances, e.g., the E-n37-k4-s4 problem instance in Ta-



ble V. In addition, it verifies that ACO algorithms are effective
solvers for these type of problems.

Finally, the median solution (from the solutions of the 10
runs) generated by the MMAS approach is plotted in Fig. 1
for the E-n29-k4-s7 problem instance and the optimal
solution generated by the MILP approach is plotted in Fig. 2
for the same problem instance. From Fig.1 it can be observed
that the solution generated by the MMAS approach consists
of four routes, in which all of them contain a single visit to
a recharging station. On the contrary, from Fig. 2 the optimal
solution consists of four routes in which one route contains
two visits to recharging stations and one visit for each of the
remaining three routes. Note that the solutions generated by
both approaches can be operated by four EVs simultaneously
or by a single EV sequentially. Although the median solution
generated by the MMAS approach requires less visits to
recharging stations than the optimal solution, its solution
quality is inferior. This observation shows the challenge when
addressing the E-CVRP because fewer detours to recharging
stations does not necessarily lead to better solution quality.

VI. CONCLUSIONS

In this work, we present a new variation of the vehicle
routing problem for determining minimum distance routes
for EVs. The E-CVRP considers limited battery charge level
and limited cargo load capacity for the EVs. The energy
consumption of the EVs is based on the cargo load of the EVs,
that is, the heavier the EV the more energy will be consumed.
The problem is formulated as a MILP and it is solved
using an exact solution method and an approximation solution
method. The experimental results on a set of newly generated
benchmark E-CVRP instances represent the complexity of the
problem because the applied approaches experience challenges
either in terms of efficiency or solution quality.

For future work, it will be interesting to design heuristic
methods that are problem specific to this E-CVRP in order to
further improve the solution quality. In fact, there is a lot of
room for improvements on these benchmark problem instances
considering the initial experimental results presented in this
work.
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