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Abstract—Electric vehicle routing problems are challenging
variations of the traditional vehicle routing problem which
incorporate the possibility of electric vehicle (EV) recharging at
any station, while satisfying the delivery demands of customers.
This work addresses the recently formulated capacitated vehicle
routing problem (E-CVRP) with variable energy consumption
rate. In particular, the cargo weight, which is one of the
main factors affecting the energy consumption rate of EVs, is
considered (i.e., the heavier the EV the higher the rate). As a
solution method, an ant colony optimization algorithm with a
local search heuristic is developed. Experiments are conducted
on a recently generated benchmark set of E-CVRP instances
demonstrating that the performance of the proposed technique
improves on the best known so far solutions.

Index Terms—Electric vehicle, capacitated vehicle routing
problem, ant colony optimization

I. INTRODUCTION

Vehicle routing problems (VRPs) are difficult NP-hard
combinatorial optimization problems [1]. The VRP variations
in which EVs are utilized incorporate additional hard con-
straints that impose more challenges to the optimizer. Similar
with most NP-hard combinatorial optimization problems,
electric vehicle routing problems (EVRPs) are straightforward
to describe but difficult to solve [2]. The main objective in
EVRPs is to find the best possible routes for a fleet of electric
vehicles so that the delivery demands of a set of customers
are satisfied, while ensuring that the EVs will never run out
of energy.

In the last few years, several EVRP variations have emerged
that mainly differ on their constraints such as the EVRP with
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time windows [3], [4], the EVRP with pick up and delivery
[5], the EVRP with multiple depots [6], the EVRP with service
times [7], and the EVRP with backhauls [8]. Refer to the
comprehensive survey in [9] for further details.

The common characteristic of all EVRP variations, is that
EVs are able to perform visit(s) to recharging station(s)
due to their limited driving range. In [10] (2020 Congress
on Evolutionary Computation competition for the Electric
Vehicle Routing Problem – https://mavrovouniotis.github.io/
EVRPcompetition2020/), the electric capacitated vehicle rout-
ing problem (E-CVRP) with fixed energy consumption rate
was formulated. Later on, the E-CVRP with variable energy
consumption was introduced [11]. Considering that each EV
has a limited cargo load to satisfy the delivery demands of
the customers, the energy consumption rate of the EV is
proportional to that cargo load. In other words, the heavier the
EV the higher the energy consumption rate, and hence, more
energy will be consumed. There are other minor factors that
may affect the energy consumption rate (such as environmental
factors [7]), but the focus in this work is on the weight of the
EV (including the cargo), as this is one of the most important
factors affecting energy consumption [12].

In this work, the E-CVRP model with variable energy
consumption proposed in [11] is adopted, as it fits better
to real-world applications. Since the E-CVRP is a varia-
tion of the well-known capacitated vehicle routing problem,
the high complexity of the problem makes exact solution
methods impractical [1]. To address the E-CVRP, an ant
colony optimization (ACO) metaheuristic [13] together with a
local search heuristic are designed. The combination of these
two techniques has been successfully used to solve world-
scale instances of similar vehicle routing problems [14], [15].



Fig. 1: Illustration of the optimal solution of the
E-n29-k4-s7 problem instance. The black square
represents the central depot, the black circles the customers
and the white squares the charging stations.

Experiments are conducted on a set of recently generated E-
CVRP benchmark instances, with the results showing that
the proposed method improves several previous best-known
solutions.

The rest of the paper is organized as follows. Section II
describes the E-CVRP with cargo weight, while Section III
describes the ACO with local search heuristic designed to
solve the E-CVRP. Experimental results obtained on a recently
generated benchmark set of E-CVRP instances are presented
in Section IV. Section V presents concluding remarks and
possible future research avenues.

II. THE ELECTRIC CAPACITATED VEHICLE ROUTING
PROBLEM

As previously mentioned, the E-CVRP with variable energy
consumption rate (proportional to the cargo weight of the EV)
was recently formulated in [11]. The particular model differs
from the previous E-CVRP model proposed in [10] in which
fixed energy consumption rate was considered.

The E-CVRP with cargo weight is modeled using a com-
plete weighted graph G = (N,A), where N = {0}∪ I ∪F ′ is
a set of nodes and A = {(i, j) | i, j ∈ N, i 6= j} is a set of arcs
connecting these nodes. A non-negative value dij is associated
with each arc which represents the Euclidean distance between
nodes i and j. Node 0 denotes the central depot. The set I ⊂ N
denotes the set of customers, where each customer i ∈ I is
assigned a positive value δi indicating the customer’s delivery
demand. The set F ′ ⊂ N denotes the set of βi node copies of
each charging station i ∈ F (i.e., |F ′| =

∑
i∈F βi) to allow

multiple visits (if required) for EVs to each charging station
i ∈ F ′ [16]. The upper bound on the number of node copies
for each charging station is equal to βi = 2|I|, because in the
worst case one EV for each customer is needed and a visit to
a charging station before and after serving each customer is
required [17].

Each EV consists of: (i) a cargo load capacity, ui (0 ≤
ui ≤ C), and (ii) a battery charge level yi (0 ≤ yi ≤ Q),
where C and Q are the maximal cargo and the maximal battery

charge level of the EV respectively, and ui and yi are the cargo
load and battery charge level of an EV on arrival at node i,
respectively. For each traveled arc (i, j) an EV consumes hidij
of the remaining battery charge level, where hi is the variable
energy consumption rate [11] of an EV defined as:

hi = r + ui/C, (1)

where r is a constant value representing the energy con-
sumption rate of an EV with no cargo. The variable energy
consumption rate is proportional to the current cargo weight
of the EV, i.e., the heavier the cargo weight the higher the
consumption rate. The reader should note that hi is different
at each node i as the cargo load changes due to deliveries.

Fig. 1 shows an example of a solution consisting of the best
possible routes for four EVs for the E-n29-k4-s7 problem
instance [11]. Three routes consist of one charging station visit
and one route consists of two charging station visits. Note that
the term “routes” is used instead of the term “EVs”, since the
solution can be operated either by four EVs simultaneously or
by a single EV sequentially.

The mathematical model of E-CVRP is defined as follows:

min
∑

i∈N,j∈N,i6=j

dijxij , (2)

s.t. ∑
j∈N,i6=j

xij = 1,∀i ∈ I, (3)

∑
j∈N,i6=j

xij ≤ 1,∀i ∈ F ′, (4)

∑
j∈N,i6=j

xij −
∑

j∈N,i6=j

xji = 0,∀i ∈ N, (5)

uj ≤ ui − δjxij + C(1− xij),∀i ∈ N, ∀j ∈ N, i 6= j, (6)

uj ≥ ui − δjxij − C(1− xij),∀i ∈ N, ∀j ∈ N, i 6= j, (7)

0 ≤ ui ≤ C, ∀i ∈ N, (8)

u0 = C, (9)

yj ≤ yi−hidijxij +Q(1−xij),∀i ∈ I, ∀j ∈ N, i 6= j, (10)

yj ≤ Q− hidijxij ,∀i ∈ F ′,∀j ∈ N, i 6= j, (11)

0 ≤ yi ≤ Q, ∀i ∈ N, (12)

y0 = Q, (13)

xij ∈ {0, 1}, ∀i ∈ N, ∀j ∈ N, i 6= j, (14)

where Eq. (2) defines the E-CVRP objective function to
minimize the total distance of the routes, Eq. (3) ensures
that each customer is visited exactly once, Eq. (4) handles
the multiple visits of EVs to recharging stations, Eq. (5)
establishes the flow conservation by guaranteeing that at each
node the number of incoming arcs is equal to the number of
outgoing arcs, Eq. (6), Eq. (7) and Eq. (8) guarantee delivery
demand fulfillment at all customers by assuring a non-negative
cargo load capacity upon arrival at any node, Eq. (9) ensures



that EVs start with full cargo load from the depot, Eq. (10), Eq.
(11) and Eq. (12) ensure that the battery charge level never
falls below 0, Eq. (13) ensures that EVs start fully charged
from the depot, and Eq. (14) is the binary decision variable
denoting whether arc (i, j) is traversed (i.e., xij = 1) or not
(i.e., xij = 0).

III. ANT COLONY OPTIMIZATION WITH LOCAL SEARCH
FOR THE E-CVRP

The combination of metaheuristics (e.g., ACO) with local
search heuristics is one of the best techniques in solving diffi-
cult optimization problems efficiently [18]–[21]. Algorithm 1
gives the main procedures (described in detail in the following
subsections) of the proposed combination.

A. MAX–MIN Ant System (MMAS)

In this work, the MAX–MIN Ant System (MMAS)
[22] variant is utilized which is one of the most-studied ACO
variants and has already proven its good performance on
relevant EVRPs [7], [23]–[25].

1) Initialization: All the arcs (i, j) of the problem are
associated with a pheromone trail value τij and a heuristic
information value ηij . The former value is uniformly initial-
ized as follows: τij ← τ0,∀(i, j) ∈ A, where τ0 is the initial
pheromone trail value. The latter value is the inverse of the
arc weight defined as follows: ηij = 1/dij ,∀(i, j) ∈ A.

2) Solution Construction: A colony of ω ants always start
at the central depot, i.e., node 0. Then, each ant k makes
selections (node by node) biased by the existing pheromone
trail and heuristic information values associated with the arc
(i, j) until all nodes from customer set I are selected.

The probability distribution with which ant k selects node
j from node i is defined as follows:

pkij =


[τij ]

α[ηij ]
β∑

l∈Nk
i
[τil]

α[ηil]
β , if j ∈ N k

i ,

0, otherwise,
(15)

where τij and ηij are, respectively, the existing pheromone
trail and the heuristic information available a priori associated
with arc (i, j). Parameters α and β determine the relative
influence of τij and ηij , respectively, while N k

i is the set
of unselected nodes (from customer set I) for the k–th
ant adjacent to node i. Note that the depot and charging
station nodes are not included in the N k

i set but they are
selected independently (described in the following) to satisfy
the constraints of the E-CVRP.

The procedure proposed in [11] is used to construct a
feasible E-CVRP solution T k (i.e., the routes of all EVs) as
follows. Each customer j ∈ N k

i available for selection at any
construction step must satisfy the following criteria: (a) the
delivery demand of customer j must not violate the capacity
constraint, (b) the required energy to travel to customer j from
node (either charging station, depot or customer) i must not
violate the energy constraint, and (c) customer j must have
at least one charging station or the depot within its energy
range [7]. The procedure to build a feasible E-CVRP solution
is presented in Algorithm 2.

Algorithm 1 MMAS with Local Search

1: Initilization
2: while termination condition is satisfied do
3: Construct Solutions
4: Local Search
5: Update Best
6: Update Statistics
7: Update Pheromone Trails
8: end while

Algorithm 2 E-CVRP Solution Construction

1: T k ← insert depot {0} at position 0
2: step← 1
3: while ant k has not selected all customers do
4: i← find current node from T k at position step− 1
5: j ← select probabilistically next customer from N k

i

6: step← step+ 1
7: if customer j violates capacity constraint then
8: T k ← insert depot {0} at position step
9: else if customer j violates energy constraints then

10: s← select closest station between customers i and j
11: T k ← insert s at position step
12: else
13: T k ← insert j at position step
14: end if
15: end while
16: T k ← insert depot {0} at position step+ 1

In case the selected customer j violates the cargo load
capacity, then the depot node is inserted (assuming that enough
energy is available to travel back to the depot) to the T k

solution to close the route of the EV. Moreover, in case the
selected customer j violates either the energy constraint or the
energy range criteria, then the closest energy recharging station
s between node i and potential next customer j is selected as
follows:

s = arg min
l∈F
{dil + dlj}, (16)

and inserted to the T k solution. A charging station s is also
selected using Eq. (16) when not enough energy is available to
travel back to the depot. Note that the possibility of not having
enough energy to travel to any energy recharging station or
back to the central depot is eliminated because of the energy
range criteria imposed in the selection of customers.

3) Pheromone Update: In the MMAS variant [22], [26],
[27], the pheromone trails are updated by first decreasing the
pheromone trails on all arcs (using pheromone evaporation),
and then increasing the pheromone trails on the arcs of the
solution constructed by the best ant (using pheromone deposit).
The pheromone evaporation is applied as follows:

τij ← (1− ρ)τij ,∀(i, j) ∈ A, (17)

where ρ (ρ ∈ (0, 1]) is the evaporation rate.



After pheromone evaporation, the best ant deposits
pheromone on the arcs of its solution components as follows:

τij ← τij + ∆τ bestij ,∀(i, j) ∈ T best, (18)

where ∆τ bestij = 1/Cbest is the amount of pheromone that the
best ant deposits and Cbest is the quality of the best solution
T best. The “best” ant that is allowed to deposit pheromone
may be either the best-so-far ant (i.e., the ant representing the
best solution from all iterations so far), in which Cbest = Cbs,
or the iteration-best ant, in which case Cbest = Cib. These
two ants are updated in line 5 of Algorithm 1 and they are
allowed to deposit pheromone accordingly in an alternate way
[27]. More precisely, the best-so-far ant is allowed to deposit
pheromone every f bs iterations whereas in the rest of the
iterations it is the iteration-best ant that deposits pheromone.

Furthermore, lower and upper limits of the pheromone trail
values are explicitly imposed as follows:

τij ←


τmax, if τij > τmax,

τmin, if τij < τmin,

τij , otherwise,

∀(i, j) ∈ A, (19)

where τmin and τmax are, respectively, the minimum and
maximum pheromone trails. In addition, all the pheromone
trails are uniformly re-initialized to the τmax value whenever
the stagnation behavior (i.e., when all ants construct the same
solution for several iterations) occurs or when no improved
solution is found for a given number of iterations (line 6
in Algorithm 1). The stagnation behavior is detected using
the λ-branching factor that measures the distribution of the
pheromone trail values [28].

B. Local Search

For all ACO constructed solutions the following local search
operators are applied: exchange, relocate, 2-opt and 2-opt*.
The exchange operator swaps the location of two nodes
whereas the relocate operator moves one node to a different
location [29]. Suppose that the exchange operator is applied
to nodes i and j as shown in Fig. 2(a). This will cause arcs
(j−1, j), (j, j+1), (i−1, i), and (i, i+1) to be removed, and
arcs (i, j+1), (j−1, i), (j, i+1), and (i−1, j) to be inserted.
Also, suppose that the relocate operator is applied to node i
for the position next to node j as shown in Fig. 2(b). This will
cause arcs (j, j + 1), (i− 1, i), and (i, i+ 1) to be removed,
and arcs (i − 1, i + 1), (j, i), and (i, j + 1) to be inserted.
Both operators are used as intra-route (involves a single route
as presented in Fig. 2) and inter-route (involves two routes
as presented in Fig. 3) moves. Exactly the same arcs will be
affected for the corresponding inter-route moves as described
previously. The 2-opt operator [30] shown in Fig. 4(a) removes
arcs (j, j + 1) and (i − 1, i) and inserts arcs (i, j + 1) and
(j, i−1). The 2-opt* operator [31] shown in Fig. 4(b) removes
arc (i, i + 1) from one route and arc (j, j + 1) from another
route and inserts arc (j, i + 1) in the former route and arc
(i, j + 1) in the latter route. The 2-opt operator is only used

(a)

(b)

Fig. 2: (a) Exchange and (b) relocate intra-route moves within
the same route. The black square represents the central depot
and the black circles the customers.

(a)

(b)

Fig. 3: (a) Exchange and (b) relocate inter-route moves from
two different routes. The black square represents the central
depot and the black circles the customers.



(a)

(b)

Fig. 4: (a) 2-opt intra-route move within the same route and (b)
2-opt* inter-route move from two different routes. The black
square represents the central depot and the black circles the
customers.

for intra-route moves whereas the 2-opt* operator is only used
for inter-route moves.

Note that, only moves that do not violate the capacity
constraint are allowed for the inter-route moves, while intra-
route moves do not violate the capacity constraint. On the
contrary, both type of moves may violate the energy constraint,
since the charging stations may change positions, or the current
position of the stations is affected due to the changes caused
in the order of the customers. Therefore, recharging stations
are not selected for exchange and relocate moves, but they are
allowed in 2-opt and 2-opt* moves. In this way, the probability
of violating the energy constraint will be minimized. However,
in case a solution violates the energy constraint, the affected
routes of the E-CVRP solution are repaired by inserting new
station(s) or removing existing station(s) to satisfy the energy
constraint using Eq. 16.

All local search operators are applied until no further
improvement is possible, as presented in Algorithm 3, in a
cyclic way [32]. It must be noted that the pheromone trails
are updated after the local search improvements to mark them
in the pheromone trails so they can be exploited in the next
iterations (lines 3− 4 in Algorithm 1).

IV. EXPERIMENTAL RESULTS

A. Experimental Setup

The MMAS with local search (MMAS+ls) performs
25000n evaluations of complexity O(n2) as proposed for

Algorithm 3 Local Search

1: Ck ← calculate solution quality of T k

2: while solution quality is improved do
3: T k

′ ← apply exchange, relocate, 2-opt, and 2-opt* to
T k

4: if energy constraint violated then
5: T k

′ ← insert or remove charging station(s)
6: end if
7: Ck

′ ← calculate solution quality of T k
′

8: if Ck
′

is better than Ck then
9: T k ← T k

′

10: Ck ← Ck
′

11: end if
12: end while

the 2020 Congress on Evolutionary Computation competition
for the Electric Vehicle Routing Problem [10]. The partial
evaluations required when applying the local search are added
to the total evaluations of the algorithm. Ten independent runs
are executed with different random seeds. For each run the
total distance traveled for the solution with the best quality is
recorded.

1) E-CVRP Benchmark Instances: The recently generated
E-CVRP benchmark instances (available at https://github.com/
KIOS-Research/e-cvrp benchmark instances) are used in the
experiments. This set of benchmark instances is generated by
utilizing existing CVRP instances using the conversion method
(with γ and φ parameters set to γ = 2 and φ = 0.125,
respectively) described in [11]. For more details refer to the
relevant reference. Note that the benchmark instances used in
this work (with variable energy consumption rate) are different
from the benchmark instances (with fixed energy consumption
rate) proposed in [10].

2) Parameter Tuning: MMAS with local search is config-
ured following the guidelines of [22]. The colony size is set
to ω = 25 ants for problem instances with size n < 400 and
ω = 50 ants for problem instances with size n > 400. The
evaporation rate is set to ρ = 0.2, the initial pheromone trail
value is set to τ0 = 1/ρCnn, the upper and lower pheromone
trails limits are set to τmax = 1/ρCbs and τmin = τmax/(2n),
respectively. Note that Cnn is the solution quality of the
solution generated by the nearest-neighbor heuristic. The two
parameters of the decision rule are set to α = 1 and β = 2.
The frequency with which the best-so-far ant is allowed to
deposit pheromone is set as follows:

f bs =



∞, if t ≤ 25,

5, if 26 ≤ t ≤ 75,

3, if 76 ≤ t ≤ 125,

2, if 126 ≤ t ≤ 250,

1, otherwise,

(20)

where t is the iteration counter of the algorithm. The schedule
is tuned as proposed in [27], that is, to gradually shift the



TABLE I: Best solution quality found in 10 runs obtained
from the MMAS with local search on the E-CVRP
benchmark set. The best known solutions (BKS) are taken
from [11].

E-CVRP instance BKS MMAS+ls
#charges #routes best

E-n29-k4-s7 383† 4 4 383
E-n30-k3-s7 577† 5 3 577
E-n35-k3-s5 527† 4 3 527
E-n37-k4-s4 865 4 4 857
E-n60-k5-s9 544 7 5 537
E-n89-k7-s13 724 8 7 711
E-n112-k8-s11 860 7 8 845
M-n110-k10-s9 914 6 10 876
M-n126-k7-s5 1099 4 7 1094

M-n163-k12-s12 1109 10 12 1088
M-n212-k16-s12 1398 12 17 1386

F-n49-k4-s4 740 1 4 746
F-n80-k4-s8 240 5 4 239
F-n140-k7-s5 1229 2 7 1210
X-n147-k7-s4 17704 5 7 17345
X-n221-k11-s9 12235 8 12 12130
X-n360-k40-s9 27701 9 41 27327
X-n469-k26-s10 26881 16 27 26763
X-n577-k30-s4 55266 32 30 54779
X-n698-k75-s13 75048 45 78 74818
X-n759-k98-s10 84996 47 100 83204

X-n830-k171-s11 167575 97 179 166593
X-n920-k207-s4 345214 76 214 341599
X-n1006-k43-s5 80765 27 43 79635

† Optimal solution quality.
Best results are shown in bold.

emphasis from the iteration-best ant to the best-so-far ant for
the pheromone update.

B. Comparison Against Best-Known Solutions

The experimental results of the MMAS with local search
are given in Table I for 24 E-CVRP benchmark instances.
For each instance the numbers after n, k, and s letters in
the instance name identifies the size of the problem, the
minimum number of routes, and the number of charging
stations, respectively. Since the benchmark set is recent, there
are no other existing methods to compare, except the initial
best known solutions (BKS) reported in [11]. The term “best”
denotes the best solution found byMMAS with local search
from its 10 independent executions. Further, “#charges” and
“#routes” denote the number of charges and routes that the
best solution consists of.

From Table I it can be observed that the proposed
MMAS with local search is able to find the global optimum
on solved instances E-n29-k4-s7, E-n30-k3-s7, and
E-n35-k3-s5 in which the optimum is known. On the
remaining (unsolved) instances the proposed MMAS is able
to find better solutions than most of the BKS (except in
F-n49-k-s4 instance). The percentage deviation of the
proposed method from the BKS solution is in the worst case
0.83%. On the other hand, the proposed method improves the
BKS with a percentage deviation up to −4.15%.

TABLE II: Mean solution quality and standard deviation
averaged over 10 runs obtained from the MMAS with and
without local search on the E-CVRP benchmark set.

E-CVRP instance MMAS MMAS+ls
E-n29-k4-s7 384.5±0.7 383.0±0.0
E-n30-k3-s7 582.0±0.0 577.0±0.0
E-n35-k3-s5 533.0±1.4 528.9±2.1
E-n37-k4-s4 868.5±1.6 857.8±0.4
E-n60-k5-s9 557.0±6.4 539.9±4.0
E-n89-k7-s13 739±2.9 722.6±8.3
E-n112-k8-s11 878.3±14.6 853.9±9.6
M-n110-k10-s9 923.7±9.7 886.2±6.8
M-n126-k7-s5 1103.6±5.7 1094.3±0.6

M-n163-k12-s12 1129.2±8.9 1106.7±13.0
M-n212-k16-s12 1419.2±11.8 1412.8±15.8

F-n49-k4-s4 775.7±6.9 748.0±1.1
F-n80-k4-s8 243.9±2.8 239.5±1.5
F-n140-k7-s5 1233.8±2.9 1215.3±4.1
X-n147-k7-s4 17792.3±89.7 17604.0±176.4
X-n221-k11-s9 12487.9±109.4 12339.5±194.6
X-n360-k40-s9 28034.4±168.6 27601.6±180.9
X-n469-k26-s10 27391.7±257.0 27334.5±367.7
X-n577-k30-s4 55627.6±209.4 55329.0±368.3
X-n698-k75-s13 75646.6±323.7 75204.7±298.2
X-n759-k98-s10 85683.7±558.8 85429.8±382.5
X-n830-k171-s11 168465.0±376.1 167525.9±443.2
X-n920-k207-s4 346619.4±688.2 342856.5±303.3
X-n1006-k43-s5 81549.3±568.8 81217.8±432.4

C. Effect of the Local Search

The mean and standard deviation results (over 10 runs) of
the MMAS with and without local search are given in Table
II for 24 E-CVRP benchmark instances. The comparisons in
Table II demonstrate the effectiveness of combining MMAS
with the local search described in Section III-B, since in
most problem instances the mean solution quality is better.
To further support this claim, Fig. 5 gives the solution quality
(averaged over 10 runs) as a function of algorithmic evalua-
tions for MMAS with and without the local search heuristic
on four representative problem instances.

From Fig. 5 it can be observed that the MMAS with
local search maintains better solution quality than theMMAS
without local search from the early stages of the optimization
process until the termination condition is reached. This is due
to several reasons. ACO’s solution construction in Algorithm 2
utilizes a different neighborhood than the local search in
Algorithm 3, and thus, the chance of a local search to improve
the solutions constructed by ants is higher. In addition, a stand-
alone local search typically starts from randomly generated
solutions. Therefore, in complex and large search spaces it
will be difficult to discover neighborhoods leading to high-
quality solutions. The combination with ACO addresses this
issue since the solutions will be provided by the ants. In fact,
ACO is a global optimization method, that can guide local
search heuristics to promising areas in the search space. In
particular, ACO discovers neighborhoods that contain high-
quality solutions for the local search to begin its search. The
local search will explore the neighborhood until it reaches the
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Fig. 5: Solution quality (averaged over 10 executions) as a function of algorithmic evaluations for MMAS with and without
the local search heuristic on the (a) F-n80-k4-s8, (b) F-n140-k4-s5, (c) M-n126-k7-s5, and (d) M-n212-k16-s12
problem instances.

local optimum (and possible the global optimum) solution.

D. Effect of Repairing Charging Stations

Table III gives the mean values of the MMAS when the
recharging station repair (see line 5 in Algorithm 3) is enabled
in the proposed local search heuristic and when it is disabled.
Recall, that the repair occurs when the resulting solutions
from the local search improvements become infeasible due
to violation of the energy constraint.

From Table III, it can be observed that when the repair of
charging stations is enabled this leads to better results in most
problem instances. This the case because an infeasible solution
may contain feasible routes that belong to the global optimum.
Therefore, it would be beneficial to repair the infeasible route
or routes, and thus, carry on with the local search improvement
process.



TABLE III: Mean results of MMAS with local search when
the recharging station repair is enabled and when it is disabled.

E-CVRP instance MMAS+ls
enabled disabled

E-n29-k4-s7 383.0±0.0 383.2±0.6
E-n30-k3-s7 577.0±0.0 578.0±0.0
E-n35-k3-s5 528.9±2.1 529.8±2.2
E-n37-k4-s4 857.8±0.4 857.9±0.3
E-n60-k5-s9 539.9±4.0 542.4±3.9
E-n89-k7-s13 722.6±8.3 733.4±8.2
E-n112-k8-s11 853.9±9.6 859.8±12.5

V. CONCLUSIONS

In this work, the E-CVRP with variable energy consumption
rate is addressed. The energy consumption of the EVs is
proportional to the current cargo load of the EVs, that is,
the heavier the EV the more energy will be consumed. An
ACO algorithm with a local search heuristic is designed to
address the E-CVRP efficiently. The experimental results on a
set of recently introduced benchmark set of E-CVRP instances
demonstrate the good performance of the proposed method.
In fact, new best known solutions are reported for several E-
CVRP instances.

A future work direction involves the design of more ad-
vanced local search heuristics, since this technique has been
proven effective in addressing E-CVRP.
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