
Adapting the Pheromone Evaporation Rate in

Dynamic Routing Problems

Michalis Mavrovouniotis and Shengxiang Yang

School of Computer Science and Informatics, De Montfort University
The Gateway, Leicester LE1 9BH, United Kingdom

m.mavrovouniotis@hotmail.com and syang@dmu.ac.uk

Abstract. Ant colony optimization (ACO) algorithms have proved to
be able to adapt to dynamic optimization problems (DOPs) when stag-
nation behaviour is avoided. Several approaches have been integrated
with ACO to improve its performance for DOPs. The adaptation capa-
bilities of ACO rely on the pheromone evaporation mechanism, where the
rate is usually fixed. Pheromone evaporation may eliminate pheromone
trails that represent bad solutions from previous environments. In this
paper, an adaptive scheme is proposed to vary the evaporation rate in
different periods of the optimization process. The experimental results
show that ACO with an adaptive pheromone evaporation rate achieves
promising results, when compared with an ACO with a fixed pheromone
evaporation rate, for different DOPs.

1 Introduction

Ant colony optimization (ACO) algorithms have shown good performance when
applied to difficult optimization problems under static environments [2]. How-
ever, in many real-world applications, we have to deal with dynamic environ-
ments, where the optimum changes and needs re-optimization. It is believed that
ACO algorithms can adapt to dynamic changes since they are inspired from na-
ture, which is a continuous adaptation process [7]. In practice, they can adapt by
transferring knowledge from past environments, using the pheromone trails, to
speed up re-optimization. The challenge to such algorithms lies in how quickly
they can react to dynamic changes in order to maintain the high quality of out-
put instead of early stagnation behaviour, where all ants construct the same
solutions and lose their adaptation capabilities.

Developing strategies for ACO algorithms to deal with stagnation behaviour
and address dynamic optimization problems (DOPs) has attracted a lot of at-
tention, which includes local and global restart strategies [6], memory-based
approaches [5], pheromone manipulation schemes to maintain diversity [3], and
immigrants schemes to increase diversity [8].

The adaptation capabilities of ACO rely on the pheromone evaporation where
a constant amount of pheromone is deducted to eliminate pheromone trails that
represent bad solutions that may bias ants to search to the non-promising areas
of the search space. In this paper, the impact of the pheromone evaporation rate



is examined on DOPs, and an adaptive scheme is designed for ACO. Adaptive
methods have been successfully applied for different parameters of ACO, includ-
ing the evaporation rate [10, 12]. However, these methods have been investigated
on static optimization problems.

The rest of the paper is organized as follows. Section 2 describes the genera-
tion of dynamic routing DOPs. Section 3 describes an ACO algorithm and gives
details for its adaptation capabilities in DOPs. Section 4 describes the proposed
scheme where the evaporation rate in ACO is adapted. Section 5 describes the
experiments carried out on a series of different DOPs. Finally, Section 6 con-
cludes this paper with directions for future work.

2 Generating Dynamic Routing Environments

Routing problems are usually illustrated using weighted graphs. Let G = (V,E)
be a weighted graph where V is a set of n nodes and E is a set of links. Each
node i has a location defined by (x, y) and each link (i, j) is associated with a
non-negative distance dij . Usually, the distance matrix of a problem instance is
defined as D = (dij)n×n.

In order to generate dynamic routing problems, the dynamic benchmark
generator for permutation-encoded problems (DBGP) [9] is used, which converts
any static problem instance to a dynamic environment. In case the optimum of
the static problem instance is known, then it will remain known during the
environmental changes, because DBGP biases algorithms to search to a new
location in the fitness landscape, instead of modifying the fitness landscape.

Every f iterations a random vector r(T ) is generated that contains all the
objects of a problem instance of size n, where T = ⌈t/f⌉ is the index of the
period of change, t is the iteration count of the algorithm, and f determines
the frequency of change. The magnitude m of change depends on the number
of swapped locations of objects. More precisely, m ∈ [0.0, 1.0] defines the degree
of change, in which only the first m × n of r(T ) object locations are swapped.
Then a randomly re-ordered vector r′(T ) is generated that contains only the first
m × n objects of r(T ). Therefore, exactly m× n pairwise swaps are performed
using the two random vectors.

3 ACO in Dynamic Environments

3.1 MAX -MIN Ant System

The ACO metaheuristic consists of a population of µ ants where they construct
solutions and share their information among each other via their pheromone
trails. The first ACO algorithm developed is the Ant System (AS) [1]. Many
variations of the AS have been applied to difficult optimization problems [2].

One of the best performing ACO algorithm is theMAX -MIN AS (MMAS)
[11]. Ants read and write pheromones in order to construct their solutions. Each



ant k uses a probabilistic rule to choose the next city to visit. The decision rule
an ant k uses to move from city i to city j is defined as follows:
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[τij ]
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where τij is the existing pheromone trail between cities i and j, ηij = 1/dij is the
heuristic information available a priori, where dij is the distance between cities
i and j. N k

i denotes the neighbourhood of cities for ant k when the current city
is i. α and β are the two parameters which determine the relative influence of τ
and η, respectively.

The pheromone trails in MMAS are updated by applying evaporation as
follows:

τij ← (1− ρ) τij , ∀(i, j), (2)

where ρ is the evaporation rate which satisfies 0 < ρ ≤ 1, and τij is the existing
pheromone value. After evaporation the best ant deposits pheromone as follows:

τij ← τij +∆τbestij , ∀(i, j) ∈ T best, (3)

where ∆τbestij = 1/Cbest is the amount of pheromone that the best ant deposits

and Cbest defines the solution quality of tour T best. Since only the best ant de-
posits pheromone, the algorithm will quickly converge towards the best solution
of the first iteration. Therefore, pheromone trail limits are imposed in order to
avoid this behaviour.

3.2 Response to Dynamic Changes

ACO algorithms are able to use knowledge from previous environments using
the pheromone trails generated in the previous iterations. For example, when
the changing environments are similar, the pheromone trails of the previous
environment may provide knowledge to speed up the optimization process to
the new environment. However, the algorithm needs to be flexible enough to
accept the knowledge transferred from the pheromone trails, or eliminate the
pheromone trails, in order to adapt well to the new environment.

ACO algorithms can be applied directly to DOPs without any modifications
due to the pheromone evaporation. Lowering the pheromone values enables the
algorithm to forget bad decisions made in previous iterations. When a dynamic
change occurs, evaporation eliminates the pheromone trails of the previous en-
vironment from areas that are not visited frequently and may bias ants not to
adapt well to the new environment.

The adaptation via pheromone evaporation may be a sufficient choice when
the changing environments are similar, otherwise a complete re-initialization of
the pheromone trails after a dynamic change occurs may be a better choice.
However, such action is available only in DOPs where the frequency of change
is available beforehand or in DOPs where the dynamic changes can be detected.
In our case, the dynamic changes can be detect by re-evaluating some stored
solutions, used as detectors, in every iteration [8].



4 ACO with Adaptive Evaporation Rate

4.1 Effect of the Pheromone Evaporation Rate

Although ACO has adaptation capabilities due to the pheromone evaporation,
the time required to adapt to the new environment may depend on the problem
size and the magnitude of change. When the environmental change is severe
then it may take longer to eliminate unused pheromone trails, therefore a high
evaporation rate may be more suitable. More precisely, a high evaporation rate
will eliminate the high intensity of pheromone trails that are usually concen-
trated to the optimum of the previous environment that is caused by stagnation
behaviour. On the other hand, a high pheromone evaporation rate may destroy
information that can be used on further environments, since any bad solution in
the current environment may be good in the next environment.

In traditional ACO algorithms the evaporation rate is usually fixed. A low
evaporation rate corresponds to slow adaptation, whereas a high evaporation
rate corresponds to fast adaptation. However, we believe that a fixed evaporation
rate is not the best choice when addressing DOPs, since at different stages of
the optimization process for different optimization problems and under different
dynamic environments, the most appropriate evaporation rate varies.

4.2 Detect Stagnation Behaviour

In order to adapt the value of the pheromone evaporation during the search pro-
cess, the exploration of the algorithm is measured in order to detect stagnation
behaviour. A direct way that can give an indication of exploration is to measure
the diversity of the solutions. The measurement for routing problems is usually
based on the common edges between the solutions [8]. Such a measure may be
computational expensive since there are O(n2) possible pairs to be compared
and each single comparison has a complexity of O(n).

A more efficient measurement is the λ-branching factor [4], which measures
the distribution of the pheromone trail values. The idea of λ-branching is de-
scribed as follows: If for a given object i ∈ V , the concentration of pheromone
trails on almost all the incident arcs becomes very small but is large for a few
others, then the freedom of exploring other paths from object i is very limited.
Therefore, if this situation arises simultaneously for all objects of graph G, the
search space that is searched by ants becomes relatively small.

The average λ̄(t) branching factor at iteration t is defined as follows:

λ̄(t) =
1

2n

n
∑

i=1

λi, (4)

where n is the number of objects in the corresponding graph and λi is the λ-
branching factor for object i, which is defined as follows:

λi =

d
∑

j=1

Lij (5)



where d is the number of available arcs incident to object i and Lij is defined as
follows:

Lij =

{

1, if (τ imin + λ(τ imax − τ imin)) ≤ τij ,

0, otherwise.
(6)

where λ is a constant parameter (λ = 0.05 by default [4]), τ imin and τ imax are the
minimum and maximum pheromone trail values on the arcs incident to object
i, respectively. A value of λ̄(t) close to 1 indicates stagnation behaviour.

4.3 Adapting Pheromone Evaporation Rate

Considering the statements above, if the algorithm reaches stagnation behaviour,
the evaporation rate needs to be increased in order to eliminate the high intensity
of pheromone trails in some areas and increase exploration. However, very high
exploration may disturb the optimization process because of randomization [8].

According to the behaviour of the algorithm in terms of searching, we have
the following pheromone evaporation rate update rule:

ρ(t) =

{

ρ(t− 1)− σ, if λ̄(t) > 1,

ρ(t− 1) + σ, otherwise.
(7)

where λ̄(t) is defined in Eq. (4) and σ is the step size of varying the evapora-
tion rate ρ at iteration t. A good value of σ was found to be 0.001 because a
higher value may quickly increase ρ to an extreme evaporation rate and destroy
information and a smaller value may not have any effect to the performance of
ACO.

5 Experimental Study

5.1 Experimental Setup

In the experiments, we compare a MMAS with a global re-initialization of
the pheromone trails, denoted asMMASR, and aMMAS with the best fixed
evaporation rate, denoted asMMASB against theMMAS with the proposed
adaptive pheromone evaporation, denoted as MMASA. For all algorithms, we
set α = 1, β = 5, q0 = 0.0, and µ = 50, except forMMASR where µ = 50− dT ,
where dT = 6 is the number of detectors. The evaporation rate for MMASR
was set to ρ = 0.4. ForMMASB the best value from ρ ∈ {0.02, 0.2, 0.4, 0.6, 0.8}
was selected, whereas forMMASA ρ was adapted by Eq. (7).

For each algorithm on a DOP, N = 30 independent runs were executed on
the same environmental changes. The algorithms were executed for G = 1000
iterations and the overall offline performance is calculated as follows:

P̄offline =
1

G

G
∑

i=1





1

N

N
∑

j=1

P ∗
ij



 (8)
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Fig. 1. Impact of the evaporation rate on the offline performance of a conventional
MMAS on different DOPs.

where P ∗
ij defines the tour cost of the best ant since the last dynamic change of

iteration i of run j [7].
We took three travelling salesman problem (TSP) instances1 and three vehi-

cle routing problem (VRP) instnaces2 as the base and used the DBGP described
in Section 2 to generate DOPs. The value of f was set to 10 and 100, which indi-
cate fast and slowly changing environments, respectively. The value of m was set
to 0.1, 0.25, 0.5, and 0.75, which indicate the degree of environmental changes
from small, to medium, to large, respectively. As a result, eight dynamic en-
vironments, i.e., 2 values of f × 4 values of m, for each problem instance are
generated to systematically analyze the adaptation and searching capability of
algorithms on the DOPs.

5.2 Experimental Results and Analysis

The experimental results regarding the different ρ values for MMASB on dy-
namic TSPs are presented in Fig. 1. Note that the corresponding experimental
results for dynamic VRPs show similar observations and are not presented here.
The offline performance of the different algorithms on dynamic TSPs and dy-
namic VRPs and the corresponding statistical results of Wilcoxon rank-sum test,
at the 0.05 level of significance are presented in Table 1 and Table 2, respectively.
Moreover, the dynamic behaviour of the algorithms is presented in Fig. 2. From
the experimental results, several observations can be made by comparing the
behaviour of the algorithms.

1 http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/.
2 http://neo.lcc.uma.es/vrp/.



Table 1. Experimental results of the algorithms regarding the offline performance.

Travelling Salesman Problem Instances

f = 10 f = 100

m ⇒ 0.1 0.25 0.5 0.75 0.1 0.25 0.5 0.75

Alg. & Inst. kroA100(Optimum=21282)

MMASB 22010 23844 24989 25401 21570 21850 22227 22430
MMASA 22069 23542 24448 24800 21683 21819 22049 22468
MMASR 24576 24580 24583 24588 22244 22252 22224 22212

Alg. & Inst. kroA150(Optimum=26524)

MMASB 28488 31013 32070 32426 27315 27814 28330 28526
MMASA 28690 30507 31444 31778 27299 27726 28140 28262
MMASR 31520 31526 31515 31516 28208 28204 28215 28198

Alg. & Inst. kroA200(Optimum=29368)

MMASB 32454 35300 36394 36711 30071 30796 31644 31863
MMASA 32353 34524 35560 35872 30167 30645 31245 31506
MMASR 35375 35368 35362 35375 31282 31368 31338 31380

Vehicle Routing Problem Instances

f = 10 f = 100

m ⇒ 0.1 0.25 0.5 0.75 0.1 0.25 0.5 0.75

Alg. & Inst. F-n45-k4(Optimum=724)

MMASB 800.42 807.56 816.98 823.20 792.79 796.24 796.33 797.65
MMASA 800.55 805.22 814.02 820.39 795.63 797.66 797.22 799.04
MMASR 812.16 812.06 812.34 812.16 799.76 800.46 799.55 799.70

Alg. & Inst. F-n72-k4(Optimum=237)

MMASB 268.69 279.67 285.76 288.36 259.95 263.00 265.82 266.81
MMASA 270.36 281.13 286.47 289.20 261.17 263.76 267.18 267.44
MMASR 291.09 291.14 291.14 291.23 270.64 270.91 271.11 270.61

Alg. & Inst. F-n135-k7(Optimum=1162)

MMASB 1298.71 1339.50 1365.33 1375.41 1255.00 1271.66 1286.62 1291.91
MMASA 1297.46 1335.77 1363.29 1372.89 1255.21 1269.49 1283.98 1288.14
MMASR 1348.90 1348.65 1348.87 1348.85 1281.08 1283.68 1283.35 1282.20

First, when the evaporation rate is set to ρ = 0.02, which is the recommended
value forMMAS on static problems [2, p. 71], has the worst results on DOPs, as
observed from Fig. 1. Furthermore, a high evaporation rate, i.e., ρ ≥ 0.4, often
achieves better performance when f = 10. This is natural because when the
environment changes quickly, a fast adaptation is required. When f = 100, the
evaporation rate depends on the magnitude of change, e.g., when m = 0.1, ρ =
0.2 shows better performance. However, as the magnitude of change increases,
a higher value of ρ achieves better performance. This validates our claim that
the time required for ACO, in which pheromone evaporation is used, to adapt
to the new environment depends on the magnitude of change.

Second,MMASB is outperformed byMMASR on most DOPs withm = 0.5
and m = 0.75, whereas the former outperforms the latter on all DOPs with
m = 0.1 and m = 0.25; see the comparisonsMMASB ⇔MMASR in Table 2.



Table 2. Statistical tests of comparing algorithms regarding the offline performance,
where “+” or “−” means that the first algorithm is significantly better or the second
algorithm is significantly better, respectively, and “∼” means that the algorithms are
not significantly different.

Travelling Salesman Problem Instances

Alg. & Inst. kroA100 kroA150 kroA200

f = 10, m ⇒ 0.1 0.25 0.5 0.75 0.1 0.25 0.5 0.75 0.1 0.25 0.5 0.75

MMASA ⇔ MMASB − + + + − + + + + + + +
MMASA ⇔ MMASR + + + − + + + − + + − −

MMASB ⇔ MMASR + + − − + + − − + + − −

f = 100, m ⇒ 0.1 0.25 0.5 0.75 0.1 0.25 0.5 0.75 0.1 0.25 0.5 0.75

MMASA ⇔ MMASB − ∼ + ∼ ∼ + + + ∼ + + +
MMASA ⇔ MMASR + + + − + + + ∼ + + + −

MMASB ⇔ MMASR + + ∼ − + + − − + + − −

Vehicle Routing Problem Instances

Alg. & Inst. F-n45-k4 F-n72-k4 F-n135-k7

f = 10, m ⇒ 0.1 0.25 0.5 0.75 0.1 0.25 0.5 0.75 0.1 0.25 0.5 0.75

MMASA ⇔ MMASB ∼ + + + − − − − ∼ + + +
MMASA ⇔ MMASR + + − − + + + + + + − −

MMASB ⇔ MMASR + + − − + + + + + + − −

f = 100, m ⇒ 0.1 0.25 0.5 0.75 0.1 0.25 0.5 0.75 0.1 0.25 0.5 0.75

MMASA ⇔ MMASB ∼ ∼ ∼ − − ∼ − ∼ ∼ ∼ ∼ ∼

MMASA ⇔ MMASR + + + ∼ + + + + + + ∼ −

MMASB ⇔ MMASR + + + − + + + + + + ∼ −

This is because when the environments are similar, due to a slight change, the
pheromone trails of the previous environment help to start the optimization pro-
cess from a promising area in the search space, whereas when the environments
are different, due to a severe change, the pheromone trails of the previous envi-
ronment mislead the searching to non-promising areas. This validates our claim
that the adaptation of pheromone evaporation is useful when the environments
are similar and useful knowledge can be transferred.

Finally, the proposedMMASA outperformsMMASB on most TSP DOPs
when m = 0.25, m = 0.5 and m = 0.75, whereas the former is comparable
with the latter when m = 0.1; see the comparisons MMASA ⇔ MMASB
in Table 2. This is probably because when the evaporation is high, it may de-
stroy useful knowledge from the previous environment after a dynamic change.
Therefore, a low evaporation rate sometimes may be a better choice, even when
the dynamic change is severe, for the first iterations after a dynamic change to
obtain knowledge, and a higher evaporation rate may be a better choice later
on to avoid the stagnation behaviour. This can be observed from Fig. 2 where
MMASA converges faster and to a better optimum thanMMASB . Fortunately,
even ifMMASA does not achieve the best result compared toMMASB , e.g.,
when f = 100 for VRP DOPs, its performance level is still satisfactory since
they are usually not significantly different. This can be expected since the re-
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Fig. 2. Dynamic behaviour of the algorithms with respect to offline performance
against the iterations in slowly changing environments for the first 500 iterations in
different DOPs: 1) kroA200 for TSP; and 2) F-n135-k7 for VRP.

sults ofMMASB are obtained via fine-tuning the evaporation rate. Moreover,
MMASA outperformsMMASR in most DOPs, expect whenm = 0.75, because
of the same reasons discussed forMMASB previously.

6 Conclusions

This paper examines the impact of the pheromone evaporation on the perfor-
mance of ACO algorithms for DOPs. An adaptive evaporation rate is proposed
for ACO to deal with DOPs, which is based on the detection of the stagnation
behaviour. Experimental studies were performed on a series of DOPs to investi-
gate the performance of the proposed approach. From the experimental results,
several conclusions can be drawn. First, pheromone evaporation is important
for ACO to address DOPs. Second, the higher the magnitude of the dynamic
change, the higher the evaporation rate is needed. Third, the adaptation capa-
bilities of pheromone evaporation perform well only when the environments are
similar; otherwise, a re-initialization of the pheromone trails is required. Forth,
the proposed adaptive evaporation rate promotes the performance of ACO in
many routing DOPs but depends on the dynamics and the type of the DOP.



Finally, compared to the tedious work of fine-tuning the pheromone evaporation
rate manually, the proposed adaptive scheme is more convenient and has suffi-
ciently good performance under different conditions. However, the performance
is slightly decreased in some cases, for the sake of this convenience.

For future work, it will be interesting to consider other ways for adapting
the evaporation rate. Moreover, there are evidence that the more parameters
adapted in ACO, the better the performance in optimization problems with
static environment [10]. Therefore, another future work is to adapt more ACO
parameters, e.g., α and β, in parallel for DOPs.
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