Direct Memory Schemes for Population-based
Incremental Learning in Cyclically Changing
Environments

Michalis Mavrovouniotis and Shengxiang Yang

Centre for Computational Intelligence (CCI)
School of Computer Science and Informatics, De Montfort University
The Gateway, Leicester LE1 9BH, United Kingdom
{mmavrovouniotis, syang}@dmu.ac.uk

Abstract. The population-based incremental learning (PBIL) algorithm
is a combination of evolutionary optimization and competitive learning.
The integration of PBIL with associative memory schemes has been suc-
cessfully applied to solve dynamic optimization problems (DOPs). The
best sample together with its probability vector are stored and reused to
generate the samples when an environmental change occurs. It is straight
forward that these methods are suitable for dynamic environments that
are guaranteed to reappear, known as cyclic DOPs. In this paper, di-
rect memory schemes are integrated to the PBIL where only the sample
is stored and reused directly to the current samples. Based on a series
of cyclic dynamic test problems, experiments are conducted to compare
PBILs with the two types of memory schemes. The experimental results
show that one specific direct memory scheme, where memory-based im-
migrants are generated, always improves the performance of PBIL. Fi-
nally, the memory- based immigrants PBIL is compared with other peer
algorithms and shows promising performance.

1 Introduction

Population based incremental learning (PBIL) is an abstraction of evolutionary
algorithms (EAs), which combines evolutionary optimization with competitive
learning [1]. More precisely, PBIL explicitly maintains the statistics contained in
an EA’s population. Similarly to EAs, PBIL algorithms have been successfully
applied to different benchmark problems and real-world applications [2-5]. In
most cases, PBILs are applied to stationary optimization problems. However,
many real-world problems have a dynamic environment in which the objective
function, decision variables, problem instance, constraints, and so on, may vary
over time [6]. Dynamic optimization problems (DOPs) are often more challenging
to address because the moving optimum needs to be tracked.

Similarly with EAs, PBIL faces the same serious challenge as EAs when
addressing DOPs, i.e., premature convergence. In fact, it has been confirmed
that PBIL maintains significantly lower diversity than an EA does [3]. Different

strategies taken from EAs have been integrated into PBILs to address DOPs, in-
cluding memory schemes [3], hyper-learning scheme [4], multi-population schemes
[7] and immigrants schemes [5, 8].

In this paper, we focus on DOPs that are subject to cyclic environments,
where the environments are guaranteed to re-apper in the future. Many real-
world situations have cyclic or approximately cyclic dynamic environments. For
example, the traffic jams in the road system are more likely to re-appear during
the day. Associative memory schemes have been found suitable for cyclic DOPs,
where the best samples associated with environmental information of previously
optimized environments are stored and reused when the relevant environments
re-appear [3,9]. In this paper, we integrate direct memory schemes with PBIL
and investigate their effect. Their difference is that direct memory schemes store
only the best samples and reuse them directly to the samples whereas associative
memory schemes have an indirect impact on the samples generated.

Using the exclusive-or (XOR) DOP generator that constructs cyclic DOPs
proposed in [3], a series of DOPs are systematically constructed as the dynamic
test environments and experiments are carried out to investigate the performance
of PBILs with direct memory schemes. Based on the experimental results, the
effect of direct memory schemes on the performance of PBILs in dynamic envi-
ronments is analyzed. Among the direct memory schemes analyzed in this paper,
the memory-based immigrants scheme has the best performance in almost all
test cases. The specific algorithm is then compared with other peer PBILs and
EAs and shows competitive performance.

The rest of the paper is organized as follows. Section 2 introduces the stan-
dard PBIL algorithm. Section 3 describes the existing PBIL with an associative
memory scheme and the proposed PBILs with direct memory schemes. Section
4 describes the construction of cyclic DOPs used for this study. The experimen-
tal study is presented in Section 5. Finally, Section 6 concludes this paper with
several observations and discusses relevant future work.

2 Population-Based Incremental Learning

The standard PBIL (SPBIL) algorithm, first proposed by Baluja [1], is a combi-
nation of evolutionary optimization and competitive learning. The aim of SPBIL
is to generate a real-valued probability vector P(t) = {Py,..., B} (I is the bi-
nary encoding length), at each generation ¢, which creates high quality solutions
with high probability when sampled. Each element P;(i = 1,...,1) in the proba-
bility vector is the probability of creating an allele “1” in locus ¢. More precisely,
a solution is sampled from the probability vector P(t) as follows: for each locus
i, if a randomly generated number R € {0,1} < P;, it is set to 1; otherwise, it is
set to 0.

SPBIL starts from an initial (central) probability vector P(0) with values
of each entry set to 0.5. This means when sampling by this initial probability
vector random solutions are created because the probability of generating a “1”
or “0” on each locus is equal. However, as the search progresses, the values

in the probability vector are gradually moved towards values representing high
evaluation solutions. The evolution process is described as follows.

For every generation ¢, a set S(t) of n samples (solutions) are created ac-
cording to the current probability vector P(t). The set of samples are evaluated
according to the problem-specific fitness function. Then, the probability vector
is moved towards the best solution () of the set S(t) as follows:

Pi(t+1)+ (1 —a) x P(t) +axx*t), i={1,...,1}, (1)

where « is the learning rate, which determines the distance the probability vector
is moved for each generation.

After the probability vector is updated toward the best sample, in order to
maintain the diversity of sampling, it may undergo a bit-wise mutation process
[10]. Mutation is applied to the SPBIL studied in this paper since diversity main-
tenance is important when addressing DOPs [3]. The mutation operation always
changes the probability vector toward the central probability vector, where val-
ues are set to 0.5, to increase exploration. The mutation operation is carried
out as follows. The probability of each locus P; is mutated, if a random number
R € {0,1} < pm (pm is the mutation probability), as follows:

Pt)x (1—6,). i P(t) > 05,
Pi(t) = Pi(t) x (1= 6) + 6, if Pi(t) < 0.5, (2)
Pi(t), otherwise,

where ¢, is the mutation shift that controls the amount a mutation operation
alters the value in each bit position. After the mutation operation, a new set of
samples is generated by the new probability vector and this cycle is repeated.

As the search progresses, the entries in the probability vector move away
from their initial settings of 0.5 towards either 0.0 or 1.0. The search progress
stops when some termination condition is satisfied, e.g., the maximum allowable
number of generations is reached or the probability vector is converged to either
0.0 or 1.0 for each bit position.

PBIL has been applied to many optimization problems with promising re-
sults [2]. Most of these applications assume stationary environments, whereas
only a few applications considered dynamic environments. To address DOPs
with PBILs, the algorithm needs to be enhanced to maintain diversity. Exist-
ing strategies, which have been integrated with PBILs and were mainly inspired
by EAs, include associative memory schemes [3], hyper-learning schemes [4],
multi-population schemes [7] and immigrants schemes [5,8]. In this paper, we
integrate direct memory schemes, previously used to genetic algorithms (GAs)
[11], to PBILs to address cyclically changing DOPs.

3 Memory Schemes

3.1 PBIL with Associative Memory

Memory schemes have proved to be useful in dynamic environments, especially
when the environment changes cyclically. The stored information can be reused

when the environment cycles to previously optimized environments. An associa-
tive memory scheme was integrated to PBIL in [3] that stores good solutions
associated with environmental information.

Within the memory-enhanced PBIL (MPBIL) a memory of size m = 0.1 x n
(n is the population size) is used to store pairs of a sample with its associated
probability vector. The associative memory is initially empty and stores pairs
until it is full. The update policy of the memory (when it is full) is based on the
closest replacement strategy: the memory point with its sample By (t) closest
to the best population sample of the current generation B(t) in terms of the
Hamming distance is replaced if it has the worst fitness; otherwise, the memory
remains unchanged. Every time the memory is updated with the sample B(t)
its probability vector P(t) is also stored in the memory. The memory is updated
at a specific random time as follows. At the end of every memory update at
generation ¢, a random number R € [5,10] is generated to determine the next
memory update time t3; =t + R.

The samples in the memory are re-evaluated every generation. If at least one
sample has a change in its fitness, then a change has occurred to the environment.
Therefore, the best re-evaluated memory sample with its associated probability
vector will replace the current probability vector if the memory sample has
better fitness than the current best sample of the current probability vector. If
no environmental change is detected, MPBIL progresses as the SPBIL does.

3.2 PBIL with Direct Memory

Direct memory schemes have showed promising performance in DOPs when
applied to different GAs [11]. The difference of a direct memory scheme from
the associative memory scheme described previously for the MPBIL is that the
memory point consists of only the solution. In this paper, we integrate a direct
memory scheme into PBIL and introduce three algorithmic variations.

Memory-Enhanced PBIL The direct memory of the memory-enhanced PBIL
(MEPBIL) is initialized with random points (solutions). Similarly with MPBIL,
the current best sample B(t) replaces the closest memory point B (t) (if no
randomly initialized point still exists) if its fitness is better; otherwise, the mem-
ory remains unchanged. A memory update occurs based on the stochastic time
tar as described previously in the MPBIL. In addition, the memory is updated
whenever a dynamic change occurs. In this way, the most relevant information
for the specific environment will be stored in the memory.

When a dynamic change is detected the current probability vector P(t) is not
replaced by the best memory probability vector as in MPBIL but the samples
stored in the memory are re-evaluated and merged with the current samples of
S(t). The best n — m samples will survive in the current S(¢). In this way, the
probability vector will be learned toward B(t) that is most probably provided
by a sample that was stored in the memory. When a dynamic change is not
detected, the proposed MEPBIL progresses as SPBIL does.

Memory-Enhanced PBIL+Random Immigrants Random immigrants were
previously integrated to PBIL to enhance their performance in (especially severely
changing) DOPs [8]. Random immigrants have the ability to maintain the di-
versity. Since memory schemes are suitable for slightly or cyclically changing
environments and random immigrants are suitable for severely changing envi-
ronments, a straightforward combination of MEPBIL with random immigrants
may combine the merits of both.

The memory-enhanced random immigrant PBIL (MRIPBIL) differs from
MEPBIL in only the additional immigration process. The immigration process
within MRIPBIL occurs after the probability vector is sampled. More precisely,
in every generation, r; X n immigrants are generated and replace the worst
samples in the current set of samples S(t), where r; is the replacement ratio and
n is the population size. In this way, the generated immigrants will maintain
diversity within the samples generated.

Memory-Based Immigrants PBIL Based on the above consideration, the
memory-based immigrants scheme, which has been initially proposed for GAs
[11] to address cyclic DOPs, can be integrated with PBILs, denoted as memory-
based immigrants PBIL (MIPBIL) in this paper, to better tackle DOPs with
reappearing environments. A direct memory scheme is maintained and updated
as described previously for the MEPBIL and MRIPBIL algorithms.

Similarly with MRIPBIL above, MIPBIL also includes an immigration pro-
cess but generates memory-based immigrants instead of random ones. Differently
from both MRIPBIL and MEPBIL, MIPBIL does not merge the memory with
the current samples but generates memory-based immigrants on every genera-
tion as follows. For each generation ¢, before the mutation operation described
in Eq. (2), the best memory point By (t) is retrieved and used as the base to
generate immigrants. In every generation, r; X n memory-based immigrants are
generated by mutating bitwise with a probability pi . The generated immigrants
replace the worst individuals in the current set of samples S(t). In this way, the
samples of the next set S(t 4 1) will have more direction toward the best point
retrieved from the memory.

4 Dynamic Test Environments

The XOR DOP generator [3,12] can construct dynamic environments from any
binary-encoded stationary function f(z)(x € {0,1}!) by a bitwise XOR opera-
tor. Since for the specific experimental study memory schemes are involved cyclic
DOPs are considered. With the XOR DOP, the cyclicity of the changing environ-
ments is controlled as follows. Initially, 2K XOR masks M (0),..., M (2K — 1)
are generated as the base states in the search space randomly. Then, the envi-
ronment can cycle among these base states in a fixed logical ring. Suppose the
environment changes in every 7 algorithmic generations, then the individuals at
generation ¢ are evaluated as follows:

f(@,t) = f(x @ M(L)) = f(x® M(k%(2K))), (3)

where “@” is the XOR operator (i.e., 1®1=0,1060=1,0060=0), k = [t/f]
is the index of the current environment, I; = k%(2K) is the index of the base
state that the environment is in at generation ¢t and M are the XORing masks.

The 2K XORing masks are generated as follows. First, K binary templates
T(0),...,T(K—1) are constructed with each template containing exactly pxn =
1/K ones. Let M (0) = 0 denote the initial state. Then, the other XORing masks
are generated iteratively as follows:

M(i+1) = M(i) ® T(i%K), i =0,...,2K — 1. (4)

The templates T'(0), ..., T (K —1) are first used to create K masks till M (K) =1
and then orderly reused to construct another K XORing masks till M (2K) =
M(0) = 0. The Hamming distance between two neighbour XOR masks is the
same and equals p x n. Here, p € [1/1,1.0] is the distance factor, determining
the number of base states. A higher value of p means severer dynamic changes,
whereas a lower value of 7 means faster dynamic changes.

In this paper, four 100-bit binary-encoded problems are selected as the sta-
tionary problems to generate DOPs. Each problem consists of 25 copies of 4-bit
building blocks and has an optimum value of 100. The first one is the OneMax
function, which aims to maximize the number of ones in a solution. The second
one is the Plateau function, where each building block contributes four (or two)
to the total fitness if its unitation (i.e., the number of ones inside the building
block) is four (or three); otherwise, it contributes zero. The third one is the
RoyalRoad function, where each building block contributes four to the total fit-
ness if its unitation is four; otherwise, it contributes zero. The fourth one is the
Deceptive function, where the building block is a fully deceptive sub-function.
Generally, the difficulty of the four functions for optimization algorithms is in-
creasing in the order from OneMax to Plateau to RoyalRoad to Deceptive.

5 Experimental Study

5.1 Experimental Setup

For each algorithm on a DOP, 30 independent runs were executed on the same
environmental changes and 100 environmental changes were allowed for each
run. The overall performance is calculated as follows:

1 (1Y
F == — Y Fgoa,,
BOG G; N; BOG.; | » (5)

where G is the number of generations of a run, N is the number of runs and
Fpog,; is the best-of-generation fitness of generation ¢ of run j. Moreover, the
diversity of the population was recorded every generation. The overall diversity
of an algorithm on a DOP is defined as:

_ 1 (1 Y
TDIVZE; N;Dlvij ; (6)

where G and N are defined as in Eq. (5) and Div;; is the diversity at generation
¢ of run j, which is defined as:

p=1g#p

where [is the encoding length, n is the population size and HD(p,q) is the
Hamming distance between the p-th sample and ¢-th sample.

Dynamic test environments are generated from the four aforementioned
binary-encoded functions, described in Section 4, using the XOR DOP generator
with 7 set to 10 and 50, indicating quickly and slowly changing environments,
respectively, and p set to 0.1, 0.2, 0.5 and 1.0, indicating slightly, to medium, to
severely changing environments, respectively. With the specific setting of p, ba-
sically the environments cycles among 20, 10, 4, and 2 base states respectively.
As a result, eight cyclic dynamic environments (i.e., 2 values of 7 X 4 values
of p) from each stationary function are generated to systematically analyze the
algorithms on the DOPs.

In order to have fair comparisons among PBILs, the population size, memory
size and immigrant replacement are set to such that each PBIL has 120 fitness
evaluation per generation. For memory-based algorithms the memory size was
set to m = 0.1 xn and for all immigrant-based algorithms the immigrant replace-
ment ratio was set to 7; = 0.2 and immigrant mutation probability pi, = 0.01.
For all PBILs in the experiments, the parameters were set to typical values [3]
as follows: the learning rate @ = 0.25, mutation probability p,, = 0.05 with the
mutation shift §,, = 0.05, and the elitism of size 1.

5.2 Experimental Study of Memory-Based PBILs

The experimental results of the proposed PBILs with direct memory schemes
(e.g., MEPBIL, MRIPBIL and MIPBIL) compared with the existing PBIL with
associative memory scheme (e.g., MPBIL) are shown in Fig. 1. The correspond-
ing statistical results are presented in Table 1, where Kruskal-Wallis tests were
applied followed by posthoc paired comparisons using Mann—Whitney tests with
the Bonferroni correction. The statistical results are shown as “—”, “4+” or “~”
when the first algorithm is significantly better than the second algorithm, when
the second algorithm is significantly better than the first algorithm, or when the
two algorithms are insignificantly different, respectively. To better understand
the behaviour of the PBILs the population diversity against generations for the
first 500 generations is plotted in Fig. 2 for the DOPs with p = 0.2. From Fig. 1
and Table 1, the following observations can be drawn.

First, among the PBILs with direct memory schemes, MIPBIL has the best
performance and outperforms both MEPBIL and MRIPBIL in most DOPs.
When random immigrants are hybridized with memory schemes the performance
is enhanced only in DOPs with p = 1.0 but degraded in the remaining DOPs; see
the comparisons of MEPBIL < MRIPBIL in Table 1. This is normal because
random immigrants generate high levels of diversity that help the adaptation

95

Best-of-Generation Fitness Best-of-Generation Fitness

Best-of-Generation Fitness

90

70

Best-of-Generation Fitness

65

Fig. 1. Experimental results of memory-based PBILs for cyclic DOPs

in severely changing environments but may disturb the optimization process in
slightly changing environments. In contrast, memory-based immigrants in MIP-
BIL generate guided diversity via transferring knowledge from previous environ-

OneMax, T=10

OneMax, T=150

Best-of-Generation Fitness

Best-of-Generation Fitness

Best-of-Generation Fitness

—H&— MPBI
o ~=©-- MEPBI
---A--- MRIPBI
| MIPBII
1 0.2 0.5 1.0

Deceptive, T= 10

p

i —
—&— MPBI

o |
.- BiL]

Best-of-Generation Fitness

83

82

81

—8— MPBI
-=©-- MEPBI
---A--- MRIPBI

MIPBII

80

0.5

Table 1. Statistical results of comparing memory-based PBILs for cyclic DOPs

T=10 T =250

DOPs, p = 0.1 0.2 0.51.0/0.1 0.20.51.0

Algorithms OneMazx

MPBIL & MEPBIL |- ~ — — |+

MPBIL < MRIPBIL |- — — — |+
+

MPBIL < MIPBIL + 4+ - ~
MIPBIL & MEPBIL |- — — —
MIPBIL & MRIPBIL | — — — —|—- — —
MEPBIL & MRIPBIL| - — ~ 4+ |- — -—
Algorithms Plateau
MPBIL & MEPBIL |- — — — |+
MPBIL < MRIPBIL |— — — ~ |+
+

I+ 2+
|+ 4+

++ 0+

MPBIL < MIPBIL + 4+ - +
MIPBIL & MEPBIL |- — — —
MIPBIL & MRIPBIL | — — — — |- —
MEPBIL & MRIPBIL|~ — — +|— —
Algorithms RoyalRoad
MPBIL & MEPBIL |- — - ~ +
MPBIL < MRIPBIL |- — —
MPBIL < MIPBIL + 4+ -
MIPBIL & MEPBIL |- — -
MIPBIL < MRIPBIL | — — —
MEPBIL < MRIPBIL| + — —
Algorithms Deceptive
MPBIL & MEPBIL |- — — + ~
MPBIL < MRIPBIL |- — — - -
MPBIL < MIPBIL ~ o~ = + ~
MIPBIL & MEPBIL |- — - ~
MIPBIL < MRIPBIL | — — —
MEPBIL < MRIPBIL| - — —

I+ 2+
2+ 4+
I

2
2

2

I+ 2
I+ |+

+

2

++ 1+ +

I
+

2

22222
2222
222X

ments. Fig. 2 supports our claim since MRIPBIL maintains a higher diversity
level than MIPBIL.

Second, MEPBIL and MRIPBIL outperform MPBIL in most DOPs with
7 = 50 whereas MPBIL outperforms MEPBIL and MRIPBIL in most DOPs
with 7 = 10; see the comparisons in Table 1. In contrast, MIPBIL outperforms
MPBIL in most DOPs; see the comparisons of MPBIL < MIPBIL in Table 1.
From Fig. 2 it can be observed that MIPBIL maintains higher diversity levels
than MPBIL especially in DOPs with 7 = 10. Low diversity indicates that
MPBIL possibly loses its adaptation capabilities and cannot track the changing
environments when they change fast.

Since the memory-based immigrants scheme has the best performance over
the other direct memory schemes, we only consider MIPBIL for the remaining
experiments.

Population Diversity Population Diversity Population Diversity

Population Diversity

OneMax, 1=10,p=0.2

OneMax, 1=50,p =02

Population Diversity

0.4

0.3

100 200 300
Generation

Plateau, T=10,p=0.2

500

100 200 300
Generation

Plateau, T=50,p=0.2

500

Population Diversity

04 |-
|

0.3

Population Diversity

0 100 200 300 400 500 0 100 200 300 400 500
Generation Generation
RoyalRoad, 1=10,p=0.2 RoyalRoad, 1=50,p=0.2
0.5

i i — MPBI]

***** MIPBI]

rrrrrr MEPBII

MRIPBIL

200 300
Generation

Deceptive, T=10,p = 0.2

200 300
Generation

Deceptive, T=50,p = 0.2

Population Diversity

0.5

0.4

100 200 300
Generation

500

100 200 300
Generation

400

500

Fig. 2. Dynamic population diversity of PBILs for the first five hundred generations
on cyclic DOPs with p = 0.2

5.3 Experimental Study of MIPBIL with Other PBILs

The best performing PBIL with the direct memory scheme, i.e., MIPBIL is com-
pared with other existing PBILs: SPBIL [2], random immigrants PBIL (RIPBIL)

Table 2. Experimental results of MIPBIL against other PBILs algorithms for cyclic
DOPs.

T=10 7 =250
DOPs, p=]0.1 02 05 1.0]0.1 02 05 1.0
Algorithms OneMaz

SPBIL 79.6 68.0 59.4 57.1(96.8 92.8 81.8 70.0
RIPBIL 79.3 75.5 74.8 80.7(96.7 92.6 89.0 92.2
EIPBIL 90.1 77.7 65.0 61.2(98.5 96.4 88.9 80.3
HIPBIL 88.1 77.1 75.1 82.9]98.1 95.7 90.7 94.0
MIPBIL 89.0 89.2 90.6 92.5|97.4 97.0 99.3 99.4
Algorithms Plateau

SPBIL 60.5 47.0 43.3 50.5|93.0 84.0 61.4 53.6
RIPBIL 60.7 55.4 55.1 66.5]92.7 83.4 76.3 83.9
EIPBIL 78.0 58.1 47.3 50.7(96.4 91.4 72.7 55.5
HIPBIL 74.2 59.2 56.9 71.4|95.7 89.9 78.4 87.4
MIPBIL 76.9 77.779.4 81.3|94.4 93.7 97.5 97.6
Algorithms RoyalRoad

SPBIL 42.6 34.4 37.0 50.0|78.6 59.6 43.8 50.3
RIPBIL 45.1 40.5 43.9 59.2|77.7 60.7 59.5 72.7
EIPBIL 56.3 41.0 39.6 50.0|85.8 68.0 47.7 50.4
HIPBIL 52.6 44.3 46.4 64.8|84.3 66.2 60.5 76.6
MIPBIL 57.5 60.7 63.1 51.8|82.5 80.2 90.5 87.6
Algorithms Deceptive

SPBIL 67.1 64.9 69.6 87.5|78.2 75.3 76.9 87.5
RIPBIL 66.7 64.9 70.7 87.5|78.0 75.1 79.2 87.5
EIPBIL 72.6 69.2 72.7 87.5|80.1 78.5 80.7 87.5
HIPBIL 72.6 67.9 76.5 97.2|77.5 74.0 82.9 98.9
MIPBIL 75.2 76.4 81.0 87.5(84.7 86.7 87.4 87.5

[3], elitism-based PBIL (EIPBIL) [8] and hybrid immigrants PBIL (HIPBIL) [8].
The experimental results of the aforementioned algorithms are presented in Ta-
ble 2. Bold values indicate that the algorithm is significantly better than the
other algorithms using the same statistical method described previously.

From Table 2, it can be observed that MIPBIL outperforms SPBIL in all
DOPs except some cases of the Deceptive function. Also, MIPBIL outperforms
the remaining algorithms in most DOPs. This is because MIPBIL can directly
move the population to the optimum or close to the optimum of previously op-
timized environments. Specifically, MIPBIL is underperformed by EIPBIL only
in most DOPs with p = 0.1. This is because when p = 0.1 more base states (i.e.,
20) exist and the memory points stored may not be so accurate to the relevant
base states and may misguide the immigrants. As p increases the performance of
MIPBIL improves whereas EIPBIL degrades which further supports our claim.
MIPBIL is underperformed by HIPBIL only in some DOPs with p = 1.0. This
is because when p = 1.0 the environments switches between two fitness land-
scapes that are complementary to each other. Therefore, the dualism type of

Table 3. Experimental results of MIPBIL against MIGA for cylic DOPs.

7=10 7 =50

DOPs,p= |01 02 05 1.0(0.1 02 05 1.0
Algorithms OneMax

MIPBIL (vs)|89.0 89.2 90.6 92.5(97.4 97.0 99.3 99.4
MIGA 82.1 83.5 92.7 96.0/95.9 93.6 98.4 99.3
Algorithms Plateau

MIPBIL 76.9 77.7 79.4 81.3|94.4 93.7 97.5 97.6
MIGA 65.4 67.3 82.3 89.7|/91.4 86.5 95.3 97.6
Algorithms RoyalRoad

MIPBIL (vs)|57.5 60.7 63.1 51.882.5 80.2 90.5 87.6
MIGA 45.2 49.1 61.3 65.4|75.7 69.9 83.7 86.9
Algorithms Deceptive

MIPBIL (vs)|75.2 76.4 81.0 87.5/84.7 86.7 87.4 87.5
MIGA 66.0 73.4 82.5 86.0|81.3 85.2 86.9 87.2

immigrants (e.g., complementary to the best solution) generated in HIPBIL are
suitable to cope with these types of DOPs.

5.4 Experimental Results on Pairwise Comparisons of MIPBIL
with MIGA

Since the direct memory scheme, i.e., memory-based immigrants, integrated to
MIPBIL, was initially introduced and integrated to GAs [11], further pairwise
comparisons are performed in this section. Specifically, MIPBIL is compared
with memory-based immigrants GA (MIGA) [11]. MIGA is executed on the
same DOPs and common parameter settings with MIPBIL above (e.g., r; = 0.2,
pi. = 0.01 and m = 0.1 x n). The remaining MIGA parameters were set to
typical values as follows: generational, uniform crossover with p. = 0.6, flip
mutation with p,, = 0.01, and fitness proportionate selection with elitism of size
1. The pairwise comparisons regarding the performance are given in Table 3.
A bold value indicates that the algorithm is significantly better than the other
using Mann—Whitney tests. The dynamic performance of the two algorithms
with respect to the best-of-generation fitness against generation on the DOPs
with 7 = 50 and p = 0.2 is plotted in Fig. 3.

From Table 3, it can be observed that MIPBIL outperforms MIGA on all
DOPs with 7 = 50 and on most DOPs with 7 = 10 and p = 0.1 and p = 0.2.
MIGA outperforms MIPBIL in DOPs with 7 = 10 and p = 0.5 and p = 1.0. This
is probably because the mutation operator of MIGA may have a faster effect than
the mutation operator of MIPBIL to the adaptation process of the algorithm.
The difference lies in that the former is direct (applied to the solutions) whereas
the latter is indirect (applied to the probabilistic vector) and may need some
time to express its effect.

OneMax, T=50,p=0.2

100

95
90
85
80 —‘
75 -
70 |-

65 [~

Best-of-Generation Fitness

—— MIPBI
MIGA
60 1 1 1 1 1 1

Best-of-Generation Fitness

Plateau, T=50,p=0.2

50 -

30 L

MIPBII
MIGA

0 100 200 300 400 500 600 700 800 900 1000 0 100 200 300 400 500 600 700 800 900 1000
Generation Generation
RoyalRoad, 1=50,p=0.2 Deceptive, T=50,p=0.2

100 — T

30

Best-of-Generation Fitness

20

fiflf

MIPBII
MIGA

Best-of-Generation Fitness

80

50 |-

40 -

70 i{;’/f
i
6ot

100 T \j T T T
90

(G

T

MIPBII
MIGA

30
0100 200 300 400 500 600 700 800 900 1000
Generation

10
0100 200 300 400 500 600 700 800 900 1000
Generation

Fig. 3. Dynamic performance of MIPBIL and MIGA for the first twenty environmental
changes on DOPs with 7 = 50 and p = 0.2.

6 Conclusions

Associative memory schemes have been successfully integrated with PBILs [3].
In this paper, three direct memory schemes are integrated with PBIL and their
performance is investigated on cyclically changing DOPs. The direct memory
scheme in which memory-based immigrants are generated has the best perfor-
mance when integrated with PBIL. Therefore, its performance is further com-
pared against other peer algorithms.

From the experimental results, the following concluding remarks can be
drawn. First, among the direct schemes integrated with PBIL, the memory-
based immigrants scheme has the best performance. Second, although associative
memory schemes contain more environmental information from direct memory
schemes, the latter may provide faster adaptation in PBILs. Third, PBILs may
also benefit when integrated with memory-based immigrants as with GAs [11].
In fact from the experiments it can be observed that MIPBIL outperforms MIGA
in many DOPs.

For future work, it would be interesting to apply PBILs to the Knapsack
problem that has many applications in the real world.

Acknowledgement

This work was supported by the Engineering and Physical Sciences Research
Council (EPSRC) of U.K. under Grant EP/K001310/1.

References

10.

11.

12.

. Baluja, S.: Population-based incremental learning: A method for integrating ge-

netic search based function optimization and competitive learning. Technical Re-
port CMU-CS-94-163, Carnegie Mellon University, Pittsburgh, PA, USA (1994)
Larranaga, P., Lozano, J., eds.: Estimation of distribution algorithms: a new tool
for evolutionary computation. Kluwer, Norwell, MA (2002)

Yang, S., Yao, X.: Population-based incremental learning with associative memory
for dynamic environments. IEEE Transactions on Evolutionary Computation 12(5)
(2008) 542-561

Yang, S., Richter, H.: Hyper-learning for population-based incremental learning
in dynamic environments. In: Evolutionary Computation, 2009. CEC ’09. IEEE
Congress on. (2009) 682689

Yang, S., Yao, X.: Experimental study on population-based incremental learning
algorithms for dynamic optimization problems. Soft Computing 9(11) (2005) 815—
834

Jin, Y., Branke, J.: Evolutionary optimization in uncertain environments—a survey.
IEEE Transactions on Evolutionary Computation 9(3) (2005) 303-317

Yang, S.: Population-based incremental learning with memory scheme for changing
environments. In: Proceedings of the 7th Annual Conference on Genetic and Evo-
lutionary Computation. GECCO ’05, New York, NY, USA, ACM (2005) 711-718
Mavrovouniotis, M., Yang, S.: Population-based incremental learning with immi-
grants schemes for changing environments. In: Proceedings of the 2015 IEEE Sym-
posium on Computational Intelligence in Dynamic and Uncertain Environments
(CIDUE). (Dec 2015) 14441451

Yang, S.: Associative memory scheme for genetic algorithms in dynamic environ-
ments. In Rothlauf, F., Branke, J., Cagnoni, S., Costa, E., Cotta, C., Drechsler, R.,
Lutton, E., Machado, P., Moore, J., Romero, J., Smith, G., Squillero, G., Takagi,
H., eds.: Applications of Evolutionary Computing. Volume 3907 of Lecture Notes
in Computer Science. Springer Berlin Heidelberg (2006) 788-799

Baluja, S.: An empirical comparison of seven iterative and evolutionary function
optimization heuristics. Technical Report CMU-CS-95-193, Carnegie Mellon Uni-
versity, Pittsburgh, PA, USA (1995)

Yang, S.: Genetic algorithms with memory- and elitism-based immigrants in dy-
namic environments. Evolutionary Computation 16(3) (2008) 385-416

Yang, S.: Non-stationary problem optimization using the primal-dual genetic algo-
rithm. In: The 2003 Congress on Evolutionary Computation CEC ’03. Volume 3.
(Dec 2003) 2246-2253

