
Pre-Scheduled Colony Size Variation in Dynamic

Environments

Michalis Mavrovouniotis1, Anastasia Ioannou2, and Shengxiang Yang3

1 School of Science and Technology, Nottingham Trent University
Clifton Lane, Nottingham NG11 8NS, United Kingdom

michalis.mavrovouniotis@ntu.ac.uk
2 Department of Informatics, University of Leicester
University Road, Leicester LE1 7RH, United Kingdom

ai63@le.ac.uk
3 Centre for Computational Intelligence (CCI)

School of Computer Science and Informatics, De Montfort University
The Gateway, Leicester LE1 9BH, United Kingdom

syang@dmu.ac.uk

Abstract. The performance of the MAX -MIN ant system (MMAS)
in dynamic optimization problems (DOPs) is sensitive to the colony size.
In particular, a large colony size may waste computational resources
whereas a small colony size may restrict the searching capabilities of
the algorithm. There is a trade off in the behaviour of the algorithm
between the early and later stages of the optimization process. A smaller
colony size leads to better performance on shorter runs whereas a larger
colony size leads to better performance on longer runs. In this paper,
pre-scheduling of varying the colony size of MMAS is investigated in
dynamic environments.

1 Introduction

Ant colony optimization (ACO) is a metaheuristic inspired by the foraging be-
haviour of real ant colonies [2, 3]. ACO algorithms have been successfully applied
to many NP-hard combinatorial problems such as the travelling salesman prob-
lem (TSP) [4] and vehicle routing problem (VRP) [7]. In this paper, we focus
on a particular ACO variation, i.e., MAX -MIN Ant System (MMAS) [22],
which is one of the best performing variations.

The construction of solutions from ants is biased by existing pheromone trails
and heuristic information. Pheromone trails are updated according to the search
experience and towards solution with good quality. This is similar to a learning
reinforcement scheme. The behaviour and performance of MMAS algorithm
depends strongly on the number of ants used [5, 24]. When a given computa-
tional budget is available, e.g., the maximum number of function evaluations,
a smaller number of ants will produce more algorithmic iterations whereas a
larger number of ants less. Hence, the population size affects the duration of the
learning reinforcement [18].

In [24], it was investigated that when fewer ants are used, the algorithm
may converge quickly at early stages of the optimization process, but get stuck
in the stagnation behaviour later on. In contrast, when more ants are used,
the algorithm converges slower but to better solutions at later stages of the
optimization process. Considering thisMMAS’s behaviour, it can be observed
that the optimal number of ants depends on the stage of the optimization process.
Therefore,MMAS can benefit from varying the number of ants. For example, a
pre-schedule of varying the colony size may improve the performance ofMMAS
in dynamic environments. The key idea is to start a few ants when a change
occurs and gradually increase the number of ants. In this way, MMAS will
benefit from both merits of a small (fast convergence) and large (improve solution
quality) colony size at different stages of the optimization process.

Several dynamic test cases of the dynamic TSP (DTSP) are generated for
our study. The rest of the paper is organized as follows. Section 2 and Section
3 describe the DOPs generated and the ACO algorithm used for this study,
respectively. Section 4 discusses the importance of the population size parameter.
Section 5 presents the experimental study with discussions. Finally, Section 6
concludes this paper.

2 Dynamic Environment

2.1 Dynamic Travelling Salesman Problem (DTSP)

The DTSP is modelled by a fully connected weighted graph G = (N,A), where
N = {v1, . . . , vn} is a set of n nodes (e.g., cities) and A = {(vi, vj) | vi, vj ∈
N, i 6= j} is a set of arcs (i.e., links), where n represents the size of a problem
instance. Each arc (vi, vj) ∈ A is associated with a non-negative value dij ∈ R

+,
which represents the distance between cities vi and vj . The objective of the
problem is to find the shortest Hamiltonian cycle that starts from one node and
visits each of the other cities once before returning to the starting city.

The distance matrix of the DTSP is subject to changes, which is defined
as follows: D(t) = {dij(t)}n×n, where t is the period of a dynamic change. A
particular TSP solution s = [s1, . . . , sn] in the search space is specified by a
permutation of the nodes (cities) and it is evaluated as follows:

f(s, t) = dsns1(t) +

n−1
∑

i=1

dsisi+1
(t). (1)

2.2 DTSP Benchmark Generators

The concept of DTSPs was initially introduced by Psaraftis [20]. Since then,
several variations of DTSPs were introduced, where the set of nodes N [1, 9, 10,
12, 13, 25] and/or the cost from the set of arcsA [6, 17, 19, 21, 25] cause the weight
matrix W(t) to change during the optimization process. However, there is still
no any unified benchmark problem for DTSPs, which makes the comparison with

algorithms from the literature a very challenging task. One popular benchmark is
the DTSP where cities are exchanged: half of the cities from the problem instance
are removed to create a spare pool [9, 10, 14], and the cities from the spare
pool are then used to replace cities from the problem instance. Another popular
benchmark is the DTSP where the weights of arcs change probabilistically [25,
17] (the complete benchmark generator description is given in Section 2.3 since
it is the benchmark generator we consider in the experiments). In [6, 21], only
the weights of arcs that belong to the best tour increase or decrease accordingly.

Younes et al. [26] introduced a benchmark generator for the DTSP with dif-
ferent modes: 1) topology changes as in [10], 2) weight changes in [6], and 3) swap
cities. Based on the last mode (i.e., swap cities) of the aforementioned benchmark
generator, a general dynamic benchmark generator for permutation-encoded
problems (DBGP) was proposed that can generate test cases with known optima
[15]. DBGP can convert any stationary TSP instance into a DTSP with specific
properties (i.e., frequency and magnitude of changes). Although with DBGP
one can observe how close to the optimum an algorithm converges, it sacrifices
real-world models for the sake of benchmarking.

2.3 Generating Dynamic Test Cases

Considering the problem formulation above, a dynamic test case of a TSP can be
generated by modifying the value of the arc between nodes vi and vj as follows:

wij(T + 1) =

{

wij(0) +N (µ, σ), if (i, j) ∈ AS(T);

wij(T), otherwise;
(2)

where T = ⌈t/f⌉ is the environmental period index, f is the frequency of change,
t is the evaluation count of the algorithm,N (µ, σ) is a random number generated
from a normal distribution with µ = 0 and σ = 0.2×wij(0), wij(0) is the weight
between nodes vi and vj for the initial instance and AS(T) ⊂ A contains exactly
⌈m(n(n − 1))⌉ arcs in which their weights will be subject to changes (either
increase or decrease) [25].

Since many real-world problems can be formulated as DTSPs and methods
for solving static TSPs can be applied to solve them [8]; the dynamic changes
generated in this paper can be generalized and may represent different factors
depending on the application. For example, in logistics, the weight changes may
represent traffic on the road system or in telecommunications the weight changes
may represent delays on the network.

3 MAX -MIN Ant System

3.1 Construct Solutions

One of the state-of-the-art ACO variations is the MMAS [22]. A colony of ω
ants read pheromones in order to construct their solutions and write pheromones

to store their solutions. Each ant k uses a probabilistic rule to choose the next
node to visit. The decision rule of the kth ant to move from node vi to node vj
is defined as follows:

pkij =
[τij]

α [ηij]
β

∑

l∈Nk

i

[τil]
α
[ηil]

β
, if j ∈ N k

i , (3)

where τij and ηij are the existing pheromone trail and heuristic information
available a priori between nodes vi and vj , respectively. The heuristic information
is defined as ηij = 1/dij(t), where dij(t) is defined as in Eq. (1). N k

i is the
neighbourhood of unvisited nodes incident to node i available for ant k to select.
α and β are the two parameters which determine the relative influence of τij and
ηij , respectively.

3.2 Pheromone Update

The pheromone trails inMMAS are updated by applying evaporation as follows:

τij ← (1− ρ) τij , ∀(vi, vj), (4)

where ρ is the evaporation rate which satisfies 0 < ρ ≤ 1, and τij is the existing
pheromone value. After evaporation, the best ant deposits pheromone as follows:

τij ← τij +∆τbestij , ∀(vi, vj) ∈ T best, (5)

where ∆τbestij = 1/Cbest is the amount of pheromone that the best ant deposits

and Cbest defines the solution quality of tour T best. The best ant that is allowed
to deposit pheromone may be either the best-so-far, in which case Cbest = Cbs,
or the iteration-best, in which case Cbest = Cib, where Cbs and Cib are the
solution quality of the best-so-far and the iteration best ant, respectively. The
best-so-far ant is a special ant that may not necessarily belong to the current
population of ants as the iteration best ant. Both update rules are used in an
alternate way in the implementation [23].

The lower and upper limits τmin and τmax of the pheromone trail values
are imposed. The τmax value is bounded by 1/(ρCbs), where Cbs is initially the
solution quality of an estimated optimal tour and later on is updated whenever
a new best-so-far ant solution quality is found. The τmin value is set to τmin =
τmax/2n.

Since only the best ant is allowed to deposit pheromone, the population may
quickly converge towards the best solution found in the first iteration. Therefore,
the pheromone trails are occasionally reinitialized to the τmax value to increase
exploration. For example, whenever the stagnation behaviour occurs or when no
improved solution is found for a given number of iterations, the pheromone trails
are reinitialized.

3.3 Adapting to Dynamic Changes

MMAS is able to use knowledge from previous environments via pheromone
trails and can be applied directly to DOPs without any modifications [1, 16]. For
example, when the changing environments are similar, the pheromone trails of
the previous environment may provide knowledge to speed up the optimization
process to the new environment. However, the algorithm needs to be flexible
enough to accept the knowledge transferred from the pheromone trails, or elim-
inate the pheromone trails, in order to adapt well to the new environment. In
particular, pheromone evaporation enables the algorithm to forget bad decisions
made in previous iterations. When a dynamic change occurs, evaporation elim-
inates the pheromone trails of the previous environment from areas that are
generated on the old optimum and helps ants to explore for the new optimum.

In case the changing environments are different, then pheromone reinitial-
ization may be a better choice rather than transferring the knowledge from
previous pheromone trails [1, 9, 10, 16]. For instance, when a change occurs, the
pheromone trails are initialized with an equal amount.

4 Varying the Colony Size

4.1 Effect of the Colony Size in Dynamic Environments

A previous empirical study showed that the colony size of theMMAS algorithm,
one of the best performing ACO algorithms, is sensitive to the properties of
DOPs [18]. In particular, if for a given DOP only a certain computation budget,
e.g., the maximum number of function evaluations, is available, then the colony
size, i.e., the number of ants, is a very critical parameter. Since each ant in a
colony corresponds to a single function evaluation, an unnecessarily large colony
size may waste computations whereas an extremely small colony size may restrict
the searching capabilities of ACO.

Furthermore, the colony size has a direct relation with the reinforcement
learning period of ACO because it determines its duration: less ants corresponds
to larger duration whereas more ants corresponds to smaller duration. Also the
colony size determines how broad the search is at each iteration (e.g., more ants
means broader search). Hence, the number of ants needs to be tuned accordingly
in order not to waste computation resources and degrade the solution quality.

In this paper, we study the impact of the colony size on the performance of
theMMAS algorithm for DOPs. This kind of problems in a nutshell are a series
of stationary optimization problems that all need to be optimized. Therefore, it is
straightforward that more challenges exist and the colony size will have impact
on the performance of the algorithm. This is because it determines the num-
ber of iterations and the broadness of the search as in stationary optimization
problems. For example, for a given DOP a predefined computation budged is
available between each environmental change that is typically synchronized with
the algorithm, i.e., every f evaluations a change occurs [15]. Therefore, an algo-
rithm with a larger colony size means that it will perform a broader search (i.e.,

 22000

 22500

 23000

 23500

 24000

 24500

 25000

 25500

0 1000 2000 3000 4000 5000

B
es

t
O

u
tp

u
t

Evaluations

kroA100.tsp

1 Ant
10 Ants

100 Ants

 21500

 22000

 22500

 23000

 23500

 24000

 24500

 25000

 25500

0 10000 20000 30000 40000 50000

B
es

t
O

u
tp

u
t

Evaluations

kroA100.tsp

1 Ant
10 Ants

100 Ants

Fig. 1. Performance of MMAS with different fixed number of ants for a short run of
5000 evaluations (left) and a long run of 50,000 evaluations (right), respectively.

more evaluations per iteration) but it will have limited reinforcement learning
(i.e., less number of iteration) for each environmental change.

4.2 Pre-Scheduling the Colony Size

The colony size of MMAS was investigated on the stationary TSP [24]. In
particular, the number of ants used shows a trade-off between the early and
later optimization process of the algorithm regarding the solution quality. At
early stages of the optimization process fewer ants result to better performance,
whereas at later stages more ants result to better performance. With fewer ants
the algorithm seems to initially progress faster but leads to the stagnation be-
haviour at later stages. More ants give better results only on later stages of
the optimization process. This behaviour ofMMAS can be observed in Fig. 1.
Similar behaviour was observed for other problem instances (kroA150.tsp and
kroA200.tsp).

Clearly, at different stages of the optimization process the optimal colony size
ofMMAS varies. Therefore, adjusting the colony size during the optimization
process seems a better choice rather than keeping a fixed colony size. In fact,
pre-scheduling the colony size in stationary environments has proved that it can
combine the merits of few ants on shorter runs and the merits of more ants on
longer runs [24]. However, in this paper, we are concerned with pre-schedules for
dynamic environments. Considering the observations in Fig. 1, a potential good
pre-schedule in a dynamic environment could be starting with a small colony
size when a change occurs to quickly converge and then gradually increase the
colony size to further improve the solution quality.

In particular, four pre-schedules are investigated which are defined as follows:

1. Pre-schedule 1: every 15 iterations add a single ant
2. Pre-schedule 2: every 10 iterations add a single ant
3. Pre-schedule 3: every 5 iterations add a single ant

4. Pre-schedule 4: every 2 iterations add a single ant

All schedules start with an initial colony size of 1 ant and increase by 1 ant at a
time. When a change occurs the colony size is reset back to 1 and starts to grow
until the next dynamic change occurs. An arbitrary number of different pre-
schedules can exist but in this paper we consider these four to determine under
which frequency of increasing the number of antsMMAS performs better. The
size of the colony increases faster from pre-schedule 1 to pre-schedule 2, pre-
schedule 3 and to pre-schedule 4.

5 Experimental Study

5.1 Experimental Setup

To investigate the effect of the colony size ofMMAS in dynamic environments,
three TSP stationary benchmark instances (i.e., kroA100.tsp, kroA150.tsp and
kroA200.tsp) were obtained from TSPLIB4 and corresponding DOPs are gen-
erated using the benchmark generator (described in Section 2.3) with f set to
5000 and 50000 function evaluations, indicating quickly and slowly changing en-
vironments, respectively, and m set to 0.1, 0.25, 0.5 and 0.75, indicating slightly,
to medium, to severely changing environments, respectively. Totally, a series of
8 dynamic test cases of DTSPs are constructed from each stationary benchmark
instance to systematically investigateMMAS algorithm with the proposed pre-
scheduled colony size against standard fixed colony size.

The colony size of a traditional MMAS was set to fixed values, i.e., ω ∈
{1, 2, 5, 10, 25, 50, 100}, and the results are compared with the pre-scheduled vari-
ation ofMMAS. The remaining parameters were set to typical values for DOPs
as follows: α = 1, β = 5 and ρ = 0.8 from our preliminary experiments.

5.2 Performance Measurement

For each DTSP, 30 independent runs of theMMAS were executed. For each run,
25 environments changes were allowed and the best so far ant after a dynamic
change was recorded. The overall offline performance [11] is defined as follows:

P̄offline =
1

E

E
∑

i=1





1

R

R
∑

j=1

P ∗
ij



 , (6)

where E is the total number of function evaluations, R is the number of runs,
P ∗
ij is the best-so-far after a dynamic change of iteration i of run j.

4 http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/

5.3 Results and Discussion

The offline performance results of theMMAS algorithm on DTSPs with fixed
and pre-scheduled colony sizes are presented in Table 1. Pairwise comparisons
between the best fixed colony variation (1, 2, 5, 10, 25, 50 and 100 ants) against
the best pre-scheduled colony variation (1, 2, 3 and 4 pre-schedules) using Mann–
Whitney statistical tests are performed. The best variation of one type with a
bold value indicates that is significantly better than the best variation of the
other type. In case both variations types are in bold it indicates insignificantly
difference between them. In Figs. 2 and 3, the dynamic offline performance for
quickly and slowly changing environments against the algorithmic evaluations
are plotted for the first 10 environments to better understand the behaviour
of MMAS. From the experimental results, the following observations can be
drawn.

 22000

 22500

 23000

 23500

 24000

 24500

 25000

0 10000 20000 30000 40000 50000

O
ff

li
n
e

P
er

fo
rm

an
ce

Evaluations

kroA100.tsp, f = 5000, m = 0.1

1 Ant
10 Ants

100 Ants

 21500

 22000

 22500

 23000

 23500

 24000

 24500

 25000

 25500

0 100000 200000 300000 400000 500000

O
ff

li
n
e

P
er

fo
rm

an
ce

Evaluations

kroA100.tsp, f = 50000, m = 0.1

1 Ant
10 Ants

100 Ants

Fig. 2. Dynamic offline performance of MMAS with different fixed number of ants
for quickly changing (left) and slowly changing (right) DTSPs, respectively.

First, the offline performance of fixed colony variations of MMAS with a
larger size is better in most test cases. Only on few cases, i.e., when m = 0.75,
a smaller colony size has better performance. These results were expected for
slowly changing DTSPs, i.e., f = 50000, because more ants perform better in
long runs. However, a large colony also performs better for quickly changing DT-
SPs, i.e., f = 5000. This is contradictory with the observations in Fig. 1, where
a small colony size performed better in a shorter run (corresponds to a quickly
changing environment). From Fig. 2, it can be observed that the performance
up to the first environment (before any change occurs) the results match the
one in Fig. 1. When a dynamic change occursMMAS with fewer ants perform
worst. This is possibly because the pheromone trails generated by fewer ants of
the previous environment may not promote exploration when they are used in
the new environment.

Table 1. Comparison of MMAS variations regarding the results of the offline perfor-
mance

f = 5000 f = 50000

m ⇒ 0.1 0.25 0.5 0.75 0.1 0.25 0.5 0.75

ants kroA100.tsp

(1 ant) 23452 23565 23417 23584 22993 23125 22986 23159
(2 ants) 23378 23523 23381 23538 22967 23119 23004 23157
(5 ants) 23395 23575 23458 23648 23014 23152 23034 23188
(10 ant) 23390 23565 23410 23558 22984 23151 23007 23184
(25 ants) 22831 23030 23037 23085 22937 23135 23002 23134
(50 ants) 22892 23072 22933 23150 22880 23098 22975 23109
(100 ants) 22845 23016 22964 23128 22790 23092 23006 23112
Pre-schedule 1 23199 23385 23226 23284 22826 23055 22929 23055
Pre-schedule 2 23294 23318 23126 23193 22781 23038 22952 23081
Pre-schedule 3 22804 23050 22740 22830 22609 22913 22803 22916

Pre-schedule 4 22707 22887 23071 23144 22814 23066 22963 23090

ants kroA150.tsp

(1 ant) 28892 29276 29473 29538 28404 28797 28975 29004

(2 ants) 28874 29260 29492 29588 28436 28842 29029 29060
(5 ants) 29020 29338 29610 29727 28558 28907 29082 29146
(10 ant) 28993 29308 29466 29568 28596 28922 29088 29188
(25 ants) 28600 28885 29229 29419 28578 28902 29057 29158
(50 ants) 28575 28897 29236 29300 28542 28861 29056 29156
(100 ants) 28596 28810 29237 29302 28508 28883 28966 29195
Pre-schedule 1 28832 29065 29163 29313 28474 28870 28960 29161
Pre-schedule 2 28856 29040 29019 29309 28491 28845 28995 29116
Pre-schedule 3 28566 28930 29189 29286 28414 28824 28994 29176
Pre-schedule 4 28405 28701 29334 29143 28500 28843 29004 29146

ants kroA200.tsp

(1 ant) 31799 32405 32722 32829 31240 31712 32044 32103
(2 ants) 31635 32178 32588 32620 31219 31684 32029 32061
(5 ants) 31602 32148 32561 32592 31165 31656 32011 32017
(10 ant) 31543 31958 32409 32327 31131 31641 31992 31980
(25 ants) 31156 31529 32171 32105 31077 31583 31969 31987
(50 ants) 31191 31505 32138 32129 31055 31552 31973 31914
(100 ants) 31158 31493 32032 32113 30982 31468 31915 31802
Pre-schedule 1 31326 31692 32134 32086 31005 31503 31860 31895
Pre-schedule 2 31243 31534 31991 31850 30978 31463 31841 31825
Pre-schedule 3 31084 31466 31882 32101 31002 31345 31806 31718

Pre-schedule 4 30935 31643 31155 32248 31017 31549 31861 31858

Second, the offline performance of pre-scheduled colony variations ofMMAS
that increase the colony size faster, e.g., Pre-schedule 3 and Pre-schedule 4, per-
form better in most test cases. Only in kroA150.tsp problem instance when
f = 50000 none of the pre-scheduled variations perform better. This is because
the results of fixed variation in Table 1 show that 1 ant outperforms other fixed
variations. Therefore, a pre-schedule that increases the colony size will not be

 22000

 22500

 23000

 23500

 24000

 24500

 25000

0 10000 20000 30000 40000 50000

O
ff

li
n
e

P
er

fo
rm

an
ce

Evaluations

kroA100.tsp, f = 5000, m = 0.1

100 Ants
Pre-Schedule 3
Pre-Schedule 4

 21500

 22000

 22500

 23000

 23500

 24000

 24500

 25000

 25500

0 100000 200000 300000 400000 500000

O
ff

li
n
e

P
er

fo
rm

an
ce

Evaluations

kroA100.tsp, f = 50000, m = 0.1

100 Ants
Pre-Schedule 3
Pre-Schedule 4

Fig. 3. Dynamic offline performance of the best fixed and pre-schedule MMAS vari-
ations for quickly changing (left) and slowly changing (right) DTSPs, respectively.

helpful. For the remaining cases, either Pre-schedule 3 or Pre-schedule 4 per-
forms better. This shows that the speed of increasing the colony size is problem
dependent.

Finally, the comparisons between the fixed and pre-scheduled variation show
that with the exception of kroA150.tsp when f = 50000, the best performing
pre-schedule variation outperforms the best performing fixed variation in many
DTSPs. From Fig. 3, it can be observed that a pre-scheduled colony size is able
to maintain a better offline performance than a fixed colony size.

6 Conclusions

The optimal colony size ofMMAS algorithms varies at different stages of the op-
timization process. More precisely, a small colony size works better for short runs
and a large colony size works better for long runs in stationary environments.
This paper, investigates different pre-schedules for DTSPs, where MMAS be-
gins with a single ant and gradually increase its colony size in dynamic envi-
ronments. When a dynamic change occurs, the colony is reset back to a single
ant. The key idea of the pre-schedule is to combine the benefits of small and
large colonies. The experiments for different DTSP test cases showed that a
varying colony size has a promising performance when compared with a fixed
colony size. However, the performance of the pre-schedule of the varying colony
strongly depends on the properties of the DTSP. Hence, a direct future work
would be to self-adapt the colony size ofMMAS. In this way, a possibly auto-
matic pre-schedule will be generated for different DTSPs.

Acknowledgement

This work was supported by the Engineering and Physical Sciences Research
Council (EPSRC) of U.K. under Grant EP/K001310/1.

References

1. Angus, D., Hendtlass, T.: Ant colony optimisation applied to a dynamically chang-
ing problem. In Hendtlass, T., Ali, M., eds.: Developments in Applied Artificial
Intelligence. Volume 2358 of Lecture Notes in Computer Science. Springer Berlin
Heidelberg (2002) 618–627

2. Colorni, A., Dorigo, M., Maniezzo, V.: Distributed optimization by ant colonies. In
Vaerla, F., Bourgine, P., eds.: Proceedings of the European Conference on Artificial
Life, Elsevier Publishing (1991) 134–142

3. Dorigo, M., Maniezzo, V., Colorni, A.: Ant system: optimization by a colony of
cooperating agents. IEEE Transactions on Systems, Man, and Cybernetics, Part
B: Cybernetics 26(1) (1996) 29–41

4. Dorigo, M., Gambardella, L.M.: Ant colony system: A cooperative learning ap-
proach to the traveling salesman problem. IEEE Transactions on Evolutionary
Computation 1(1) (1997) 53–66

5. Dorigo, M., Stützle, T.: Ant colony optimization. MIT Press, Cambridge, MA
(2004)

6. Eyckelhof, C., Snoek, M.: Ant systems for a dynamic TSP. In Dorigo, M., Di Caro,
G., Sampels, M., eds.: Ant Algorithms. Volume 2463 of Lecture Notes in Computer
Science. Springer Berlin Heidelberg (2002) 88–99

7. Gambardella, L.M., Taillard, E.D., Agazzi, C.: MACS-VRPTW: A multicolony
ant colony system for vehicle routing problems with time windows. In: New Ideas
in Optimization. (1999) 63–76

8. Gueta, L., Chiba, R., Ota, J., Arai, T., Ueyama, T.: A practical and integrated
method to optimize a manipulator-based inspection system. In: Robotics and
Biomimetics, 2007. ROBIO 2007. IEEE International Conference on. (Dec 2007)
1911–1918

9. Guntsch, M., Middendorf, M.: Pheromone modification strategies for ant algo-
rithms applied to dynamic TSP. In Boers, E.J.W., ed.: Applications of Evolu-
tionary Computing. Volume 2037 of Lecture Notes in Computer Science. Springer
Berlin Heidelberg (2001) 213–222

10. Guntsch, M., Middendorf, M.: Applying population based ACO to dynamic opti-
mization problems. In Dorigo, M., Di Caro, G., Sampels, M., eds.: Ant Algorithms.
Volume 2463 of Lecture Notes in Computer Science. Springer Berlin Heidelberg
(2002) 111–122

11. Jin, Y., Branke, J.: Evolutionary optimization in uncertain environments–a survey.
IEEE Transactions on Evolutionary Computation 9(3) (2005) 303–317

12. Kang, L., Zhou, A., McKay, B., Li, Y., Kang, Z.: Benchmarking algorithms
for dynamic travelling salesman problems. In: Evolutionary Computation, 2004.
CEC2004. Congress on. Volume 2. (June 2004) 1286–1292

13. Li, C., Yang, M., Kang, L.: A new approach to solving dynamic tavelling salesman
problem. In: 6th Int. Conf. on Simulated Evolution and Learning. (2006) 236–243

14. Mavrovouniotis, M., Yang, S.: A memetic ant colony optimization algorithm for
the dynamic travelling salesman problem. Soft Computing 15(7) (2011) 1405–1425

15. Mavrovouniotis, M., Yang, S., Yao, X.: A benchmark generator for dynamic
permutation-encoded problems. In Coello, C., Cutello, V., Deb, K., Forrest, S.,
Nicosia, G., Pavone, M., eds.: Parallel Problem Solving from Nature - PPSN XII.
Volume 7492 of Lecture Notes in Computer Science. Springer Berlin Heidelberg
(2012) 508–517

16. Mavrovouniotis, M., Yang, S.: Adapting the pheromone evaporation rate in dy-
namic routing problems. In Esparcia-Alcázar, A., ed.: Applications of Evolutionary
Computation. Volume 7835 of Lecture Notes in Computer Science. Springer Berlin
Heidelberg (2013) 606–615

17. Mavrovouniotis, M., Yang, S.: Ant colony optimization with immigrants schemes
for the dynamic travelling salesman problem with traffic factors. Applied Soft
Computing 13(10) (2013) 4023–4037

18. Mavrovouniotis, M., Yang, S.: Empirical study on the effect of population size on
max -min ant sys- tem in dynamic environments. In: Proceedings of the 2016 IEEE
Congress on Evolutionary Computation (CEC 2016). (2016) 853860

19. Melo, L., Pereira, F., Costa, E.: Multi-caste ant colony algorithm for the dynamic
traveling salesperson problem. In Tomassini, M., Antonioni, A., Daolio, F., Buesser,
P., eds.: Adaptive and Natural Computing Algorithms. Volume 7824 of Lecture
Notes in Computer Science. Springer Berlin Heidelberg (2013) 179–188

20. Psaraftis, H. In: Dynamic vehicle routing problems. Elsevier (1988) 223–248
21. Simões, A., Costa, E.: Chc-based algorithms for the dynamic traveling salesman

problem. In Di Chio, C., Cagnoni, S., Cotta, C., Ebner, M., Ekárt, A., Esparcia-
Alcázar, A., Merelo, J., Neri, F., Preuss, M., Richter, H., Togelius, J., Yannakakis,
G., eds.: Applications of Evolutionary Computation. Volume 6624 of Lecture Notes
in Computer Science. Springer Berlin Heidelberg (2011) 354–363

22. Stützle, T., Hoos, H.: MAX–MIN ant system and local search for the traveling
salesman problem. In: IEEE International Conference on Evolutionary Computa-
tion. (1997) 309–314

23. Stützle, T., Hoos, H.H.: MAX–MIN ant system. Future Generation Computer
Systems 16(8) (2000) 889 – 914

24. Stützle, T., López-Ibáñez, M., Pellegrini, P., Maur, M., Montes de Oca, M., Birat-
tari, M., Dorigo, M.: Parameter adaptation in ant colony optimization. In Hamadi,
Y., Monfroy, E., Saubion, F., eds.: Autonomous Search. Springer Berlin Heidelberg
(2012) 191–215

25. Tinós, R., Whitley, D., Howe, A.: Use of explicit memory in the dynamic trav-
eling salesman problem. In: Proceedings of the 2014 Conference on Genetic and
Evolutionary Computation, New York, NY, USA, ACM (2014) 999–1006

26. Younes, A., Calamai, P., Basir, O.: Generalized benchmark generation for dynamic
combinatorial problems. In: Proceedings of the 2005 Genetic and Evolutionary
Computation Conference, ACM Press (2005) 25–31

