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Abstract—In dynamic optimization problems where optimal
solutions change over time, traditional ant colony optimization
(ACO) algorithms face limitations. This study explores the
adaptation of multi-colony ACO algorithms, known for their
enhanced search capabilities in stationary problems, to tackle
optimization problems in dynamic environments. Various strate-
gies for exchanging information between colonies, which is a crit-
ical factor influencing algorithm performance, are investigated.
Using the dynamic traveling salesman problem as a foundation,
we generate test cases to reflect real-world complexities. Our
results on a set of problem instances reveal that the choice of
communication strategy between colonies significantly impacts
the adaptability and efficiency of multi-colony ACO algorithms
in tracking moving optimum.

Index Terms—Ant colony optimization, multi-colony ant algo-
rithm, dynamic optimization problem, dynamic traveling sales-
man problem, tracking moving optimum

I. INTRODUCTION

Ant colony optimization (ACO) algorithms have been de-
signed to address challenging stationary optimization problems
[1], [2]. Their aim is to locate the problem’s global optimum
precisely and efficiently. However, many real-world optimiza-
tion problems have a dynamic environment in which the global
optimum changes over time (or moves in the search space) [3],
[4]. This fact imposes challenges to ACO algorithms because
once they converge to an optimum, the generated pheromone
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trails will bias the searching process towards that optimum
after the environmental change.

A straightforward way to help ACO algorithms escape from
the previously converged optimum, is to re-initialize all the
pheromone trails uniformly after each environmental change.
In this way, the re-optimization process starts from scratch
and it is unbiased. However, such strategy requires large
computational efforts, especially in NP-hard combinatorial
optimization problems [5], [6]. Additionally, this strategy over-
looks the potential benefits of utilizing historical knowledge
to enhance the optimization process of post-environmental
changes. This oversight is particularly significant in prob-
lems where successive environmental states bear a degree of
similarity – a common characteristic in numerous real-world
scenarios [7].

In order to leverage the historical knowledge for accelerat-
ing and improving the re-optimization process after environ-
mental changes, ACO algorithms must be enhanced so that
they can accept the knowledge transferred. Over the years,
several strategies have been proposed, including increasing
diversity after a change [8], maintaining diversity during the
execution [9]–[11], memory-based schemes [12], memetic
algorithms [13], [14], and multi-colony approaches [15].

Multi-colony approaches have shown promising perfor-
mance in optimization problems with dynamic environments
[15]. In particular, the searching capability of ACO is im-
proved since more than one colony explores and/or exploits
in parallel updating their own pheromones independently.
However, parallel ACO implementations require more com-
putational resources than single ACO implementations since
more than one copy of the algorithm will be executed [16].
Nowadays, the increasing availability of parallel computation
power encourages the adoption of parallel multi-colony ap-
proaches [17]–[19]. As a result, more areas of the search space
are more likely to be covered. In the experiments, several
communication strategies are investigated that differ on the
way colonies exchange information. A communication strategy



is principally defined by the following key characteristics:
• The total number of colonies
• The designated neighborhood for information exchange
• The specific intervals at which information is exchanged
The rest of the paper is organized as follows. Section

II describes the generation of dynamic environments. The
traveling salesman problem (TSP) is used as the base problem
to generate dynamic test cases. Section III describes ACO
for the dynamic TSP (DTSP). Section IV describe the multi-
colony ACO framework. Section V gives the experimental
results of multi-colony ACO algorithms investigating their
exchange strategies. Finally, Section VI concludes this paper
and outlines several future works.

II. DYNAMIC ENVIRONMENTS

A. Base Problem

The TSP is used as the base problem to generate dynamic
test cases. The objective of the TSP is to find the shortest
Hamiltonian path for a salesman given a set of cities. In
particular, a Hamiltonian path is the path of visiting all cities
once, starting from one city and return to it. The problem is
represented by a complete weighted graph G = (N,A), where
N is a set of n cities and A is a set of arcs fully connecting the
cities. Each arc (i, j) ∈ A is associated with a non-negative
value wij ∈ R+, which represents the distance between cities
i and j for the classical TSP.

A particular TSP solution π= {1, . . . , n} is a permutation
of city indices and the objective function is calculated as
follows:

f(π) = wπ(n)π(1) +

n−1∑
i=1

wπ(i)π(i+1). (1)

B. Generating Dynamic Environments

Every TSP problem instance consists of a weight matrix
that contains all the weights associated with the arcs of the
corresponding graph G. In order to generate dynamic test
cases the dynamic generator for combinatorial optimization
problems is adopted [20]. In particular, the weight matrix of
the TSP is subject to changes as follows:

W(T )={wij(T )}n·n, (2)

where W(·) is the weight matrix and T is the environmental
period index which is synchronized with the algorithmic
iterations during the optimization process. Therefore, the en-
vironmental period index is defined as T = ⌈t/f⌉, where f
is the frequency of change and t is the iteration counter of
the optimization algorithm. As a consequence the objective
function in Eq. (1) becomes f(π, t).

The key concept to generate a dynamic test case is to
replace nodes from the current working node set Nin(T ),
where Nin(0) = N , with newly introduced nodes drawn
from another set Nout(T ). The latter set Nout(T ) is initially
generated with n new random nodes in the range of the N set.
Real-world applications that encompass the aforementioned
types of dynamic changes can be found in many fields,

including transportation and logistics. For example, changes in
the visiting locations (i.e., node changes) of a fleet of vehicles
during their operational time.

A dynamic change of this type occurs as follows [20],
[21]. Every f evaluations exactly ⌈mn⌉ nodes are randomly
selected from Nout(T ) to replace exactly ⌈mn⌉ randomly
selected nodes from Nin(T ), where m (m ∈ (0, 1]) defines
the magnitude of change. The higher the value of m, the more
nodes will be replaced and consequently the more weights in
Eq. (2) will be affected.

III. ANT COLONY OPTIMIZATION FOR DTSP

In this work, the MAX–MIN Ant System (MMAS)
[22] variant is utilized which is one of the most-studied ACO
variants. TheMMAS has been successfully applied in several
combinatorial optimization problems [23], and has also proven
its adaptation capabilities in dynamic optimization problems
[20].

InMMAS, all the arcs (i, j) of the problem are associated
with a pheromone trail value τij which is uniformly initialized
as follows: τij ← τ0,∀(i, j) ∈ A, where τ0 is the initial
pheromone trail value. In addition, all the arcs (i, j) are
associated with a heuristic information value ηij , which in
the case of the DTSP is set to ηij = 1/wij(T ),∀(i, j) ∈ A.

A. Solution Construction

A colony of artificial ants start their tour in a randomly
selected city. Then, each ant k chooses the next city biased by
the existing pheromone trail and heuristic information values
associated with arc (i, j). The tour is completed until all cities
are visited.

The probability distribution with which ant k visits city j
from city i is defined as follows:

pkij =


[τij ]

α[ηij ]
β∑

l∈Nk
i
[τil]

α[ηil]
β , if j ∈ N k

i ,

0, otherwise,
(3)

where τij and ηij are, respectively, the existing pheromone
trail and the priori available knowledge associated with arc
(i, j). Parameters α and β determine the relative influence of
τij and ηij , respectively, while N k

i is the set of unvisited cities
of size cand for the k–th ant adjacent to city i.

B. Pheromone Update

The pheromone update policy of the MMAS variant [22]
first reduces the pheromone trails on all arcs due to evapo-
ration, and then reinforces the pheromone trails on the arcs
of the solution constructed by the best ant. The pheromone
evaporation is applied as follows:

τij ← (1− ρ)τij ,∀(i, j) ∈ A, (4)

where ρ (ρ ∈ (0, 1]) is the evaporation rate.
To reinforce the pheromone trails, the best ant is used to

deposits pheromone on the arcs of its visited cities as follows:

τij ← τij +∆τ bestij ,∀(i, j) ∈ πbest, (5)



where ∆τ bestij is the amount of pheromone that the best ant
deposits which is inversely proportional to the quality of its
solution, i.e., 1/Cbest where Cbest = f(πbest, t). The “best”
ant that is allowed to deposit pheromone may be either the
best-so-far ant (i.e., the ant representing the best solution from
all iterations so far), πbest = πbs, or the iteration-best ant,
in which case πbest = πib. These two ants are allowed to
deposit pheromone accordingly in an alternate way [22]. More
precisely, the best-so-far ant is allowed to deposit pheromone
every gbs iterations whereas in the rest of the iterations it is
the iteration-best ant that deposits pheromone.

Furthermore, lower and upper limits of the pheromone trail
values are explicitly imposed as follows:

τij ←


τmax, if τij > τmax,

τmin, if τij < τmin,

τij , otherwise,

∀(i, j) ∈ A, (6)

where τmin and τmax are, respectively, the minimum and
maximum pheromone trails.

IV. MULTI-COLONY ANT ALGORITHMS

Multi-colony ACO algorithms were successfully applied in
single objective optimization problems [24], as well as in
multi-objective optimization problems [25], and in stationary
optimization problems [26], as well as in dynamic optimization
problems [15], which is the main focus of this work.

The idea of multi-colony ACO algorithms is to enable
µ (µ > 1) number of colonies to tackle an optimization
problem simultaneously as described in Algorithm 1. The
advantage of multi-colony ACO algorithms against conven-
tional (single colony) ACO algorithms is that they enhance
the exploration capabilities of ACO. This is due to the fact
that each colony performs trail updates independently, and
thus, multiple areas of the search space can be covered at the
same time. As a result, premature convergence is addressed
by enhancing the diversity generated by the colonies, and
makes multi-colony ACO an ideal solution to track the moving
optimum in dynamic optimization problems.

To enable communication between the colonies when op-
timizing a particular problem, a migration policy must be
defined according to the following five aspects: 1) how many
colonies used; 2) which colonies will communicate with each
other; 3) how often the colonies will communicate; 4) for how
long the colonies will be communicating; and 5) what kind
of information the colonies will exchange. For the last two
concerns only one option is considered in this work, that is,
the best-so-far ant of the source colony is allowed to broadcast
its information to destination colonies for a single iteration and
the information is received by the destination colony only if
the quality of the best-so-far ant of the source colony is better.
For the remaining three aspects the options presented in Table I
are investigated.

The simplest migration policy of multi-colony ACO algo-
rithms is the parallel independent runs (PIR) in which the
colonies do not communicate with each other [27]. Migration

Algorithm 1 Multi-Colony ACO Framework

1: for each colony do
2: initialize pheromone trails
3: initialize heuristic information
4: end for
5: while termination condition is satisfied do
6: for each colony do
7: construct solutions
8: update colony best ant
9: update pheromone trails

10: end for
11: migration based on topology and schedule
12: update best solution from all colonies
13: end while

TABLE I: Configuration of exchange strategies for multi-
colony ACO algorithms.

µ Topology Schedule

4 RING short
8 CUBE long

16 COMPL automatic

(a) (b) (c)

Fig. 1: Communication strategies of four colonies with (a)
RING; (b) COMPL; and (c) CUBE topologies.

(a) (b) (c)

Fig. 2: Communication strategies of eight colonies with (a)
RING; (b) COMPL; and (c) CUBE topologies.

policies in which communication is enabled are defined by
three different types of topologies used in the island model
of parallel evolutionary algorithms [28]: RING, CUBE, and
complete (CMPL), forming different neighborhoods for each
colony. In the ring topology shown in Figs. 1(a), 2(a), and
3(a) each colony will always communicate with one colony,
i.e., the colony next to it. In the complete topology shown in
Figs. 1(b), 2(b), and 3(b) each colony will communicate with
the remaining (µ− 1) colonies. The size of the neighborhood
for a colony in the cube topology depends on the µ parameter.
For example, each colonies in a d-dimensional cube topology



(a) (b) (c)

Fig. 3: Communication strategies of sixteen colonies with (a) RING; (b) COMPL; and (c) CUBE topologies.

will have neighborhood size d as shown in Figs. 1(c), 2(c),
and 3(c).

Finally, different types of migration schedules to exchange
information are investigated in this work as shown in Table I.
In the short and long schedules the colonies will communi-
cated every f/100 and f/10 iterations, respectively [16], [26].
The fixed value of the migration frequency depends on the size
of the problem, that is, f = 10n, for scalability purposes. In
the automatic schedule colonies will communicate whenever
a new best-so-far solution is discovered [15].

V. EXPERIMENTAL RESULTS

A. Experimental Setup

The dynamic benchmark generator for combinatorial opti-
mization problems described in Section II is used to generate
DTSPs. The following three static benchmark instances are
obtained from TSPLIB1: kroA200, rd400 and u1060. The
magnitude of change m was set to 0.1, 0.25, 0.5 and 0.75
indicating slightly, to medium, to severely changing environ-
ments. The frequency of change f was set to 10n iterations
to allow sufficient time for ACO algorithms to converge. A
total of 4 DTSPs are generated from each static instance and
10 environmental changes were allowed for each DTSP test
case.

Each ACO algorithm executes 30 independent runs on
the same set of random seed numbers. The modified offline
performance [29] was used to evaluate the performance of the
algorithms, which is defined as follows:

P̄offline =
1

E

E∑
t=1

C∗, (7)

where E is the number of observations taken, and C∗ =
f(πbs, t) is the value of the best-so-far solution since the last
dynamic change.

The ACO algorithms are configured following the guide-
lines in [22]. The size of colonies of multi-colony ACO

1Available from http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/

algorithms is set to 25 ants. The number of homogeneous
colonies investigated in this work is set as follows: µ ∈
{1, 2, 4, 8, 16}. The evaporation rate is set to ρ = 0.8, the
initial pheromone trail value is set to τ0 = 1/ρCnn, the upper
and lower pheromone trails limits are set to τmax = 1/ρCbest

and τmin = τmax

(
1− n
√
0.05

)
/
(
(cand− 1) · n

√
0.05

)
, re-

spectively, where Cnn = f(πnn, 0) is the solution quality
generated by the nearest-neighbor heuristic initially and cand
is the number of different choices available to an ant at each
step. The two parameters of the decision rule are set to α = 1
and β = 5. The frequency with which the best-so-far ant is
allowed to deposit pheromone is set to gbs = 25 iterations.

B. Effect of Multiple Colonies

In this set of experiments a conventional ACO (when µ = 1)
is compared with multi-colony ACO (when µ > 1). To investi-
gate the effect of multiple parallel colonies no communication
strategy is used and hence PIR is utilized. Figs. 4, 5, and 6
present the offline performance results of PIR with different
number of colonies on kroA200, rd400, and u1060 prob-
lem instances, respectively. From the experimental results it
can be observed that as the number of colonies increases the
solution quality of PIR improves for all dynamic cases of m.
The results are expected because the colonies are more likely
to search different areas of the search space promoting in this
way exploration. Therefore, when a dynamic change occurs
there are more than one solution to utilize in order to transfer
knowledge from the previous environment.

The experiments have been extended with three more µ
values: 32, 64, and 128 colonies to investigate the scalability
of multi-colony ACO. From Figs. 4, 5, and 6, it can be
observed that the solution quality is further improved when
increasing the number of colonies. This is expected because
the computational resources allocated for the optimization
process are more. However, the improvement in the offline
performance from 16 colonies to 128 colonies may not worth
the computational efforts.
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Fig. 4: Offline performance results of PIR with different
number of colonies for kroA200 problem instances.
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Fig. 5: Offline performance results of PIR with different
number of colonies for rd400 problem instance.

C. Effect of Communication

In this set of experiments, twelve distinct exchange strate-
gies are investigated, encompassing four different topologies
each with three different µ sizes. The migration schedule
is set to automatic (i.e., whenever a new best-so-far ant is
discovered to allow the colonies to exchange information).
Table II presents the experimental results of the multi-colony
ACO algorithms, and statistical comparisons are performed
for each colony size µ. Kruskal–Wallis statistical tests are
performed, followed by posthoc pairwise comparisons using
Wilcoxon rank-sum statistical tests with p-values adjusted by
Bonferonni correction.
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Fig. 6: Offline performance results of PIR with different
number of colonies for u1060 problem instance.

From Table II it can be observed that PIR is significantly
worse than the other three exchange strategies in almost all
test cases. When the colonies are exchanging information, in
this case the best-so-far ant, the searching is directed towards
promising areas of the search space promoting in this way
exploitation. As a consequence, a good balance between explo-
ration (promoted by multiple colonies as discussed above) and
exploitation is maintained enhancing the searching capabilities
of ACO when information is exchanged. Also, in the u1060
cases it can be observed that only when the communication
of 16 colonies (i.e., CMPL) exists, the offline performance
is better than PIR for all test cases. This shows that as
the problem size increases more communicating colonies are
required.

When comparing only the three multi-colony ACO algo-
rithms that exchange information it can be observed that: in
most dynamic test cases CUBE and CMPL perform better than
RING. This can be explained by the size of the neighborhood
of the RING topology which is only one. Therefore, the
capacity of information exchanged in the RING topology is
limited.

D. Effect of Migration Schedule

In the previous set experiments, the migration schedule of
the investigated multi-colony ACO algorithms had a varying
frequency because it was set to automatic. In this set of
experiments, fixed frequencies (i.e., short and long) for the
migration schedule are compared with the automatic frequency
to investigate the effect on the generated diversity which is
defined as follows:

T̄diversity =
1

ω(ω − 1)

ω∑
p=1

ω∑
q ̸=p

(
1− CA(p, q)

n

)
, (8)



TABLE II: Experimental results regarding the offline perfor-
mance of multi-colony ACO algorithms with different ex-
change strategies. Bold values indicate the best results.

ACOs DTSP test case

kroA200, m ⇒ 0.1 0.25 0.5 0.75

µ = 4, PIR 30846.32 30414.32 30765.08 30587.98
RING 30902.39 30443.88 30646.43 30526.60
CUBE 30809.07 30430.57 30612.58 30483.73
CMPL 30863.33 30388.57 30644.64 30428.42

µ = 8, PIR 30808.83 30422.27 30671.99 30485.64
RING 30776.29 30360.00 30571.83 30366.42
CUBE 30746.84 30288.52 30517.00 30294.61
CMPL 30821.79 30323.71 30538.05 30309.10

µ = 16, PIR 30718.92 30369.94 30565.86 30445.57
RING 30693.25 30313.86 30517.29 30289.45
CUBE 30688.44 30296.96 30460.38 30261.09
CMPL 30728.31 30284.39 30407.73 30274.51

rd400, m ⇒ 0.1 0.25 0.5 0.75

µ = 4, PIR 15657.98 15523.75 15380.61 15508.52
RING 15607.28 15437.68 15323.90 15408.93
CUBE 15620.78 15451.91 15293.46 15400.73
CMPL 15582.23 15473.12 15311.94 15386.24

µ = 8, PIR 15647.45 15488.31 15372.17 15467.57
RING 15581.76 15418.75 15270.87 15385.63
CUBE 15577.39 15398.65 15237.10 15354.23
CMPL 15537.28 15380.31 15250.05 15331.34

µ = 16, PIR 15607.40 15465.78 15326.98 15456.58
RING 15555.59 15405.67 15250.97 15337.96
CUBE 15510.29 15348.02 15222.75 15283.65
CMPL 15519.06 15340.94 15200.47 15291.62

u1060, m ⇒ 0.1 0.25 0.5 0.75

µ = 4, PIR 284471.60 295851.51 298059.59 292848.03
RING 284776.60 294925.61 296909.30 294525.59
CUBE 285128.91 296382.86 298195.53 294788.96
CMPL 284602.56 296707.43 297352.74 295199.26

µ = 8, PIR 283556.08 292820.87 295116.58 291538.04
RING 283280.01 294747.28 295497.37 291035.86
CUBE 281753.50 294093.74 295180.04 290949.11
CMPL 282412.06 294200.76 295516.63 290901.82

µ = 16, PIR 280752.68 291285.87 294700.43 291232.63
RING 281183.61 293614.26 294456.36 291130.21
CUBE 280515.02 293514.45 293423.69 291203.54
CMPL 279384.70 291103.37 293302.67 290035.24

where CA(p, q) is the total number of common arcs between
the TSP solutions constructed by the p-th and q-th ants and ω
is the total number of ants in all colonies (i.e., ω = 25µ).

The total diversity together with the offline performance
against the algorithmic iterations are plotted in Fig. 7(a) and
7(b), respectively, for the CUBE with 8 colonies. Note that for
the remaining topologies the observations are similar. From
Fig. 7(a), it can be observed that the migration schedule with
short fixed frequency maintains lower total diversity than the
migration schedule with long fixed frequency. This effect is
expected because with long fixed frequency the colonies are

given enough time to explore different areas. In contrast, with
short fixed frequency the colonies are more likely to exploit
a similar area in the search space since the best-so-far ant is
communicated in early stages of the optimization process.

Furthermore, the automatic frequency maintains a diversity
level that falls in between of the two fixed frequencies be-
cause of its varying nature. However, from Fig. 7(b) it can
be observed that the offline performance of the automatic
frequency is better than both fixed frequencies in most en-
vironmental changes. This observation is contradictory with
the general strategy when addressing dynamic optimization
problems, that is, to increase or maintain the diversity during
the optimization process. However, the observations here show
that maintaining higher diversity does not always mean better
offline performance in dynamic environments.

VI. CONCLUSIONS

In this work, we investigate multi-colony ACO algorithms
with different exchange strategies in dynamic environments.
The exchange strategies are characterized by the number of
colonies, their topology, and the migration schedule. The TSP
is used as the base problem to generate dynamic test cases in
the experiments. The impact that the designed exchange strate-
gies have on the performance of multi-colony ACO algorithms
is investigated on a series of DTSPs that are systematically
generated. From the experimental results, the following con-
cluding remarks can be drawn. First, multiple parallel colonies
enhance the adaptation capabilities of conventional single
colony ACO algorithms in dynamic environments. Second,
the communication between colonies is essential in multi-
colony ACO. Third, exchange strategies in which the colonies
communicate with larger number of neighbor colonies have
often better performance.

For future work, practical applications with a dynamic
environment will be investigated. An interesting application
is the agile earth observation satellites scheduling problem
[30], [31] which can also be transformed and solved as a TSP
[32]. This problem also has several unexpected environmental
changes [33], [34], and hence the adaptation capabilities of
multi-colony ACO algorithms demonstrated in this work have
the potential to be beneficial.
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