
An Immigrants Scheme Based on Environmental

Information for Ant Colony Optimization for the

Dynamic Travelling Salesman Problem

Michalis Mavrovouniotis1 and Shengxiang Yang2

1 Department of Computer Science, University of Leicester
University Road, Leicester LE1 7RH, United Kingdom

mm251@mcs.le.ac.uk
2 Department of Information Systems and Computing, Brunel University

Uxbridge, Middlesex UB8 3PH, United Kingdom
shengxiang.yang@brunel.ac.uk

Abstract. Ant colony optimization (ACO) algorithms have proved to
be powerful methods to address dynamic optimization problems. How-
ever, once the population converges to a solution and a dynamic change
occurs, it is difficult for the population to adapt to the new environment
since high levels of pheromone will be generated to a single trail and
force the ants to follow it even after a dynamic change. A good solution
is to maintain the diversity via transferring knowledge to the pheromone
trails. Hence, we propose an immigrants scheme based on environmental
information for ACO to address the dynamic travelling salesman prob-
lem (DTSP) with traffic factor. The immigrants are generated using a
probabilistic distribution based on the frequency of cities, constructed
from a number of ants of the previous iteration, and replace the worst
ants in the current population. Experimental results based on different
DTSP test cases show that the proposed immigrants scheme enhances
the performance of ACO by the knowledge transferred from the previous
environment and the generation of guided diversity.

1 Introduction

Ant colony optimization (ACO) algorithms have proved to be powerful meta-
heuristics for solving difficult real-world optimization problems under static en-
vironments [2, 12]. ACO is inspired from real ant colonies, where a population of
ants searches for food from their nest. Ants communicate via their pheromone
trails and they are able to track shortest paths between their nest and food
sources. Inspired from this behaviour, ACO algorithms are able to locate the
optimum, or a near optimum solution, in stationary optimization problems, effi-
ciently [10]. However, in many real-world problems we have to deal with dynamic
environments, where the optimum is moving, and the objective is not only to lo-
cate the optimum but to track it also [7]. ACO algorithms face a serious challenge
in dynamic optimization problems (DOPs) because they lose their adaptation
capabilities once the population has converged [1].

Over the years, several approaches have been developed for ACO algorithms
to enhance their performance for DOPs, such as local and global restart strate-
gies [6], memory-based approaches [5], pheromone update schemes to maintain
diversity [3], and immigrants schemes to increase diversity [8, 9]. Most of these
approaches have been applied in different variations of the dynamic travelling
salesman problem (DTSP), since it has many similarities with many real-world
applications [11]. Among these approaches, immigrants schemes have been found
beneficial to deal with DTSPs, where immigrant ants are generated and used to
replace other ants of the current population [8, 9]. The most important concern
when applying immigrants schemes is how to generate immigrants.

In this paper, we propose an immigrants scheme which is based on envi-
ronmental information for ACO for the DTSP. The environmental information-
based immigrants ACO (EIIACO) selects the first n best ants from the previ-
ous environment and creates a probabilistic distribution based on the frequency
of cities that appear next to each other. Using the information obtained from
the previous population, immigrants are generated to replace the worst ants in
the current population. The introduced immigrants transfer knowledge and can
guide the population toward the promising regions after a change occurs. It is
expected that the environmental information-based immigrants scheme may en-
hance the performance of ACO for DTSPs, especially when the environments
before and after a change are similar.

The remaining of this paper is organized as follows. Section 2 describes the
DTSP used in the experimental study in this paper. Section 3 describes existing
ACO algorithms for the DTSP, which are also investigated as peer algorithms
in the experiments. Section 4 describes the proposed EIIACO algorithm. The
experimental results and analysis are presented in Section 5. Finally, the conclu-
sions and relevant future work are presented in Section 6.

2 DTSP with the Traffic Jam

The TSP is the most fundamental and well-known NP -hard combinatorial op-
timization problem. It can be described as follows: Given a collection of cities,
we need to find the shortest path that starts from one city and visits each of the
other cities once and only once before returning to the starting city.

In this paper, we generate a DTSP via introducing the traffic factor. We
assume that the cost of the link between cities i and j is Cij = Dij ×Fij , where
Dij is the normal travelled distance and Fij is the traffic factor between cities
i and j. Every f iterations a random number R in [FL, FU] is generated prob-
abilistically to represent traffic between cities, where FL and FU are the lower
and upper bounds of the traffic factor, respectively. Each link has a probability
m to add traffic by generating a different R each time, such that Fij = 1 + R,
where the traffic factor of the remaining links is set to 1 (indicates no traffic).
Note that f and m denote the frequency and magnitude of the changes in the
dynamic environment, respectively. The TSP becomes more challenging and re-
alistic when it is subject to a dynamic environment. For example, a traffic factor

closer to the upper bound FU represents rush hour periods which increases the
travelled distance significantly. On the other hand, a traffic factor closer to the
lower bound FL represents normal hour periods which increases the travelled
distance slightly.

3 ACO for the DTSP

3.1 Standard ACO

The standard ACO (S-ACO) algorithm, i.e., Max-Min AS (MMAS), consists of
a population of µ ants [12]. Initially, all ants are placed to a randomly selected
city and all pheromone trails are initialized with an equal amount of pheromone.
With a probability 1 − q0, where 0 ≤ q0 ≤ 1 is a parameter of the decision
rule, ant k chooses the next city j, while its current city is i, probabilistically,
as follows:

pkij =
[τij]

α [ηij]
β

∑

l∈Nk

i

[τil]
α
[ηil]

β
, if j ∈ Nk

i , (1)

where τij and ηij = 1/Cij are the existing pheromone trails and heuristic in-
formation available a priori between cities i and j, respectively, Nk

i denotes the
neighbourhood of cities of ant k that have not yet been visited when its cur-
rent city is i, and α and β are the two parameters that determine the relative
influence of pheromone trail and heuristic information, respectively. With the
probability q0, ant k chooses the next city with the maximum probability, i.e.,
[τ]α[η]β , and not probabilistically as in Eq. (1).

Later on, the best ant retraces the solution and deposits pheromone according
to its solution quality on the corresponding trails as follows:

τij ← τij +∆τbestij , ∀ (i, j) ∈ T best, (2)

where ∆τbestij = 1/Cbest is the amount of pheromone that the best ant deposits

and Cbest is the tour cost of T best. However, before adding any pheromone, a
constant amount of pheromone is deduced from all trails due to the pheromone
evaporation such that, τij ← (1− ρ) τij , ∀ (i, j), where 0 < ρ ≤ 1 is the rate
of evaporation. The pheromone trail values are kept to the interval [τmin, τmax]
and they are re-initialized to τmax every time the algorithm shows a stagnation
behaviour, where all ants follow the same path, or when no improved tour has
been found for several iterations [12].

The S-ACO algorithm faces a serious challenge when it is applied to DTSPs.
The pheromone trails of the previous environment will not make sense to the new
one. From the initial iterations the population of ants will eventually converge
to a solution, and, thus, high intensity of pheromone trails will be generated into
a single path. The pheromone trails will influence ants to the current path even
after a dynamic change. The pheromone evaporation is the only mechanism used
to eliminate the pheromone trails generated previously, and help ants to adapt
to the new environment. Therefore, S-ACO requires a sufficient amount of time
in order to recover when a dynamic change occurs.

3.2 Population-Based ACO

The population-based ACO (P-ACO) algorithm is the memory based version of
ACO [5]. It differs from the S-ACO algorithm described above since it follows a
different framework. The algorithm maintains a population of ants (solutions),
called population-list (memory), which is used to update pheromone trails with-
out any evaporation.

The initial phase and the first iterations of the P-ACO algorithm work in the
same way as with the S-ACO algorithm. The pheromone trails are initialized
with an equal amount of pheromone and the population-list of size K is empty.
For the first K iterations, the iteration-best ant deposits a constant amount
of pheromone, using Eq. (2) with ∆τbestij = (τmax − τinit)/K. Here, τmax and
τinit denote the maximum and initial pheromone amount, respectively. This
positive update procedure is performed whenever an ant enters the population-
list. On iteration K + 1, the ant that has entered the population-list first, i.e.,
the oldest ant, needs to be removed in order to make room for the new one, and
its pheromone trails are reduced by ∆τbestij , which equals to the amount added
when it entered the population-list before.

The population-list is a long-term memory, denoted as klong, since it may
contain ants from previous environments that survive in more than one iteration.
Therefore, when a change occurs, the ants stored in the population-list are re-
evaluated in order to be consistent with the new environment where different
traffic factors Fij are introduced. The pheromone trails are updated accordingly
using the ants currently stored in the population-list.

The P-ACO algorithm has a more aggressive mechanism to eliminate previ-
ously generated trails since the corresponding pheromone of the ants that are
replaced by other ants in the population-list are removed directly. However,
they face the same challenge with S-ACO because identical ants may be stored
in the population-list and dominate the search space with a high intensity of
pheromone to a single trail. However, the P-ACO algorithm may be beneficial
when a new environment is similar to an old one because the solutions stored
in the population-list from the previous environments will guide ants towards
promising areas in the search space.

4 Immigrants Based on Environmental Information

Many immigrants schemes have been found beneficial in genetic algorithms
(GAs) for binary-encoded DOPs [4, 13, 14]. Therefore, to handle the problems de-
scribed in S-ACO and P-ACO algorithms when addressing DTSPs, immigrants
schemes are integrated with ACO since they maintain a certain level of diversity
during the execution and transfer knowledge from previous environments [8, 9].
The immigrants are integrated within P-ACO as follows. A short-term memory
is used, denoted as kshort, where the ants survive only for one iteration. All
the ants of the current iteration replace the old ones, instead of only replacing
the oldest one as in P-ACO. Then, a predefined portion of the worst ants are

Algorithm 1 Generate Frequency Of Cities

1: input kshort // short term memory
2: input n // size of kshort
3: for k = 1 to n do

4: for i = 1 to l do

5: city one id = ant[k].tour[i]
6: city two id = ant[k].tour[i+ 1]
7: frequency of cities[city one id][city two id]+=1
8: frequency of cities[city two id][city one id]+=1
9: end for

10: end for

11: return frequency of cities

replaced by immigrant ants in kshort. When ants are removed from kshort, a
negative update is made to their pheromone trails and when new ants are added
to kshort, a positive update is made to their pheromone trails as in P-ACO.

Different immigrants schemes were integrated with P-ACO, such as the tradi-
tional immigrants [8], where immigrant ants are generated randomly, the elitism-
based immigrants [8], where immigrant ants are generate using the best ant from
kshort, and the memory-based immigrants [9], where immigrant ants are gener-
ated using the best ant from klong. The information obtained from the elitism-
and memory-based immigrants to transfer knowledge is based on individual in-
formation (one ant). The proposed EIIACO algorithm generates immigrants us-
ing environmental information (population of ants) to transfer knowledge from
the previous environment to a new one. EIIACO follows the same framework
with other ACO algorithms based on immigrants schemes, as described above,
but differs in the way immigrant ants are generated.

Environmental information-based immigrants are generated using all the ants
stored in kshort of the previous environment. Within EIIACO, a probabilistic dis-
tribution based on the frequency of cities is extracted, representing information
of the previous environment, which is used as the base to generate immigrant
ants. The frequency vector of each city ci, i.e, Dci , is constructed by taking the
ants of kshort as a dataset and locating city ci from them. The successor and
predecessor cities, i.e., ci−1 and ci+1, respectively, of city ci are obtained and
update Dci accordingly. For example, one is added to the corresponding posi-
tion i − 1 and i + 1 in Dci . The process is repeated for all cities and a table
S = (Dc1 , . . . ,Dcl) is generated (where l is the number of cities) as represented
in Algorithm 1.

An environmental information-based immigrant ant, i.e., Aeii = (c1, . . . , cl),
is generated as follows. First, randomly select the start city c1; then, the prob-
abilistic distribution of Dci−1

= (d1, . . . , dl) is used to select the next city ci
probabilistically as follows:

pi =
di

∑

j∈Dci−1

dj
, if i ∈Dci−1

, (3)

Algorithm 2 Generate Environmental Information-Based Immigrant

1: input l // number of cities
2: input k // immigrant ant identifier
3: input frequency of cities // see Algorithm 1
4: step = 1 // counter for construction step
5: ant[k].tour[step] = random[1, l]
6: while step < l do

7: step+=1
8: current city = ant[k].tour[step− 1]
9: sum probabilities = 0.0
10: for j = 1 to l do

11: if ant[k].visited[j] then
12: probability[j] = 0.0
13: else

14: probability[j] = frequency[current city][j]
15: sum probabilities += probability[j]
16: end if

17: end for

18: if sum probabilities = 0.0 then

19: selected = random[1, l]
20: while ant[k].visited[selected] do
21: selected = random[1, l]
22: end while

23: ant[k].tour[step] = selected

24: else

25: r = random[0, sum probabilities]
26: selected = 1
27: p = probability[selected]
28: while p < r do

29: selected+=1
30: p += probability[selected]
31: end while

32: ant[k].tour[step] = selected

33: end if

34: end while

35: ant[k].tour[l + 1] = ant[k].tour[1]
36: return ant[k] // generated immigrant ant

where di is the frequency number where city ci appears before or after city ci−1.
Note that all cities currently selected and stored in Aeii have a probability of
0.0 to be selected since they are already visited. In the case where the sum of
pi = 0.0, which means that all cities inDci−1

are visited, a random city j that has
not been visited yet is selected. This process is repeated until all cities are used in
order to generate a valid immigrant ant based on the environmental information,
as represented in Algorithm 2. During lines 7–17, the probabilistic distribution
is generated, during lines 18–24, the next city is selected randomly from the
unvisited cities, and during lines 25–33, the next city is selected probabilistically

from the frequency of cities generated from Algorithm 1. Note that in line 35
the first city stored in the ant is added to the end since the TSP tour is cyclic.

5 Simulation Experiments

5.1 Experimental Setup

In the experiments, we compare the proposed EIIACO algorithm with the S-
ACO and P-ACO algorithms, which are described in Section 3. Our implemen-
tation follows the guidelines of the ACOTSP3 framework. All the algorithms have
been applied to the eil76, kroA100, and kroA200 problem instances, obtained
from TSPLIB4. Most of the parameters have been optimized and obtained from
our preliminary experiments while others have been inspired from the literature
[5, 8, 9]. For all algorithms, µ = 25 ants are used, α = 1, β = 5 and q0 = 0.0
(except P-ACO where q0 = 0.9). Moreover, for S-ACO, ρ = 0.2. For P-ACO,
τmax = 1.0, and the size of klong is 3. For EIIACO, the size of kshort is 10 and four
immigrant ants are generated. For each algorithm on a DTSP instance, N = 30
independent runs were executed on the same dynamic changes. The algorithms
were executed for G = 1000 iterations and the overall offline performance of an
algorithm is calculated as follows:

P̄offline =
1

G

G
∑

i=1





1

N

N
∑

j=1

P ∗
ij



 , (4)

where P ∗
ij defines the tour cost of the best ant since the last dynamic change of

iteration i of run j [7].
The value of f was set to 20 and 100, which indicates fast and slowly changing

environments, respectively. The probability of m was set to 0.1, 0.25, 0.5, and
0.75, which indicates the degree of environmental changes from small, to medium,
to large, respectively. The intervals of the traffic factor were set to FL = 0 and
FU = 5. As a result, 8 dynamic environments, i.e., 2 values of f× 4 values of
m, were generated from each stationary TSP instance, to systematically analyze
the adaptation and searching capability of each algorithm in the DTSP.

5.2 Experimental Results and Analysis

The experimental results regarding the overall offline performance of the algo-
rithms for DTSPs are presented in Table 1. The corresponding statistical results
of two-tailed t -test with 58 degree of freedom at a 0.05 level of significance are
presented in Table 2, where “s+” or “s−” means that the first or the second
algorithm is significantly better, respectively, and “+” or “−” means that the
first or the second algorithm is insignificantly better, respectively. Moreover, to

3 http://www.aco-metaheuristic.org/aco-code/
4 http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/

Table 1. Experimental results of algorithms regarding the offline performance

Alg. & Inst. eil76

f = 20 f = 100

m ⇒ 0.1 0.25 0.5 0.75 0.1 0.25 0.5 0.75

S-ACO 403.1 441.1 541.7 752.4 378.5 426.5 505.6 711.5
P-ACO 396.9 437.2 538.5 750.9 381.5 432.3 511.8 723.8
EIIACO 392.5 432.0 532.8 739.3 379.3 428.5 506.4 710.6

Alg. & Inst. kroA100

f = 20 f = 100

m ⇒ 0.1 0.25 0.5 0.75 0.1 0.25 0.5 0.75

S-ACO 18806.3 21106.1 26000.6 35812.8 17726.2 19351.3 23672.0 34232.5
P-ACO 18043.5 20767.0 25777.5 35544.5 17891.0 19656.8 24089.5 34633.1
EIIACO 18041.3 20710.7 25447.4 34963.1 17789.5 19520.1 23800.9 34106.4

Alg. & Inst. kroA200

f = 20 f = 100

m ⇒ 0.1 0.25 0.5 0.75 0.1 0.25 0.5 0.75

S-ACO 25979.4 29058.4 36383.0 50344.3 23519.0 26037.0 33583.6 45338.0
P-ACO 24621.4 28525.8 35924.7 49620.5 23529.9 26284.5 33761.4 45314.5
EIIACO 24686.9 28132.4 35164.3 48190.4 23423.4 26136.9 33302.5 44388.0

Table 2. Statistical tests of comparing algorithms regarding the offline performance

Alg. & Inst. eil76 kroA100 kroA200

f = 20, m ⇒ 0.1 0.25 0.5 0.75 0.1 0.25 0.5 0.75 0.1 0.25 0.5 0.75

S-ACO ⇔ P-ACO s− s− s− s− s− s− s− s− s− s− s− s−

EIIACO ⇔ P-ACO s+ s+ s+ s+ + s+ s+ s+ s− s+ s+ s+
EIIACO ⇔ S-ACO s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+

f = 100, m ⇒ 0.1 0.25 0.5 0.75 0.1 0.25 0.5 0.75 0.1 0.25 0.5 0.75

S-ACO ⇔ P-ACO s+ s+ s+ s+ s+ s+ s+ s+ + s+ s+ −

EIIACO ⇔ P-ACO s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+
EIIACO ⇔ S-ACO s− s− − + s− s− s− s+ s+ s− s+ s+

better understand the dynamic behaviour of the algorithms, the offline perfor-
mance of the first 500 iterations is plotted in Fig. 1 for fast and slowly changing
environments with m = 0.1 and m = 0.75, respectively. From the experimental
results several observations can be made and are analyzed as follows.

First, S-ACO significantly outperforms P-ACO in almost all slowly changing
environments whereas it is beaten in fast changing environments; see the results
of S-ACO⇔ P-ACO in Table 2. This result validates that the S-ACO algorithm
can adapt to dynamic changes, but it needs sufficient time to recover and locate
the new optimum. The S-ACO algorithm uses pheromone evaporation in order
to eliminate pheromone trails that are not useful for the new environment and
helps the population of ants to forget the previous solution where they have
converged to. On the other hand, P-ACO uses more aggressive method to elim-

inate previous pheromone trails, which guides the population of ants to keep
up with the changing environments, even if they change fast. From Fig. 1, it
can be observed that P-ACO converges faster than S-ACO, which helps in fast
changing environments but not in slowly changing environments. As we have
discussed previously, P-ACO has a high risk to maintain identical ants in the
population-list and may get trapped in a local optimum solution.

Second, EIIACO outperforms P-ACO in almost all dynamic test environ-
ments; see the results of EIIACO ⇔ P-ACO in Table 2. However, P-ACO is
competitive with EIIACO when the environment is slightly changing, e.g., in
the kroA200 with f = 20 and m = 0.1. This is because the solutions stored
in the population-list of P-ACO may be fit only when the previous environ-
ment has many similarities with the new one. In cases where the environmental
changes are medium to significant, the environmental information-based immi-
grants transfer more knowledge to the pheromone trails of the next iteration and
increase the diversity. In slowly changing environments, EIIACO outperforms P-
ACO in all dynamic test cases, either with small or large magnitude of changes.
This is because EIIACO has enough time to gain knowledge from the previous
environment.

Third, EIIACO outperforms S-ACO in all fast changing environments whereas
it is competitive in some slowly changing environments; see the results of EIIACO
⇔ S-ACO in Table 2. On the smallest problem instance, i.e., eil76, S-ACO is
significantly better than EIIACO because the diversity provided from the immi-
grants scheme may not be helpful. Furthermore, it is easier for the population in
S-ACO to forget previous solutions and become more adaptive. This validates
our expectation for S-ACO, where the time needed to adapt depends on the size
of the problem and the magnitude of change. As the problem size and magni-
tude of change increases, EIIACO is significantly better than S-ACO because
the population in S-ACO needs more time to adapt in more complex problem
instances; see Fig. 1. Moreover, it can be observed that when the magnitude of
change is small, S-ACO converges slowly to a better solution, whereas when the
magnitude of change is large, EIIACO converges quickly to a better solution.

Finally, in order to investigate the effect of the environmental information-
based immigrants scheme in the population diversity of ACO, we calculate the
mean population diversity of all iterations as follows:

D̄iv =
1

G

G
∑

i=1





1

N

N
∑

j=1





1

µ(µ− 1)

µ
∑

p=1

µ
∑

q 6=p

Mpq







 , (5)

where G is the number of iterations, N is the number of runs, µ is the size of the

population, Mpq = 1− CE(p,q)
l

is the metric that defines the difference between
ant p and ant q, where CE(p, q) is the common edges between the ants and l is the
number of cities. A value of Mpq closer to 0 means that the two ants are similar.
The total diversity results for all dynamic test cases are presented in Fig. 2. It
can be observed that S-ACO maintains the highest diversity. Especially, in fast
changing environments, S-ACO has an extremely high level of diversity, and this

 360

 380

 400

 420

 440

 460

 480

0 100 200 300 400 500

O
ff

lin
e

Pe
rf

or
m

an
ce

Iteration

eil76, f = 20, m = 0.10

S-ACO
P-ACO

EIIACO

 700

 800

 900

 1000

 1100

 1200

0 100 200 300 400 500

O
ff

lin
e

Pe
rf

or
m

an
ce

Iteration

eil76, f = 100, m = 0.75

S-ACO
P-ACO

EIIACO

 17000

 18000

 19000

 20000

 21000

 22000

 23000

0 100 200 300 400 500

O
ff

lin
e

Pe
rf

or
m

an
ce

Iteration

kroA100, f = 20, m = 0.10

S-ACO
P-ACO

EIIACO

 25000

 30000

 35000

 40000

 45000

 50000

 55000

0 100 200 300 400 500

O
ff

lin
e

Pe
rf

or
m

an
ce

Iteration

kroA100, f = 100, m = 0.75

S-ACO
P-ACO

EIIACO

 22000

 23000

 24000

 25000

 26000

 27000

 28000

 29000

 30000

 31000

0 100 200 300 400 500

O
ff

lin
e

Pe
rf

or
m

an
ce

Iteration

kroA200, f = 20, m = 0.10

S-ACO
P-ACO

EIIACO

 40000

 45000

 50000

 55000

 60000

 65000

 70000

0 100 200 300 400 500

O
ff

lin
e

Pe
rf

or
m

an
ce

Iteration

kroA200, f = 100, m = 0.75

S-ACO
P-ACO

EIIACO

Fig. 1. Dynamic behaviour of investigated algorithms on different DTSPs

shows that it does not have sufficient time to converge. The P-ACO algorithm has
the lowest diversity level, which shows the negative effect when identical ants are
stored in the population-list. EIIACO maintains higher diversity than P-ACO
and much lower diversity than S-ACO. This shows that the diversity generated
from the proposed scheme is guided. Moreover, it shows that ACO algorithms
that maintain higher diversity levels than others do not always achieve better
performance for the DTSP; see Table 1 and Fig. 2.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

0.10 0.25 0.50 0.75

D
iv

er
si

ty

m

eil76, f = 20
S-ACO
P-ACO

EIIACO

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

0.10 0.25 0.50 0.75

D
iv

er
si

ty

m

kroA100, f = 20
S-ACO
P-ACO

EIIACO

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

0.10 0.25 0.50 0.75

D
iv

er
si

ty

m

kroA200, f = 20
S-ACO
P-ACO

EIIACO

 0

 0.1

 0.2

 0.3

 0.4

 0.5

0.10 0.25 0.50 0.75

D
iv

er
si

ty

m

eil76, f = 100
S-ACO
P-ACO

EIIACO

 0

 0.1

 0.2

 0.3

 0.4

 0.5

0.10 0.25 0.50 0.75

D
iv

er
si

ty

m

kroA100, f = 100
S-ACO
P-ACO

EIIACO

 0

 0.1

 0.2

 0.3

 0.4

 0.5

0.10 0.25 0.50 0.75

D
iv

er
si

ty

m

kroA200, f = 100
S-ACO
P-ACO

EIIACO

Fig. 2. Overall population diversity of algorithms for different dynamic test problems

6 Conclusions and Future Work

Several immigrants schemes based on individual information, e.g., elitist-based
immigrants, have been integrated with ACO algorithms to address different DT-
SPs in the literature [8, 9]. In this paper, an immigrants scheme based on envi-
ronmental information, i.e., the frequency of cities appearing next to each other,
is proposed for ACO to address the DTSP with traffic factors. A number of gen-
erated immigrants replace the worst ants in the current population in order to
maintain diversity and transfer knowledge to the pheromone trails for the ants
that will construct solutions on the next iteration.

From the experimental results of comparing the proposed EIIACO algorithm
with S-ACO and P-ACO algorithms on different cases of DTSPs, the following
concluding remarks can be drawn. First, ACO algorithms can be benefited by
transferring knowledge from previous environments to the pheromone trails us-
ing immigrants schemes for DTSPs. Second, S-ACO has good performance in
slowly and slightly changing environments and it is comparable with EIIACO,
especially on small problem instances. Third, EIIACO outperforms other ACO
algorithms in fast changing environments, while it is comparable with P-ACO
in some slightly changing environments. Fourth, EIIACO is significantly better
than P-ACO in almost all slowly changing environments. Finally, guided diver-
sity is usually better than random diversity.

For future work, it will be interesting to compare or hybridize EIIACO with
other immigrants schemes, which are based on individual information [8, 9], and
investigate the interaction between the two types of schemes. As another inter-
esting future work, EIIACO can be applied in more challenging optimization
problems, e.g., vehicle routing problems [11].

7 Acknowledgements

This work was supported by the Engineering and Physical Sciences Research
Council (EPSRC) of UK under Grant EP/E060722/2.

References

1. Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm intelligence: from natural to
artificial systems. Oxford University Press, New York (1999)

2. Dorigo, M., Maniezzo, V., Colorni, A.: Ant system: optimization by a colony of
cooperating agents. IEEE Trans. Syst., Man and Cybern., Part B: Cybern. 26(1),
29–41 (1996)

3. Eyckelhof, C.J., Snoek, M.: Ant system for a dynamic TSP. In: ANTS 2002:
Proc. 3rd Int. Workshop on Ant Algorithms, pp. 88–99 (2002)

4. Grefenestette, J.J.: Genetic algorithms for changing environments. In: Proc. 2nd
Int. Conf. on Parallel Problem Solving from Nature, pp. 137–144 (1992)

5. Guntsch, M., Middendorf, M.: Applying population based ACO to dynamic opti-
mization problems. In: Dorigo, M., Di Caro, G.A., Sampels, M. (eds.) Ant Algo-
rithms 2002. LNCS, vol. 2463, pp. 111–122. Springer, Heidelberg (2002)

6. Guntsch, M., Middendorf, M.: Pheromone modification strategies for ant algo-
rithms applied to dynamic TSP. In: Boers, E.J.W., Gottlieb, J., Lanzi, P.L., Smith,
R.E., Cagnoni, S., Hart, E., Raidl, G.R., Tijink, H. (eds.) EvoIASP 2001, EvoWork-
shops 2001, EvoFlight 2001, EvoSTIM 2001, EvoCOP 2001, and EvoLearn 2001.
LNCS, vol. 2037, pp. 213–222. Springer, Heidelberg (2001)

7. Jin, Y., Branke, J.: Evolutionary optimization in uncertain environments - a survey.
IEEE Trans. Evol. Comput. 9(3), 303–317 (2005)

8. Mavrovouniotis, M., Yang, S.: Ant colony optimization with immigrants schemes
for dynamic environments. In: Schaefer, R., Cotta, C., Kolodziej, J., Rudolph, G.
(eds.) PPSN XI. LNCS, vol. 6239, pp. 371–380. Springer, Heidelberg (2010)

9. Mavrovouniotis, M., Yang, S.: Memory-based immigrants for ant colony optimiza-
tion in changing environments. In: Di Chio, C., Cagnoni, S., Cotta, C., Ebner,
M., Ekárt, A., Esparcia-Alcázar, A., Merelo, J., Neri, F., Preuss, M., Richter,
H., Togelius, J., Yannakakis, G. (eds.) EvoApplications 2011. LNCS, vol. 6624,
pp. 324–333. Springer, Heidelberg (2011)

10. Neumann, F., Witt, C.: Runtime analysis of a simple ant colony optimization
algorithm. Algorithmica 54(2), 243–255 (2009)

11. Rizzoli, A. E., Montemanni, R., Lucibello, E., Gambardella, L. M.: Ant colony
optimization for real-world vehicle routing problems – from theory to applications.
Swarm Intelli. 1(2), 135–151 (2007)

12. Stützle, T., Hoos, H.: The MAX-MIN ant system and local search for the traveling
salesman problem. In: Proc. 1997 IEEE Int. Conf. on Evol. Comput., pp. 309–314
(1997)

13. Yang, S.: Genetic algorithms with memory and elitism based immigrants in dy-
namic environments. Evol. Comput. 16(3), 385–416 (2008)

14. Yu, X., Tang, K., Yao, X.: An immigrants scheme based on environmental informa-
tion for genetic algorithms in changing environments. In: Proc. 2008 IEEE Cong.
of Evol. Comput., pp. 1141–1147 (2008)

15. Yu, X., Tang, K., Chen, T., Yao, X.: Empirical analysis of evolutionary algorithms
with immigrants schemes for dynamic optimization. Memetic Comput. 1(1), 3–24
(2009)

