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ABSTRACT 

The study of the vehicle routing problem (VRP) is of outstanding 

significance for reducing logistics costs. Currently, there is little 

VRP considering real-time traffic conditions. In this paper, we 

propose a more realistic and challenging multi-objective VRP 

containing real-time traffic conditions. Besides, we also offer an 

adaptive local search algorithm combined with a dynamic 

constrained multi-objective evolutionary framework. In the 

algorithm, we design eight local search operators and select them 

adaptively to optimize the initial solutions. Experimental results 

show that our algorithm can obtain an excellent solution that 

satisfies the constraints of the vehicle routing problem with real-

time traffic conditions. 
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1. INTRODUCTION 
In 2017, China's total social logistics expenditure accounted for 

14.6% of GDP. Every 1% diminution in the total logistics 

expenses in GDP will reduce hundreds of billions of costs. And 

with the rapid development of the logistics industry, the vehicle 

routing problem (VRP) has attracted more and more attention.  

Due to different application scenarios, many variations of VRP 

appeared, such as capacitated VRP (CVRP) [1], VRP with time 

windows (VRPTW) [2], and so on. But, in the actual distribution 

process, the dynamic change of traffic conditions is one of the 

main challenges for planning vehicle routes since traffic 

conditions directly affect the driving time of vehicles on the road 

network, thus causing many emergencies. If a vehicle arrives at a 

delivery location later than the customer's specified latest time, 

customer satisfaction is significantly reduced. Existing studies that 

considered traffic factors simply used a random function or 

periodic random function to generate traffic conditions [3]. 

However, the traffic factors generated by the stochastic method 

are far from the traffic conditions in the actual road network since 

the traffic flow between the road sections is interrelated. In order 

to make the VRP model closer to the actual engineering situation, 

this paper proposes an unprecedented VRP that combines the road 

network topology and the multi-objective VRPTW with a soft 

time window (MOVRPRTC). The road network data in this model 

come from the road traffic network of Guanggu in Wuhan, and the 

order data come from the real online shopping order data after 

desensitization.  

Heuristic algorithms are the only feasible ways to solve practical 

VRP since exact algorithms could not solve complex VRP in an 

acceptable time [4]. The heuristic search algorithms applied in 

VRP mainly focus on genetic algorithm [5,6], ant colony 

optimization [7], adaptive large neighborhood search [8,9]. 

Through the investigation of these methods, we found one 

disadvantage that almost no algorithm adopts any specific 

mechanisms to handle constraint conditions, i.e., they directly 

discard infeasible solutions during iterations. In this case, the 

algorithm can only search in the feasible region, and its 

exploration ability will be extremely limited. However, there may 

be better quality solutions in the space outside the feasible region. 

If we keep these solutions, some operations can be carried out to 

pull them back to the feasible region and meanwhile keep their 

quality. To address this disadvantage, we convert the two 

objectives in MOVRPRTC into constraints first and then make 

use of a dynamic constrained multi-objective optimization 

algorithm framework (DCMOEA) [10] to handle constraints. It 

turns out this method greatly enhances the selection pressure in 

the multi-objective optimization. 
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There are three contributions to this paper. Firstly, realistic data- 

based vehicle routing problem considering road network 

constraints and real-time traffic conditions is constructed, which 

can be used as test cases for future researchers. Secondly, the 

dynamic constraint multi-objective optimization framework is 

applied to the combinatorial optimization problem, which 

provides a new idea of constraint treatment in the combinatorial 

optimization problem. Thirdly, several productive local optimizers 

with adaptive selection schemes are designed, which proved to be 

very effective in solving our proposed MOVRPRTC. 

The remaining sections of this paper are organized as follows. 

Section 2 describes the modeling method of MOVRPRTC, 

including the road network topology construction and the vehicle 

routing problem formulation. Section 3 introduces our proposed 

optimization algorithm for MOVRPRTC, including the 

application of dynamic constraint multi-objective evolutionary 

algorithm framework in VRP and the adaptive local search 

mechanism. Experimental results are shown in Section 4. Finally, 

the conclusion is given in Section 5. 

2. MODELING OF MOVRPRTC 

2.1 Construction of Road Network 
In MOVRPRTC, routes can only exist on real roads of the traffic 

network. The first crucial step of road network construction is to 

determine the connection between coordinate points in the road. 

Take the junction shown in Figure 1 as an example. The junction 

is represented by four coordinate points 4, 5, 8, and 9, which are 

shared by four roads. Point 4 has two precursor points, i.e., point 1 

and 5, and two successor points, i.e., point 3 ad 8. After 

determining all the connections, the entire topology will be 

completed.  

Another critical step of road network construction is to determine 

the weight variance of each edge with the variance of time. The 

structure of the road network in a specific area remains almost 

unchanged in the short term, and most people's daily activities are 

regular, the traffic conditions vary nearly periodically. So, we can 

use the traffic trend of any specific day to model the traffic trend. 

However, considering the difference between the workday and 

weekend, it is more reasonable to model the traffic trend from the 

data of a week. In addition, due to some weather anomalies or 

some other unexpected reasons, the traffic trend may be different 

on the same day in a different week.  So finally, we collected the 

traffic conditions of the expressway in the Guanggu area within 

three weeks and used BP neural network to model the traffic trend. 

Figure 2 shows the traffic trend of a section of the road within 24 

hours.  

All the data for the construction of the road network come from 

the Amap traffic status API [11]. 

2.2 Formulation of MOVRPRTC 
MOVRPRTC is described as follows: in road network topology 

( , )G V E= , 
0{ , , }NV v v=   represents all the N nodes in the road 

network, { , |z 1}ijE i j=   = denote all the edges formed by the 

connection in the road network, where ijz are elements  of the 

matrix 
N NZ 

. If 1ijz = , the link from 
iv  to jv  is feasible. The 

fleet starts from the depot 
0v . They need to complete the delivery 

task of n  customers 
1 2,, , nc c c  selected from V  and then return 

to depot 
0v . Each customer needs to be served once by one 

vehicle. The length ijd  of the path from the node 
iv   to jv  is 

fixed, but the travel time ( )ijT t  of the path between the node 
iv  

and jv  changes with time t . At any time, the load 
kQ  of the 

vehicle k  cannot exceed its maximum capacity C . The time 

window for each customer 
ic  to be served is [ , ]i ib e , and if the 

arriving time ( )ia t  of the vehicle arriving at the customer 
ic  

exceeds 
ie , the vehicle is allowed to unload, but there will be a 

delayed penalty to describe customer dissatisfaction. The waiting 

time of the vehicle will be accumulated if the arriving time ( )ia t  

of the vehicle arriving at the customer ic  is earlier than ib . The 

time for the vehicle to serve the customer ic  is is . id  and ip  

denote the delivery demand and pick-up demand of the customer 

ic  , respectively. According to the above description, the multi-

objective optimization problem can be defined as 
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where  K  represents the number of vehicles used. k

ijx  denotes the 

number of times vehicle k  accesses 
jv from the iv . If the 

customer ic  has been served by vehicle k , then 1ikm = , otherwise 

0ikm = . 
1f  represents the total distance traveled by all vehicles. 

Figure 1. Topology of road junction. 

 

Figure 2. Traffic conditions within 24 hours of a road. 



2f  is the sum of the delay time of all vehicles. 
3f  is the sum of 

the waiting time of all vehicles, which is used to measure the 

delivery efficiency. All objectives need to be minimized. 

The constraints for MOVRPRTC can be defined as 
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03 0( )a t eg =   , (6) 

where 
1g  means that each customer is served once and

2g  means 

that the vehicle cannot be overload at any time. 
3g  means that the 

time when the vehicle returns to the depot cannot exceed the end 

of the depot opening time.  

 

3. OPTIMIZATION ALGORITHM FOR 

MOVRPRTC 
To address MOVRPRTC, we use the dynamic constraint multi-

objective genetic algorithm framework to deal with the constraints, 

NSGA-II [12] for multi-objective selection, and our newly 

proposed adaptive local search algorithm to optimize candidate 

solutions.  

3.1 Multi-objective Optimization 
Multi-objective optimization is the process of simultaneously 

optimize two or more conflicting objectives. A multi-objective 

problem can be written as follows: 

  1min ( ) ( ), , ( )mF x f x f x=    (7) 

subject to x , where  is the decision variable space. 

: mF R→ consists of m objective functions.  

Given two feasible solutions ,x y , we say that x  dominates 

y , if : ( ) ( )i ii f x f y   and : ( ) ( )j jj f x f y  , , 1, ,i j m  .
*x  

is said to be Pareto Optimal if it is not dominated by any other 

feasible solution. The goal for multi-objective optimization is to 

find a set of Pareto Optimal solutions, namely Pareto Set. The set 

contains a number of non-dominated points in objective space are 

called Pareto front.  

3.2 Framework of ALSDCMOEA 
The dynamic constraint multi-objective genetic algorithm 

framework has three characteristics for MOVRPRTC: 1) a 

constraint optimization problem equivalent converted into a 

dynamic constraint multi-objective optimization problem with two 

types of objectives: a) original objective; b) constraint-violation 

objective. 2) using the idea of simulated annealing, gradually 

reducing the constraint boundary aims to handle the constraint 

difficulty. 

Inspired by DCMOEA, 
2f  and 

3f in MOVRPRTC can be 

converted into constraints. Then the problem can be converted 

into VRPRTC: 
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Then, according to the method of DCMOEA which transforms a 

constrained optimization problem (COP) to a dynamic constrained 

multi-objective problem (DCMOP), VRPRTC can be converted to 

DCMOVRPTRC: 
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where x in formula (10) denotes a solution of DCMOVRPRTC, 

which consists of a set of routes. S  is a given number of 

environmental changes, 0,1, ,s S=  . 
( )s is the dynamic 

constraint boundary, and s  is the environmental state. An 

environmental change denotes a reduction of the constraint 

boundary from state s  to state 1s + . 

After converting MOVRPTC to DCMOVRPRTC: 1) the original 

three-objective optimization problem is converted into a single 

objective optimization problem; 2) the optimization of 2f  and
3f  

in MOVRPRTC can be realized by the constraints handling 

mechanisms in DCMOEA. 

The framework of ALSDCMOEA for DCMOVRPRTC is shown 

in Algorithm 1. The multi-objective optimization algorithms in 



line 10 is NSGA-II in this paper, and can be replaced with other 

MOEAs such as MOEA/D [13] and HypE [14]. 

3.3 Solution Initialization 
Before introducing the initialization method, we need to explain 

the encoding of the solution first. Since MOVRPRTC contains the 

road network, a solution should include not only the serving 

sequence of customers but also the detailed traveling sequence of 

coordinate points of each vehicle. Figure 3 shows an example, 

where sequence A indicates the serving sequence of the customers, 

sequence B indicates the traveling sequence of the coordinate 

points, gray dots between the depot and the customer 1 indicates 

the point in the road network that the vehicle needs to travel from 

the depot to the customer 1. The optimization algorithm only 

operates sequence A to reallocate customers for vehicles and 

change their serving sequences. Sequence B is only used for 

evaluation. 

To get the initialization solution, we use the agglomerative 

hierarchical clustering (AHC) algorithm to group customers into 

several clusters, one of which represents the customers served by 

one vehicle. The advantage of using AHC is that the number of 

vehicles required can be adaptively adjusted according to the 

demand of customers. 

3.4 Adaptive Local Search for MOVRPRTC 
The fundamental tasks of solving MOVRPRTC are the allocation 

of vehicles for customers and the sequencing of customer servings. 

In order to address these two tasks, we design eight local search 

operators and use an adaptive framework to help the algorithm 

jump out of the local optima. The eight operators showed as 

below: 

LS1: Randomly choose two different customers from a random 

vehicle, and swap their serving orders; 

LS2: Randomly choose two different customers from a random 

vehicle, and reverse the serving sequence between these two 

customers (the length of the sequence shall not exceed 3); 

LS3: Randomly choose one vehicle and randomly intercept a 

sequence from it, then insert the sequence into another 

randomly selected vehicle. Then the entire serving sequence 

of the inserted vehicle should be re-sorted by nearest 

neighbor search; 

LS4: Find two customers with the maximum wait time and with 

the maximum delay time, respectively. Insert the customer 

with the maximum delay time at the position right before the 

customer with the maximum wait time; 

LS5: Randomly select a customer from a random vehicle, and 

insert it at a random location in another randomly selected 

vehicle; 

LS6: Repeat LS5 several times (no more than 4 times); 

LS7: Find the customer with the maximum traveling time, and 

insert it at the position right before the customer who has the 

maximum waiting time; 

LS8: Find the customer with the maximum traveling time and 

insert it at a random location. 

LS1 and LS2 are designed for changing the serving sequence, and 

the other operators are designed for changing the allocation of 

customers. After the local search is operated on a solution, the 

solution’s path will be reconstructed by a specific function. The 

main content of this function is the A* algorithm, which can get 

the shortest route for every vehicle according to the real-time 

traffic conditions. 

The pseudo-code of ALS is shown in Algorithm 2. The subtlety 

part is the adaptive mechanism. At the beginning of the algorithm, 

each operator has the same weight, and then it will be adjusted 

according to the performance of the offspring generated by the 

operator in each iteration. If a better solution is generated, the 

corresponding operator’s score will be incremented by 1. In each 

iteration, the operators will be selected by the roulette. If the best 

solution remains unchanged for specific iterations, the algorithm 

Figure 4. Dominance of final solutions generated by ALS and LS. 

Figure 3. Solution representation. 



will be considered as being converged. At this time, the scores of 

all operators are reset to 1, and then the algorithm continues until 

the termination condition is reached. 

4. EXPERIMENT 
The following experiments are run on a PC equipped with Core-i7 

3.4 GHz and 16 GB of RAM. All algorithms are implemented in 

C++. Problem parameter settings: The opening time of the depot 

is from 8:00 to 24:00. The vehicle type is the same one, with a 

maximum capacity of 3 tons. The number of customers is 100. 

Algorithm parameter setting: The population size is 100, which 

means that the number of new solutions generated in each 

iteration is 100. The maximum number of iterations is 10000. 

4.1 Performance of Optimization Methods 
In order to prove the effectiveness of the adaptive scheme for 

local search operators, we compare our original algorithm with a 

modified version without the adaptive scheme. Their operators are 

the same, except that the modified version randomly selects one 

of eight operators in each iteration. As shown in Figure 4, the 

original version is superior to the modified version in terms of the 

wait time and delay time, and meanwhile not inferior to the 

modified version in terms of the total length.  

Aiming to illustrate the full effect of ALSDCMOEA more 

intuitively, we compare the best solution of the initial solutions 

with the best one of the final solutions. The best solution is 

defined as the solution with the minimum sum of three objectives. 

Their objectives are shown in Table 1. 

Table 1. The objectives of the initial solution and final solution 

 total length wait time delay time 

Initial solution 524.819 km 2270.4 min 714.704 min 

Final solution 500.507 km 1392.9 min 8.17108 min 

Reduce ratio 4.63% 38.65% 98.86% 

5. CONCLUSION 
This paper proposed a multi-objective vehicle routing problem 

with real-time traffic conditions. The traffic condition data and 

customer demand data in the model all come from real-world data. 

In order to address this problem, this paper also proposed an 

adaptive local search algorithm based on a dynamic constrained 

multi-Objective evolutionary algorithm framework. Experimental 

results show that ALSDCMOEA can effectively solve 

MOVRPRTC.  

The scale of MOVRPRTC used in this paper is small, and we can 

increase it in many ways, including extending the coverage of the 

map, increase the number of customers, increase the density of the 

road network, etc.. As for the algorithm proposed in this paper, we 

need to conduct more experiments to prove the effectiveness of 

the DCMOEA. In addition, to further improve the performance of 

ALSDCMOEA, some other multi-objective optimization 

algorithms should also be attempted to use, such as MOEA/D.  
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