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ABSTRACT

Ant colony optimization (ACO) algorithms have proved to
be able to adapt for solving dynamic optimization problems
(DOPs). The integration of local search algorithms has also
proved to significantly improve the output of ACO algo-
rithms. However, almost all previous works consider sta-
tionary environments. In this paper, theMAX -MIN Ant
System, one of the best ACO variations, is integrated with
the unstringing and stringing (US) local search operator for
the dynamic travelling salesman problem (DTSP). The best
solution constructed by ACO is passed to the US operator
for local search improvements. The proposed memetic algo-
rithm aims to combine the adaptation capabilities of ACO
for DOPs and the superior performance of the US operator
on the static travelling salesman problem in order to tackle
the DTSP. The experiments show that the MAX -MIN
Ant System is able to provide good initial solutions to US
and the proposed algorithm outperforms other peer ACO-
based memetic algorithms on different DTSPs.

Categories and Subject Descriptors

G.2.1 [Combinatorics]: Combinatorial algorithms

Keywords
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1. INTRODUCTION
Ant colony optimization (ACO) algorithms have proved

that they are powerful tools to provide near-optimal solu-
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tions for solving different combinatorial optimization prob-
lems, e.g., the travelling salesman problem (TSP) [6]. Tra-
ditionally, researchers have drawn their attention on sta-
tionary optimization problems, where the environment re-
mains fixed during the execution of an algorithm. How-
ever, many real-world applications are subject to dynamic
environments. Dynamic optimization problems (DOPs) are
challenging since the aim of an algorithm is not only to find
the optimum of the problem quickly, but to efficiently track
the moving optimum when changes occur [16]. A change in
a DOP may involve factors like the objective function, input
variables, problem instance, constraints, and so on.

ACO algorithms have been originally designed for station-
ary optimization problems [5], e.g., to converge fast into an
optimum or near-optimum solution, and may face a serious
challenge to tackle DOPs. This is because, after a change,
the pheromone trails of the previous environment may bias
the population to search into an old optimum, making it
difficult to track the moving optimum. As a result, ACO
will not adapt well to dyanmic changes once the population
converges into an optimum. Considering that DOPs can be
taken as a series of stationary problem instances, a simple
way to tackle them is to reinitialize the pheromone trails
and consider every dynamic change as the arrival of a new
problem instance which needs to be solved from scratch dij
is the distance [13, 18]. However, this restart strategy is
generally not efficient.

In contrast, once enhanced properly, ACO algorithms are
able to adapt to dynamic changes since they are inspired
from nature, which is a continuously changing process [1,
16]. Several strategies have been proposed and integrated
with ACO to shorten the re-optimization time and main-
tain a high quality of the output efficiently, simultaneously.
These strategies can be categorized as: increasing diversity
after a change [13, 18]; maintaining diversity during the ex-
ecution [7, 19]; and memory-based schemes [14, 15].

The integration of local search operations with ACO or
other metaheuristics, which leads to the so-called memetic
algorithms, has proved that the performance of these algo-
rithms can be further improved regarding the solution qual-
ity [17, 22, 24]. This is because local search algorithms can
better explore locally a neighbourhood in the search space
than ACO. However, local search algorithms generate strong
exploitation at the global level since they are optimizing to-



wards the optimum. Therefore, the use of ACO provides the
exploration and the knowledge transfer needed to adapt to
DOPs, whereas a local search algorithm improves the out-
put. In this paper, we integrate an advanced local search op-
erator, called unstringing and stringing (US) [12], which was
proposed for the TSP, within ACO to address dynamic TSPs
(DTSPs). The dynamic benchmark generator for permuta-
tion problems (DBGP) [20] is used to generate DTSPs in
order to systematically analyze the investigated algorithms.

The rest of the paper is organized as follows. Section 2
describes the TSP and the construction of DTSP using the
DBGP. Section 3 describes one of the best variations of ACO
used for the experiments. Section 4 describes the proposed
memetic framework for ACO algorithms. Section 5 gives
the experimental results, including the statistical tests, and
analysis. Finally, Section 6 concludes this paper with dis-
cussions on relevant future work.

2. TRAVELLING SALESMAN PROBLEMS

2.1 Problem Description
The TSP can be described as follows: given a collection

of cities, the objective is to find the Hamiltonian cycle that
starts from one city and visits each of the other cities once
before returning to the starting city. Typically, the problem
is modelled by a fully connected weighted graph G = (N,A),
where N = {v0, . . . , vn} is a set of nodes and A = {(vi, vj) ∈
N : i 6= j} is a set of arcs. Each arc (vi, vj) is associated
with a non-negative value dij which represents the distance
between cities vi and vj .

Formally, the TSP is defined as follows. Let ψij denote
the binary decision variables defined as follows:

ψij =

{

1, if (vi, vj) is covered in the tour,

0, otherwise,
(1)

where ψij ∈ {0, 1}. Then, the objective of the TSP is defined
as follows:

f(x) = min

n
∑

i=0

n
∑

j=0

dijψij , (2)

where n is the number of cities and dij is the distance be-
tween cities vi and vj .

2.2 Dynamic Benchmark Generators
Over the years, several dynamic benchmark generators

have been proposed for the DTSP that tend to model real-
world scenarios, such as the DTSP with traffic factors [7, 19]
and the DTSP with exchangeable cities [13, 14, 17]. These
benchmark generators modify the fitness landscape, when-
ever a dynamic change occurs, and cause the optimum value
to change.

In this paper, the recently proposed dynamic benchmark
generator for permutation-encoded problems (DBGP)1 is
used [20], which can convert any stationary permutation-
encoded benchmark problem instance to a DOP. The fitness
landscape is not changed with DBGP, and thus, the opti-
mum value (if known) remains the same. This is because
DBGP shifts the population of the algorithm to search to a
new location in the fitness landscape rather than modifying
the fitness landscape as other benchmark generators do.
1Available from: http://www.tech.dmu.ac.uk/∼syang/
Codes/DBGP.zip

The main advantage of using the DBGP over other gen-
erators is that one can observe how close to the optimum an
algorithm can perform when a dynamic change occurs. One
can argue that since a DOP can be considered as a series of
static problem instances, a direct way is to solve each prob-
lem instance to optimality, which may be non-trivial due to
the NP-hardness of most combinatorial optimization prob-
lems, especially for large-size problem instances [11]. It may
be possible for small-size problem instances, but then the
usefulness of benchmarking will be reduced.

The drawback of DBGP is that it sacrifices the realistic
modelling of application problems for the sake of bench-
marking. However, when comparing algorithms on the
DTSP with traffic factors, the optimum value is unknown.
Although such DOPs satisfy the modelling of a real-world
scenario, using them leads to other problems. For example,
one can see that one algorithm performs better than the oth-
ers, but it may be the case that all algorithms converge far
away from the actual optimum. Hence, with DBGP, apart
from the comparison benefits described previously, it is also
possible to assess the difficulty of a DOP. Particularly, in
case all the algorithms perform far away from the optimum
on a specific DOP, and closer to the optimum on another
DOP, it gives an indication that the former DOP is more
difficult to solve than the latter one.

2.3 Dynamic Test Environments
Considering the TSP description above, each city i ∈ N

has a location defined by (x, y) and each arc (vi, vj)∈A is
associated with a non-negative distance dij . Usually, the
distance matrix of a problem instance is defined as D =
(dij)n×n. DBGP generates the dynamic case as follows.

Every f iterations a random vector ~V (T ) is generated that
contains exactly m× n cities where T = ⌈t/f⌉ is the index
of the period of change, t is the iteration count of the algo-
rithm, f determines the frequency of change, n is the size
of the problem instance, and m ∈ [0.0, 1.0] determines the
magnitude of change. Then, a randomly re-ordered vector
~U(T ) is generated that contains only the cities of ~V (T ). In
this way, exactly m× n pairwise swaps are performed in D
using the two random vectors (~V (T ) ⊗ ~U(T )), where “⊗”
denotes the swap operator.

3. ANT COLONY OPTIMIZATION

3.1 MAX -MIN Ant System
The ACO metaheuristic consists of a population of µ ants

that construct solutions and share their information among
each other via their pheromone trails. The first ACO al-
gorithm, i.e., the Ant System (AS) [3], was developed for
solving the TSP. Many variations of the AS have been ap-
plied to address difficult optimization problems [6].

One of the best performing AS variations is the MAX -
MIN AS (MMAS) [21]. Ants read pheromones in order
to construct their solutions and write pheromones to store
their solutions. Each ant k uses a probabilistic rule to choose
the next city to visit. The decision rule of the kth ant to
move from city vi to city vj is defined as follows:

pkij =
[τij ]

α [ηij ]
β

∑

l∈Nk
i
[τil]

α [ηil]
β
, if j ∈ N k

i , (3)



where τij and ηij are the existing pheromone trail and the
heuristic information available a priori between cities vi and
vj , respectively. The heuristic information is defined as
ηij = 1/dij where dij is defined as in Eq. (2). N k

i is the
neighbourhood of unvisited cities for ant k adjacent to city
vi. α and β are the two parameters which determine the
relative influence of τij and ηij , respectively.

The pheromone trails inMMAS are updated by applying
evaporation as follows:

τij ← (1− ρ) τij ,∀(vi, vj), (4)

where ρ is the evaporation rate which satisfies 0 < ρ ≤ 1,
and τij is the existing pheromone value. After evaporation,
the best ant deposits pheromone as follows:

τij ← τij +∆τ bestij ,∀(vi, vj) ∈ T
best, (5)

where ∆τ bestij = 1/Cbest is the amount of pheromone that

the best ant deposits and Cbest defines the solution qual-
ity of tour T best. The best ant that is allowed to de-
posit pheromone may be either the best-so-far, in which
case Cbest = Cbs, or the iteration-best, in which case
Cbest = Cib, where Cbs and Cib are the solution quality
of the best-so-far ant2 and the iteration best ant, respec-
tively. Both update rules are used in an alternate way in
the implementation [22].

The lower and upper limits τmin and τmax of the
pheromone trail values are imposed. The τmax value is
bounded by 1/(ρCbs), where Cbs is initially the solution
quality of an estimated optimal tour and later on is up-
dated whenever a new best-so-far ant solution quality is
found. The τmin value is set to τmin = τmax/a, where a
is a constant parameter.

Since only the best ant is allowed to deposit pheromone,
the population may quickly converge towards the best solu-
tion found in the first iteration. Therefore, the pheromone
trails are occasionally reinitialized to the τmax value to in-
crease exploration. For example, whenever the stagnation
behaviour3 occurs or when no improved solution is found
for a given number of iterations, the pheromone trails are
reinitialized.

3.2 Response to Dynamic Changes
ACO algorithms are able to use knowledge from previ-

ous environments via their pheromone trails and can be ap-
plied directly to DOPs without any modifications [1, 18].
For example, when the changing environments are similar,
the pheromone trails of the previous environment may pro-
vide knowledge to speed up the optimization process to the
new environment. However, the algorithm needs to be flex-
ible enough to accept the knowledge transferred from the
pheromone trails, or eliminate the pheromone trails, in or-
der to adapt well to the new environment. In particular,
pheromone evaporation enables the algorithm to forget bad
decisions made in previous iterations. When a dynamic
change occurs, evaporation eliminates the pheromone trails
of the previous environment from areas that are generated
on the old optimum and helps ants to explore for the new
optimum.

2The best-so-far ant is a special ant that may not necessarily
belong to the current population of ants.
3Detected using λ-branching [10] that calculates the statis-
tics regarding the distribution of the current pheromone
trails.

Algorithm 1 ACO-based Memetic Framework

1: InitializePheromoneTrails
2: while (termination condition not satisfied) do
3: ConstructSolutions
4: UpdateBestAnts
5: if (newBestAntFound is true) then
6: ApplyLocalSearch
7: end if
8: UpdatePheromone
9: end while

In case the changing environments are different, then
pheromone reinitialization may be a better choice rather
than transferring the knowledge from previous pheromone
trails [1, 13, 14, 18]. A detection mechanism is required to
reinitialize the pheromone trails whenever a dynamic change
occurs. The detection mechanism for the DTSPs generated
by DBGP is straightforward. A single solution is required
to be stored and re-evaluated every iteration. If there is a
change to the tour cost, it indicates that a dynamic change
has occurred [18].

4. ACO-BASED MEMETIC ALGORITHM

4.1 Memetic Framework
Generally, in ACO based memetic algorithms, when all

ants construct solutions, the best-so-far ant after a dynamic
change is selected to undergo local search improvements in
dynamic environments. For example, in the memetic-ACO
(M-ACO) proposed in [17], an adaptive version of the inver-
over operator [23] is applied to the best ant for a predefined
number of steps. The resulting ant replaces the selected best
ant whenever the solution is improved.

The inver-over operator used in M-ACO does not consider
any heuristic information as other operators (e.g., 2-opt or
3-opt [4]), hence it is not used for comparison in the exper-
iments. Usually, heuristic based local search operators are
applied to solutions until no further improvement is avail-
able. Therefore, there is no need to apply such operators to
the best-so-far ant after a dynamic change in every iteration.
Since local search operators are computational expensive,
especially when the problem size is large, the computation
time can be reduced when they are applied only when a new
best-so-far ant is found (e.g., when the best ant of the cur-
rent iteration is better than the best ant found from all pre-
vious iterations since the last dynamic change). The overall
framework of proposed ACO-based memetic algorithms is
given in Algorithm 1.

4.2 Local Search Operator
In this paper, we consider a more advanced local search

operator previously proposed for the TSP, i.e., US [12]. This
specific operator has been originally used for the stationary
TSP with promising results when compared with other local
search algorithms. In order to take advantage of the adap-
tation capabilities of ACO, the US operator considers the
best solution constructed by ACO.

The US operator basically removes (unstringing) and in-
serts (stringing) cities from a tour into such position that
improves the overall tour cost. It can work equally well to
symmetric and asymmetric problems [8, 9]. In this paper,
we consider only symmetric TSPs. Hence, to simplify the



Figure 1: Illustration of Type I removal of vi.

Figure 2: Illustration of Type II removal of vi.

description of the US operator, we assume only this case,
i.e., symmetric TSPs.

Suppose that we wish to insert vx between any two ver-
tices vi and vj . The main feature of the insertion procedure
is that when a city vx is inserted, it is not necessarily placed
between two consecutive cities. However, after the insertion,
these cities become adjacent to vx. For a given orientation
of a tour, consider vk a city in the subtour from vj to vi and
vl a city in the subtour from vi to vj . We also consider for
any vertex vh on the tour, vh+1 its successor and vh−1 its
predecessor. Since the potential number of choices for vi, vj
and vx could be large, we limit the search within a neigh-
bourhood of a given size q (the suggested value is q = 4) as
in most local search operators. Basically, the neighbours of
a city vj are the closest (e.g., the least distance) q succes-
sors and predecessors among all cities already included in
the tour. The selection of the best place to insert a city in
the tour is now constrained to the neighbourhood of each
city involved in the alternative under consideration as well
as the alternatives tested to the removal procedures.

More precisely, the unstringing procedure suggests two
possible types of removals of vi from the tour as shown in
Figures 1 and 2, respectively.

• Type I Removal: Assume that vj belongs to the
neighbourhood of vi+1 and vk belongs to the neigh-
bourhood of vi−1, with vk being part of the sub-
tour (vi+1, . . . , vj−1). The removal of city vi re-
sults in the deletion of arcs (vi−1, vi), (vi, vi+1),

Figure 3: Illustration of Type I insertion of vx be-
tween vi and vj .

Figure 4: Illustration of Type II insertion of vx be-
tween vi and vj .

(vk, vk+1) and (vj , vj+1); and the insertion of arcs
(vi−1, vk), (vi+1, vj) and (vk+1, vj+1). Also, the sub-
tours (vi+1, . . . , vk) and (vk+1, . . . , vj) are reversed.

• Type II Removal: Assume that vj belongs to the neigh-
bourhood of vi+1, vk belongs to the neighbourhood of
vi−1, with vk being part of the subtour (vj+1, . . . , vi−2)
and vl belongs to the neighbourhood of vk+1, with
vl being part of the subtour (vj , . . . , vk−1). The re-
moval of city vi results in the deletion of arcs (vi−1, vi),
(vi, vi+1), (vj−1, vj), (vk, vk+1) and (vl, vl+1); and the
insertion of arcs (vi−1, vk), (vl+1, vj−1), (vi+1, vj) and
(vl, vk+1). As above, the subtours (vi+1, . . . , vj−1) and
(vl+1, . . . , vk) are reversed.

The stringing procedure is basically the reverse of the un-
stringing procedure. Since there are two types of removals
there are two corresponding types of insertions, as shown in
Figures 3 and 4, respectively.

• Type I Insertion: Assume that vk 6= vi and vk 6= vj .
The insertion of vx results in the deletion of arcs
(vi, vi+1), (vj , vj+1) and (vk, vk+1); and the insertion of
arcs (vi, vx), (vx, vj), (vi+1, vk) and (vj+1, vk+1). Also,
the subtours (vi+1, . . . , vj) and (vj+1, . . . , vk) are re-
versed.

• Type II Insertion: Assume that vk 6= vj , vk 6= vj+1,
vl 6= vi, and vl 6= vi+1. The insertion of vx results in



the deletion of arcs (vi, vi+1), (vl−1, vl), (vj , vj+1) and
(vk−1, vk); and the insertion of arcs (vi, vx), (vx, vj),
(vl, vj+1), (vk−1, vl−1) and (vi+1, vk). As above, the
subtours (vi+1, . . . , vl−1) and (vl, . . . , vj) are reversed.

In summary, the unstringing and stringing procedures de-
scribed above are applied to the tour provided by ACO (i.e.,
the best-so-far ant) for local search improvements. The re-
sulting solution is then used to deposit pheromone trails
using Eq. (5). Note that the same pheromone update policy
withMMAS is used.

5. EXPERIMENTAL STUDY

5.1 Experimental Setup
In the experiments, we investigate the effects of having

ACO providing its solutions rather than using randomly gen-
erated solutions for local search improvements, and compare
the proposed ACO with the US operator over the existing
integrations of ACO with the 2-opt and 3-opt operators. In
particular, the performance of the following algorithms is
investigated:

• MMAS: no local search improvement is applied [21].

• MMAS+2opt: the 2-opt operator is applied whenever
a new best-so-far ant is found until there is no further
improvement [22].

• MMAS+3opt: the 3-opt operator is applied as in the
MMAS+2opt [22].

• MMAS+US: the US operator is applied as in
MMAS+2opt andMMAS+3opt for a fair compari-
son.

• MMASR+US: the same algorithm as MMAS+US
but whenever an environmental change is detected the
pheromone trails are reinitialized.

• Random+US: the US operator applied on random so-
lutions rather than solutions generated by the ants.

All algorithmic parameters were set to commonly used val-
ues: α = 1, β = 5, ρ = 0.2 and the number of ants was set
to µ = 50, except inMMASR+US where µ = 49 since one
solution was used as a detector to detect dynamic changes.

DTSPs are generated from three stationary benchmark in-
stances obtained from TSPLIB4 using the DBGP generator
described in Section 2. The frequency of change f was set
to change every 10 and 100 algorithmic iterations indicat-
ing quickly and slowly changing environments, respectively,
and the magnitude of change m was set to 0.1, 0.25, 0.5
and 0.75, indicating slightly, to medium, to severely chang-
ing environments, respectively. Totally, a series of 8 DTSPs
were constructed from each stationary instance. For each
ACO algorithm on a DTSP, 30 independent runs were ex-
ecuted on the same set of random seed numbers. For each
run, 1000 iterations were allowed and an observation (i.e.,
the value of the best-so-far ant after a dynamic change) was
recorded every iteration.

4Available from http://comopt.ifi.uni-heidelberg.de/
software/TSPLIB95/

The modified offline error [2] was used to evaluate the
overall performance of ACO algorithms, which is defined as:

Ēoffline =
1

E

E
∑

i=1

(

1

R

R
∑

j=1

Errij

)

, (6)

where R is the number of runs, E is the number of iterations,
and Errij is the best-so-far error value (i.e., the difference
between the tour cost of the best-so-far ant and the optimum
value for the fitness landscape) after a change in observation
i of run j. Note that this measurement is compatible with
DBGP because the optimal value (shown in Table 1) of each
benchmark instance is known and remains the same during
the environmental changes.

Moreover, the population diversity [19] was recorded as:

T̄DIV =
1

E

E
∑

i=1

(

1

R

R
∑

j=1

DIVij

)

, (7)

where R and E are defined in Eq. (6) and DIVij defines the
diversity of the population in observation i of run j. For the
DTSP, DIVij can be calculated as follows:

DIVij =
1

µ(µ− 1)

µ
∑

p=1

µ
∑

q 6=p

(

1−
cEpq

n

)

, (8)

where µ is the size of population, cEpq is defined as the
number of common edges between the solutions of ants p
and q, and n is the number of cities.

5.2 Experimental Results and Analysis
The experimental results regarding the offline error of in-

vestigated algorithms for all DTSPs are presented in Table 1.
The corresponding statistical results are presented in Ta-
ble 2, where Kruskal–Wallis tests were applied, followed by
posthoc paired comparisons using Mann–Whitney tests with
the Bonferroni correction. In Table 2, the results are shown
as “+”, “−” and “∼” when the first algorithm is significantly
better than the second one, when the second algorithm is
significantly better than the first one, and when the two al-
gorithms are not significantly different, respectively. In Fig-
ure 5, the dynamic offline error for slowly changing environ-
ments against the algorithmic iterations of MMAS+2opt,
MMAS+3opt, MMAS+US and MMASR+US are plot-
ted to better understand the behaviour of the ACO-based
memetic algorithms. Figure 6 presents the population di-
versity of ACO algorithms for all DTSPs. From the experi-
mental results, several observations can be drawn.

First, it can be observed that the performance ofMMAS
is improved dramatically when integrated with local search
algorithms for all DTSPs; see Table 1. This is natural be-
causeMMAS performs global optimization and cannot be
accurate to the output provided, whereas 2-opt, 3-opt and
US perform local optimization and can locate the optimum
in a given neighbourhood. MMAS provides a good ini-
tial solution for local search algorithms since it may locate
the neighbourhood that contains the global optimum or a
near-optimum solution. This can be supported by the fact
thatMMAS+US significantly outperforms Random+US in
most DTSPs; see the comparisons ofMMAS+US ⇔ Ran-
dom+US in Table 2. Basically, Random+US is a simple
restart strategy whereas MMAS+US is a guided restart
strategy, respectively, of the US local search procedure that
restarts the US operator for several times (iterations). Their



Table 1: Offline error of ACO algorithms for different DTSPs where bold values indicate best results
Algorithms & DTSPs kroA100(Optimum=21282) kroA150(Optimum=26524) kroA200(Optimum=29368)
f = 10, m⇒ 0.1 0.25 0.5 0.75 0.1 0.25 0.5 0.75 0.1 0.25 0.5 0.75
MMAS 1183 3107 3915 4123 2737 4846 5804 6003 3689 6196 7135 7393
MMAS+2opt 341 1084 1253 1307 1122 1732 1891 1927 1400 2038 2205 2251
MMAS+3opt 135 374 444 443 525 722 755 770 611 861 911 927
MMAS+US 100 227 247 236 524 593 602 586 586 729 748 756
MMASR+US 220 225 223 229 597 591 583 582 728 727 728 723
Random+US 272 286 302 286 621 622 616 605 832 821 839 836
f = 100, m⇒ 0.1 0.25 0.5 0.75 0.1 0.25 0.5 0.75 0.1 0.25 0.5 0.75
MMAS 419 844 1176 1329 1049 1810 2261 2353 1108 2052 2847 2939
MMAS+2opt 190 408 662 692 716 1154 1344 1384 695 1237 1608 1641
MMAS+3opt 100 201 334 366 446 627 708 730 450 705 838 885
MMAS+US 65 145 189 213 434 550 558 555 455 655 725 752
MMASR+US 164 146 168 169 573 574 548 554 688 666 714 672
Random+US 290 294 297 261 618 612 629 604 810 854 808 831

Table 2: Statistical comparisons of ACO algorithms for different DTSPs.
Algorithms & DTSPs kroA100 kroA150 kroA200
f = 10, m⇒ 0.1 0.25 0.5 0.75 0.1 0.25 0.5 0.75 0.1 0.25 0.5 0.75
MMAS+US ⇔ MMAS + + + + + + + + + + + +
MMAS+US ⇔ MMAS+2opt + + + + + + + + + + + +
MMAS+US ⇔ MMAS+3opt + + + + ∼ + + + ∼ + + +
MMAS+US ⇔ MMASR+US + ∼ − ∼ + ∼ ∼ ∼ + ∼ − −
MMAS+US ⇔ Random+US + + + + + + ∼ ∼ + + + +
f = 100, m⇒ 0.1 0.25 0.5 0.75 0.1 0.25 0.5 0.75 0.1 0.25 0.5 0.75
MMAS+US ⇔ MMAS + + + + + + + + + + + +
MMAS+US ⇔ MMAS+2opt + + + + + + + + + + + +
MMAS+US ⇔ MMAS+3opt + + + + ∼ + + + ∼ ∼ + +
MMAS+US ⇔ MMASR+US + ∼ ∼ − + ∼ ∼ ∼ + ∼ ∼ −
MMAS+US ⇔ Random+US + + + ∼ + + + ∼ + + + ∼

difference lies in that the pheromone trails inMMAS+US
provide a communication mechanism between the several
restart points. Therefore, the search process is guided to-
wards the promising areas of the search space.

Second, MMAS+US performs better than
MMASR+US on DTSPs with m = 0.1 and m = 0.25;
and they are comparable on DTSPs with m = 0.5 and
m = 0.75. This is because when the changing environments
are not similarMMAS cannot adapt well as expected. The
pheromone trails of the previous environment may not fit
for the new environment hence the solution constructed by
MMAS and passed to US may lead the search process to a
poor local optimum. This can be supported by the superior
performance of MMASR+US against MMAS+US on
DTSPs with m = 0.75; see the comparisons ofMMAS+US
⇔ MMASR+US in Table 2. In contrast, MMAS+US
significantly outperforms MMASR+US in slightly chang-
ing environments, e.g., m = 0.1, where the adaptation
via pheromone trails works as expected. MMASR+US
inherits the communication mechanism of MMAS+US
between the restart points as described above, but it is
destroyed whenever a dynamic change occurs.

Third, MMAS+US performs significantly better than
MMAS+2opt and MMAS+3opt in all DTSPs. The
strength of US procedure relies on the fact that it was de-
signed to preserve or reverse subtours. Since ACO tends
to find promising subtours (e.g., from the areas with high
intensity of pheromone trails); when the US operator is ap-

plied to these solutions the promising subtours tend to be
preserved whereas the remaining subtours are reversed. If
we observe the US operator closely; taking the right choice
for the cities and neighbourhood, we can see that it em-
bodies 2-opt and 3-opt moves, but it outperforms both of
them. In fact, US was also found to perform better than
the Lin-Kernighan algorithm [12], which is one of the best
performing algorithm for the TSP.

Fourth, the diversity is lower when local search opera-
tors are used (except on MMASR+US where pheromone
trails are reinitialized). This can be observed from Fig-
ure 6, where MMAS maintains slightly higher diversity
thanMMAS+2opt,MMAS+3opt andMMAS+US in al-
most all DTSPs. In contrast, Random+US always maintains
higher diversity since random solutions are generated for the
US operator. This shows that higher diversity may some-
times help in DTSPs with severely changing environments
but may sometimes disturb the optimization in DTSPs with
slightly changing environments.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we integrate an advanced local search oper-

ator (i.e., US) with theMMAS for dynamic environments.
The aim of the integration is to take the advantage of the
adaptation capabilities ofMMAS and the solution improve-
ment of the US operator. The performance of this specific
memetic algorithm is investigated on different DTSPs gen-
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Figure 5: Dynamic offline error of ACO-based MAs in slowly changing DTSPs with m = 0.1 (top) and m = 0.75
(bottom).
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Figure 6: Population diversity of ACO algorithms for DTSPs with f = 10 (top) and f = 100 (bottom).

erated by the DBGP generator against other ACO-based
memetic algorithms.

From the experimental results, the following conclusions
can be drawn. First, local search operators improve signifi-



cantly the performance of MMAS in DTSPs. Second, the
integration ofMMAS with US outperforms other memetic
algorithms in all DTSP cases. Third, MMAS provides
good initial solutions to US in cases where adaptation is
convenient (e.g., slightly changing environments); otherwise,
a restart of MMAS provides better initial solutions (e.g.,
severely changing environments).

A straightforward future work is to investigate the per-
formance of MMAS+US in asymmetric DTSPs since it is
claimed that it performs equally well for stationary symmet-
ric and asymmetric TSPs [8, 9]. Another future work is to
apply the algorithm into more challenging DOPs that model
real-world scenarios (e.g., DTSPs with traffic factors).
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