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Abstract. Ant colony optimization (ACO) algorithms have proved to
be able to adapt to dynamic optimization problems (DOPs) when stag-
nation behaviour is addressed. Usually, permutation-encoded DOPs, e.g.,
dynamic travelling salesman problems, are addressed using ACO algo-
rithms whereas binary-encoded DOPs, e.g., dynamic knapsack problems,
are tackled by evolutionary algorithms (EAs). This is because of the ini-
tial developments of the algorithms. In this paper, a binary version of
ACO is introduced to address binary-encoded DOPs and compared with
existing EAs. The experimental results show that ACO with an appro-
priate pheromone evaporation rate outperforms EAs in most dynamic
test cases.

1 Introduction

Ant colony optimization (ACO) algorithms have shown good performance when
applied to difficult optimization problems under static environments [1]. In gen-
eral, ACO has been initially developed to tackle permutation-encoded problems
[1]. There are also a few applications for binary-encoded problems, such as the
multidimensional knapsack problem [2–6]. Most of the existing ACO applications
assume stationary environments. However, in many real-world applications we
have to deal with dynamic environments, where the optimum changes and needs
re-optimization.

Similarly to other nature-inspired algorithms [7, 8], ACO algorithms can
adapt to dynamic changes since they are also inspired from nature, which is a
continuous adaptation process. Practically, ACO can adapt to dynamic changes
by transferring knowledge from past environments, using the pheromone trails, to
speed up re-optimization [9]. The challenge to such algorithms when addressing
dynamic optimization problems (DOPs) is that they suffer from the stagnation
behaviour, where all ants construct the same solution from early stages of the
algorithm execution. The adaptation capabilities of ACO rely on the pheromone
evaporation where a constant amount of pheromone is deducted to eliminate
pheromone trails that represent bad solutions that may bias ants to search to
the non-promising areas of the search space. ACO algorithms have been success-
fully applied to dynamic extensions of the aforementioned permutation-encoded



problems, e.g., dynamic travelling salesman problems (TSPs) [10, 11] and dy-
namic vehicle routing problems (VRPs) [12, 13].

In this paper, we investigate the performance of ACO for solving dynamic
binary-encoded optimization problems. Such problems have been successfully
tackled by evolutionary algorithms (EAs) [14, 15], but not by ACO. Therefore,
the original ACO framework is modified to construct binary-encoded solutions
rather than permutation-encoded solutions (e.g., for the TSP) [16, 4]. In addi-
tion, we study the effect of introducing different pheromone evaporation rates
and pheromone update policies into ACO for DOPs. As a result, a binary ACO
framework, denoted ACO B, is established and integrated to the exclusive-or
(XOR) DOP generator which can generate different dynamic test cases from
given stationary binary-encoded problems [17]. Using this generator, an exper-
imental study of comparing the proposed ACOB with an existing genetic algo-
rithm (GA) [14] and a population-based incremental learning (PBIL) algorithm
[15].

The rest of the paper is organized as follows. Section 2 describes in detail the
proposed ACOB. Section 3 describes the dynamic test environment for this study,
including the details for the integration of ACOB with the XOR DOP. Section
4 describes the experiments carried out on a series of different DOPs including
relevant analysis. Finally, Section 5 concludes this paper with directions for
future work.

2 Binary Ant Colony Optimization

The ACO metaheuristic consists of a population of µ ants that construct solu-
tions and share information among each other via their pheromone trails. ACO
was initially developed for the TSP [18] and later on applied for other opti-
mization problems [1]. Only a few applications exist where the ants construct
solutions with binary representation [16], mainly for the multidimensional knap-
sack problem [2–6]. In most existing applications only stationary environments
were considered.

The proposed binary-version of ACO (i.e., ACOB) closely follows the origi-
nal ACO framework (see more details in [1]). Hence, in this section, we describe
in detail only the ACOB. The main differences of the ACOB from most exist-
ing binary-versions of ACO is that: it is designed to generally address binary-
encoded problems rather than being dependent on the characteristics of the mul-
tidimensional knapsack problem, with the exception of the binary ant algorithm
(BAA) [16]. This algorithm was also applied to dynamic problems but was not
evaluated on the XOR DOP which is the most acceptable test suite for dynamic
environments. The main difference of the proposed ACO B from BAA relies on
the way pheromone trails are updated.

2.1 Initialization

Typically, the pheromone table P of an ACO algorithm for the TSP, is defined
as P= (τij)n×n, where n is the size of the problem instance (i.e., the number



Fig. 1. Construction graph of ants for binary-encoded optimization problems of n size

of cities for the TSP) and τij is the amount of pheromone between cities i
to j. In contrast, the pheromone table of the binary framework of ACO (i.e.,
ACOB) is defined as P=(τij)n×2. This is because the ants can only reach two
possible values. The construction graph for optimization problems with a binary
space is presented in Fig. 1, where the pheromone trails are associated to the
corresponding directed arcs.

Let (i, j) denote the associated pheromone trail of state i (i.e., i = 0, . . . , n)
to value j (i.e., j ∈ {0, 1}). Initially, all the pheromone trails are set with an
equal amount τ0 ← µC∗, ∀(i, j) where C∗ and µ are the optimal solution (or
approximation) and the population size, respectively.

2.2 Constructing Solutions

Each ant k performs n construction steps and uses a probabilistic rule to select
the next state to visit, where each state is associated with only two possible
values as presented in Fig. 1. More precisely, the probability an ant k uses to
select a value j for state i is defined as follows:

pkij =
τij

∑

l∈{0,1} τil
, j ∈ {0, 1}, (1)

where τij is the associated pheromone trail of state i to value j. Typically, heuris-
tic information is considered together with the existing pheromone trails on the
conventional ACO. For example, when ACO is applied on the TSP, the inverse
of the distance between cities is used as the heuristic information [18]. For the
problems tackled in this paper, there is no available heuristic information and,
thus, only the pheromone information is considered. In fact, the construction of
solutions based on probabilities (e.g., the pheromone trails table) is similar with
the probability vector used in PBIL [15]. However, the “probability vector” in
ACOB is maintained differently from the PBIL.

2.3 Pheromone Update Policy

The pheromone trails in ACOB are updated by applying evaporation as follows:

τij ← (1− ρ) τij , ∀(i, j), (2)



where ρ ∈ (0, 1] is the evaporation rate and τij is the existing pheromone value.
After evaporation, the best-so-far ant deposits pheromone as follows:

τij ← τij +∆τbsij , ∀(i, j) ∈ x
bs, (3)

where ∆τbsij = Cbs and x
bs ∈ {0, 1}n are the amount of pheromone that the

best ant deposits and the best ant’s solution, respectively, and Cbs is the fitness
of the best-so-far ant. In contrast, the existing BAA algorithm allows all ants
to deposit pheromone [16]. Since only the best ant deposits pheromone, the
algorithm will quickly converge towards the best solution of the first iteration.
Therefore, pheromone trail limits are imposed in order to avoid this behaviour
such that τmin ≤ τij ≤ τmax, ∀(i, j), where τmin and τmax are the lower and
upper pheromone trail values [3, 19]. The upper pheromone trail value is modified
whenever a new best solution is found such that τmax = µCbs (where initially
τmax = τ0). The lower pheromone trail value is set to τmin = τmax/2µ. In
this way, the lower pheromone trail value is also modified whenever a new best
solution is found.

2.4 Response to Dynamic Change

ACO algorithms are able to use knowledge from previous environments using
the pheromone trails generated in the previous iterations. For example, when
the changing environments are similar, the pheromone trails of the previous
environment may provide knowledge to speed up the optimization process to
the new environment. However, the algorithm needs to be flexible enough to
accept the knowledge transferred from the pheromone trails, or eliminate the
pheromone trails, in order to adapt well to the new environment.

ACO algorithms can be applied directly to DOPs without any modifications
due to the pheromone evaporation. Lowering the pheromone values enables the
algorithm to forget bad decisions made in previous iterations. When a dynamic
change occurs, evaporation eliminates the pheromone trails of the previous en-
vironment from areas that are not visited frequently and may bias ants not to
adapt well to the new environment. The adaptation via pheromone evaporation
may be a sufficient choice when the changing environments are similar; other-
wise, the pheromone trails may misguide ants towards non-promising areas in
the search space.

3 Dynamic Test Environments

3.1 Generating Dynamic Environments

The XOR DOP generator [15, 17] can construct dynamic environments from
any binary-encoded stationary function f(x)(x ∈ {0, 1}n) by a bitwise XOR
operator. Suppose the environment changes in every f algorithmic iterations,
the dynamics can be formulated as follows:

f(x, t) = f(x⊕M (k)), (4)



where “⊕” is the XOR operator (i.e., 1⊕1 = 0, 1⊕0 = 1, 0⊕0 = 0), k = ⌈t/f⌉ is
the index of the period and M (k) is the XORing mask that occurs incrementally
and is defined as follows:

M(k) = M (k − 1)⊕ T (k), (5)

where T (k) is an intermediate binary template randomly created withm×n ones.
Parameters m ∈ [0, 1] and f control the magnitude and frequency of change of a
DOP, respectively. A higher value of m means severer dynamic changes, whereas
a lower value of f means faster dynamic changes.

In this paper, four 100-bit binary-encoded problems are selected as the sta-
tionary problems to generate DOPs. Each problem consists of 25 copies of 4-bit
building blocks and has an optimum of 100. The first one is the OneMax func-
tion, which aims to maximize the number of ones in a solution. The second one is
the Plateau function, where each building block contributes four (or two) to the
total fitness if its unitation (i.e., the number of ones inside the building block)
is four (or three); otherwise, it contributes zero. The third one is the RoyalRoad

function where each building block contributes four to the total fitness if its
unitation is four; otherwise, it contributes zero. The fourth one is the Deceptive

function, where the building block is a fully deceptive sub-function. Generally,
the difficulty of the four functions for optimization algorithms is increasing in
the order from OneMax to Plateau to RoyalRoad to Deceptive.

3.2 Integration of ACO with the XOR DOP Generator

EAs are typically integrated with the XOR DOP generator [14]. The binary
template is applied to each individual within the population of an EA. In this
way, the XOR DOP generator shifts the population to a different area in the
fitness landscape. Similarly, the binary template can be applied to the solutions
constructed by the ants within the ACOB.

Since the population in ACO is re-constructed on every iteration, the binary
template is applied before the population is cleared for the new iteration. Hence,
the fitness of the solutions constructed using the same pheromone trails before
and after a dynamic change (whenever the binary template is applied) will differ
depending on the magnitude of change.

4 Experimental Study

4.1 Experimental Setup

For each algorithm on a DOP, R = 30 independent runs were executed on
the same environmental changes. The algorithms were executed for E = 1000
iterations and the overall offline performance is calculated as follows:

P̄offline =
1

E

E
∑

i=1





1

R

R
∑

j=1

P ∗
ij



 , (6)



where P ∗
ij defines the fitness of the best-so-far ant since the last dynamic change

of iteration i of run j [7].
Dynamic test environments are generated from the four aforementioned binary-

encoded function, described in Section 3, using the XOR DOP generator with f
set to 10 and 50, indicating quickly and slowly changing environments, respec-
tively, and m set to 0.1, 0.2, 0.5, 0.8 and 1.0, indicating slightly, to medium,
to severely changing environments, respectively. As a result, ten dynamic envi-
ronments (i.e., 2 values of f × 5 values of m) from each stationary function are
generated to systematically analyze the algorithms on the DOPs.

4.2 Analysis of the Pheromone Evaporation Rate

To investigate the effect of the pheromone evaporation in ACOB, different evap-
oration rates, i.e., ρ ∈ {0.0, 0.02, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}, are
selected. In Fig. 2, the offline performance of ACOB with the different evapora-
tion rates is presented and the following observations can be drawn.

First, the performance of ACOB is degraded when ρ = 0.0 (i.e., pheromone
evaporation is not used) in comparison with the performance of ACOB when ρ >
0.0 (i.e., pheromone evaporation is used) in most DOPs. This is natural because
the evaporation rate is the adaptation mechanism within ACOB. More precisely,
pheromone trails distributed to the optimum of the previous environment are
eliminated by pheromone evaporation to help ants generate new pheromone trails
for the optimum of the current environment.

Second, when the evaporation rate is set to ρ ∈ [0.1, 0.4], the performance
of ACOB is usually superior than when it is set to other values. This is because
a higher value of ρ may destroy the knowledge gained from previous iterations,
whereas a lower value of ρ may not help the adaptation process on the new envi-
ronment. Usually, when the magnitude of change increases; a higher evaporation
rate performs better. For example, on OneMax, Plateau and RoyalRoad with
f = 50, an evaporation rate of 0.1, 0.2, 0.3 and 0.4 performs the best when the
magnitude of change is 0.1, 0.2 and 0.5, 0.8 and 1.0, respectively.

4.3 Analysis of the Pheromone Update Policy

In this section, we investigate four pheromone update policies for ACOB (with
ρ = 0.2): 1) only the best ant deposits pheromone; 2) all ants deposit pheromone1;
3) only the best ant deposits pheromone and limits are imposed2; and 4) all the
ants deposit pheromone and limits are imposed. In Fig. 3, the offline perfor-
mance for the different pheromone update policies are presented and several
observations can be drawn.

First, the performance is degraded when only the best ant deposits pheromone
in most DOPs. This is because high concentration of pheromone trails are quickly

1 Similar update policy with the existing BAA [16].
2 This pheromone update policy is the one described in Section 2 and finally associated
with ACOB.
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Fig. 2. Offline performance of ACOB with different pheromone evaporation rates for
different DOPs

generated to the solution of the best ant. Hence, stagnation behaviour occurs
and the algorithm cannot adapt well to the changes. In contrast, the perfor-
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Fig. 3. Offline performance of ACOB with different pheromone update policies for
different DOPs

mance is better when all ants deposit pheromone because the pheromone trails
are distributed among several solutions rather than to one solution.



Second, the performance is improved when trails limits are imposed when
only the best ant deposits pheromone in most DOPs. This is because the stag-
nation behaviour described previously is addressed. The difference between the
maximum and minimum pheromone trails is not significantly different, and thus,
more chances are given to the less attractive areas (in terms of pheromone) to be
explored. In contrast, the performance is similar when trail limits are imposed
when all the ants deposit pheromone.

Third, when trails limits are not imposed in general, the performance of
ACOB is often improved when m = 1.0. When a DOP changes with m = 1.0
using the XOP DOP generator, it basically switches between two environments
consecutively. Hence, memory enhanced algorithms may be more suitable in
such special cases since the environments re-appear [14]. In fact, the pheromone
table within ACOB can be considered as an adaptive memory scheme. However,
the pheromone trails cannot store exactly the solutions when trail limits are
imposed.

4.4 Analysis of Algorithm Comparisons

In the experiments, we compare the proposed ACOB with GA [14] and PBIL [15]
used in DOPs. Since ACOB is not enhanced with additional components to ad-
dress DOPs only the standard versions of GA and PBIL algorithms are used. The
population size for all algorithms was set to µ = 120 for a fair comparison. For
GA the parameters were set to typical values as follows: generational, uniform
crossover with pc = 0.6, flip mutation with pm = 0.01, and fitness proportionate
selection with elitism of size 1. For PBIL the parameters were also set to typical
values as follows: the learning rate α = 0.25, mutation probability pm = 0.02,
mutation shift δm = 0.05 and elitism of size 1. For ACOB, the parameters were
set as follows: the evaporation rate ρ = 0.2.

The offline performance of ACOB compared with the other algorithms is pre-
sented in Table 1. Kruskal–Wallis tests were applied followed by posthoc paired
comparisons using Mann–Whitney tests with the Bonferroni correction. More-
over, the dynamic behaviour of the algorithms on different DOPs is presented
in Fig. 4. From the experimental results, several observations can be made by
comparing the behaviour of the algorithms.

First, ACOB outperforms both PBIL and GA in most DOPs with m = 0.1,
m = 0.2, m = 0.5 and m = 0.8. It can be clearly observed from Fig. 4 that
ACOB maintains higher fitness than the competing algorithms during almost
all the environmental changes. The mutation operator applied directly to the
evolving population of GA may help the population to adapt to dynamic changes
but slows down the optimization process. PBIL maintains the highest fitness on
the initial environment (between iterations 0 − 100) but then it is unable to
maintain it. In contrast to the GA’s case, the mutation operator applied to the
probabilistic vector of PBIL may not be sufficient to move the population from
the previously converged optimum (except when f = 50 with m = 0.1 and
m = 0.25).



Table 1. Experimental results of the algorithms regarding the offline performance. Bold
value or values indicate(s) that the algorithms are significantly better or insignificantly
different than the other algorithms, respectively

f = 10 f = 50

DOPs, m ⇒ 0.1 0.2 0.5 0.8 1.0 0.1 0.2 0.5 0.8 1.0

Algorithms OneMax

GA 73.4 69.6 64.4 62.8 62.0 82.7 79.2 72.3 68.0 65.6
PBIL 74.8 66.8 57.7 55.1 54.2 92.6 86.0 69.6 60.0 55.6
ACOB 85.0 78.8 67.5 62.1 59.7 92.5 90.1 82.7 74.5 68.9

Algorithms Plateau

GA 57.6 49.9 39.5 36.8 41.3 75.6 69.0 56.4 49.0 45.8
PBIL 50.5 39.6 29.1 29.1 49.4 84.0 69.5 43.9 40.3 48.0

ACOB 69.8 58.7 41.9 37.0 40.0 84.6 79.5 64.6 51.9 45.4

Algorithms RoyalRoad

GA 44.1 36.3 27.1 27.1 39.8 66.6 57.9 44.8 40.3 41.6
PBIL 25.1 19.7 14.5 15.5 48.3 56.5 39.6 23.6 25.9 45.2

ACOB 49.2 39.1 27.2 26.9 36.0 68.1 60.8 46.0 39.5 38.3

Algorithms Deceptive

GA 55.1 52.9 51.2 52.8 67.1 64.2 61.5 58.7 62.2 72.5
PBIL 55.0 49.4 44.9 47.5 86.8 69.7 64.3 57.0 65.5 86.9

ACOB 62.1 57.5 53.2 57.3 73.5 71.8 68.7 65.2 69.0 76.0

Second, PBIL outperforms both GA and ACOB in most DOPs with m = 1.0.
We have previously described the cyclic characteristic of this specific dynamic
case and that the pheromone table of ACOB can be viewed as an adaptive
memory scheme. Similarly, the probabilistic vector in PBIL can be also viewed
as an adaptive memory scheme. Hence, the probabilistic vector of PBIL may be
able to store and maintain information for the two environments that can be
reused when they re-appear. In contrast, the information may be destroyed from
the pheromone table of ACOB by the pheromone evaporation.

5 Conclusions

In this paper, the application of ACO to binary-encoded optimization problems
in dynamic environments is investigated. The proposed ACOB is designed to
construct binary-encoded solution biased by pheromone trails. The effect of using
different pheromone update policies and pheromone evaporation rates is studied
for ACOB in DOPs.

The ACOB is integrated with the XOR DOP generator and a series of dy-
namic test cases are systematically constructed from several benchmark station-
ary problems. From the experiments, several concluding remarks can be drawn.
First, pheromone evaporation enhances the adaptation capabilities of ACOB. An
evaporation rate between ρ ∈ [0.1, 0.4] achieves the best performance in DOPs
but it is dependent on the magnitude of change of the DOP: the higher the mag-
nitude the higher the rate. Second, the use of pheromone trail limits address the
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Fig. 4. Dynamic offline performance of algorithms on DOPs with f = 50 and m = 0.2

stagnation behaviour of ACOB. Third, ACO B adapts faster than GA and PBIL.
Hence, better overall performance is achieved during the dynamic changes.

For future work, ACOB can be applied to the dynamic knapsack problem,
which is closer to a real-world application. In fact, the performance of ACOB can
be furthermore improved since heuristic information is available to the knapsack
problem using the weights and profits [20]. Another interesting future work is to
further investigate the performance of ACOB in DOPs that re-appear.
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