
Pheromone Modification Strategy for the Dynamic

Travelling Salesman Problem with Weight Changes

Michalis Mavrovouniotis

School of Science and Technology

Nottingham Trent University

Nottingham NG11 8NS, U.K.

email: michalis.mavrovouniotis@ntu.ac.uk

Mien Van

School of Science and Technology

Nottingham Trent University

Nottingham NG11 8NS, U.K.

email: mien.van@ntu.ac.uk

Shengxiang Yang

School of Computer Science and Informatics

De Montfort University

Leicester LE1 9BH, U.K.

email: syang@dmu.ac.uk

Abstract—Ant colony optimization (ACO) algorithms have
proved to be able to adapt in problems that change dynamically.
One of the key issues for ACO when a change occurs is that
the pheromone trails generated in the previous environment
will not be compatible with the new environment. Therefore,
the optimization process may be biased from the pheromone
trails of the previous environment and fail to search for the
newly generated global optimum. In this paper, we consider
the dynamic travelling salesman problem (DTSP) in which the
weights of the arcs are modified. A pheromone strategy that
utilizes change-related information and regulates heuristically
the pheromone trails of the affected arcs is proposed. From
the experimental results the heuristic-based pheromone strategy
performs statistically significant better in most DTSP test cases
than other peer ACO algorithms.

I. INTRODUCTION

Ant colony optimization (ACO) has proved that is a pow-

erful metaheuristic to provide optimal (or near-optimal) solu-

tions for solving different combinatorial optimization problems

(e.g., the travelling salesman problem (TSP) [3]). Traditionally,

researchers have drawn their attention on static optimization

problems, where the environment remains fixed during the

execution of ACO. However, many real-world applications

are subject to dynamic changes. Such problems are known as

dynamic optimization problems (DOPs). DOPs are challenging

since the aim of an optimization algorithm is not only to find

the optimum of the problem quickly, but also to efficiently

track the moving optimum during the changing environments

[8]. A change in a DOP may involve factors like the objective

function, input variables, problem instance and constraints.

ACO algorithms have been originally designed to address

static optimization problems [2] (e.g., to converge fast into an

optimum or near-optimum solution) and may face a serious

challenge when addressing DOPs. This is because, after a

change, the pheromone trails of the previous environment may

bias the colony to search into an old optimum, making it

difficult to track the moving optimum. As a result, ACO will

not adapt well to dynamic changes once the colony converges

into an optimum. Considering that DOPs can be taken as

a series of static problem instances, a simple way to tackle

them is to reinitialize all the pheromone trails with an equal

amount and consider every dynamic change as the arrival of a

new problem instance which needs to be solved from scratch

[5], [11]. However, this restart strategy is generally not very

efficient because all the information gained from previously

optimized environments is removed.

In contrast, once ACO algorithms are enhanced properly

they are able to adapt to dynamic changes [1], [8]. Several

pheromone strategies have been proposed and integrated with

ACO to shorten the re-optimization time and maintain a high

quality of the output efficiently, simultaneously. These strate-

gies can be categorized as: increasing diversity after a change

[5], [7], [11]; maintaining diversity during the execution [4],

[12]; multi-colony schemes [13], [15]; memetic algorithms [9],

[10] and memory-based schemes [6] (refer to [14] for a recent

comprehensive survey).

From the existing pheromone strategies only few of them

utilize change-related information such as the location of

dynamic changes [5], [7]. For example, in [5] the pheromone

trails associated with the arcs incident to a newly added

city are regulated accordingly for the dynamic TSP (DTSP)

where the topology changes. However, pheromone strategies

that utilize change-related information for DTSPs with weight

changes (e.g., the weight of the arcs may increase or decrease

but the topology remains the same) do no exist. In this paper, a

pheromone strategy that regulates heuristically the pheromone

trails for the DTSP with weight change is proposed. The

key idea of the strategy is to utilize the existing heuristic

information of the arcs affected by the dynamic change and

regulate their pheromone trails accordingly. For example, an

arc may have very high concentration of pheromone trails

before the change but its weight may increase after a change.

However, due to its high intensity of pheromone trails, it may

be still very attractive and may result in poor solution quality.

Therefore, penalizing the pheromone trails of the particular

arc will make it less attractive for the colony.

The rest of the paper is organized as follows. Section II

describes the generation of a dynamic environment using the

TSP as the base problem. Specifically, the DTSP with weight

changes is described. Section III describes the ACO meta-

heuristic and how to respond to dynamic changes. Section IV

describes the proposed pheromone strategy which utilizes

change-related and heuristic information. Section V presents

the experimental results and analysis. Finally, Section VI

concludes this paper with discussions on future work.



II. DTSP WITH WEIGHT CHANGES

A. Problem Formulation

Typically, a TSP instance is modelled by a fully connected

weighted graph G = (N,A), where N = {1, . . . , n} is a set

of n nodes and A = {(i, j) | i, j ∈ N, i 6= j} is a set of arcs.

For the classic TSP, nodes and arcs represent the cities and

the links between them. Each arc (i, j) ∈ A is associated with

a non-negative value wij ∈ R
+, which for the classic TSP

represents the distance or travel time between cities i and j.

B. Generating Dynamic Environments

The TSP becomes more realistic and challenging when

it has a dynamic environment [12]. Specifically, the DTSP

consists of a weight matrix which is subject to changes and it

can be defined as follows:

W(T )={wij(T )}n×n, (1)

where T is the period of a dynamic change defined as follows:

T = ⌈t/f⌉, (2)

where t is the algorithmic iteration count and f is the fre-

quency of change. Note that the introduced dynamic changes

are synchronized with the optimization process of the algo-

rithm. Hence, the parameter f is expressed in algorithmic

iterations.

The DTSP with weight changes affects the weight matrix

(i.e., W(T ) in Eq. (1)) directly. A dynamic test case with this

type of changes can be generated by assigning an increasing

or decreasing factor value to the arc connecting cities i and j
as follows:

wij(T + 1) =

{

wij(0) +Rij , if arc (i, j) ∈ AS(T ),

wij(T ), otherwise,
(3)

wij(0) is the initial weight of the arc connecting cities i and

j (i.e., from the static problem instance when T = 0), Rij is

a normally distributed random number (with zero mean and

standard deviation set to 0.2 × wij(0) [16]) that defines the

modified factor value of the arc, AS(T ) ⊂ A defines the set

of arcs randomly selected for the change at that period and T
defines the environmental period index as defined in Eq. (2).

The size of the set A is defined by the number of arcs

(i.e., n(n − 1)). Hence, the size of AS(T ) is defined by the

magnitude of change (i.e., m ∈ [0, 1]) and the size of A. For

example, at period T , exactly ⌈mn(n−1)⌉ arcs will be selected

to change their weights. The higher the value of m, the more

arcs will be selected for changes.

A particular solution π = [π1, . . . , πn] in the search space

is specified by a permutation of the city indices, and for the

DTSP, it is evaluated as follows:

φ(π, t) = wπnπ1
(T ) +

n−1
∑

i=1

wπiπi+1
(T ). (4)

III. ANT COLONY OPTIMIZATION

A. Constructing Solutions

Ants read pheromones to construct solutions and write

pheromones to mark their constructed solutions. With prob-

ability q0 (q0 ∈ [0, 1]) each kth ant chooses the next city j
with the highest probability as follows:

j = arg max
l∈Nk

i

{[τil]
α[ηil]

β}, (5)

and with probability (1 − q0) the kth ant uses a probabilistic

rule to choose city j from city i as follows:

pkij =
[τij ]

α
[ηij ]

β

∑

l∈Nk

i

[τil]
α
[ηil]

β
, if j ∈ N k

i , (6)

where τij and ηij are the existing pheromone trail and the

heuristic information available a priori between cities i and j,
respectively. The heuristic information is calculated as ηij =
1/wij(T ) where wij(T ) is defined as in Eq. (3). N k

i is the

set of unvisited cities for ant k adjacent to city i. α and β are

the two parameters which determine the relative influence of

τij and ηij , respectively.

B. Updating Pheromones

In this paper, the pheromone update policy from [7] is used.

This is because the pheromone policy is simplified and the

effect of the pheromone strategy can be investigated. At the

beginning the pheromone trails are initialized as follows:

τ0 ←
1

(n− 1)
, ∀(i, j) ∈ A. (7)

Then, the pheromone trails are updated by first applying

evaporation as follows:

τij ← (1− ρ) τij , ∀(i, j), (8)

where ρ is the evaporation rate, which satisfies 0 < ρ ≤ 1,

and τij is the existing pheromone value. After evaporation, the

iteration best ant deposits a constant amount of pheromone as

follows:

τij ← τij + lρ, ∀(i, j) ∈ πbest, (9)

where πbest is the solution of the iteration best ant (i.e.,

πbest = πib) and l is a constant. In addition, the best-so-far

ant1 is allowed to deposit pheromone (i.e., πbest = πbs).

C. Responding to Dynamic Changes

A straightforward method of the aforementioned ACO to ad-

dress dynamic changes is to adapt via pheromone evaporation.

More precisely, pheromone evaporation will help the colony

to forget previously poor decisions by eliminating unused

pheromone trails. Another method to respond to dynamic

changes is to perform explicit action whenever a change occurs

such as to reset all pheromone trails back to τ0 [11] as follows:

τij ← τ0, ∀(i, j), (10)

1Best-so-far ant is a special ant that may not necessarily belong in the
current colony



Algorithm 1 ACO

1: t← 0
2: InitializePheromoneTrails(τ0)

3: while (termination condition not satisfied) do

4: ConstructSolutions
5: πib ← FindIterationBest

6: if (φ(πib, t) < φ(πbs, t)) then

7: πbs ← πib

8: end if

9: PheromoneUpdate
10: if (dynamic change occurs && respond == true) then

11: ExplicitAction

12: end if

13: t← t+ 1
14: end while

15: OUTPUT: πbs %best-so-far solution

where τ0 is defined as in Eq. (7), and consider every dynamic

change as the arrival of a new problem instance that needs to

be optimized from scratch. The former method may be useful

when changes are small to medium whereas the latter method

makes more sense when the changes are severe [11]. Algo-

rithm 1 outlines the main components of the described ACO

in dynamic environments. When the “respond” parameter in

line 10 is set to true then ACO will perform an ExplicitAction

(e.g., pheromone re-initialization as in Eq. (10)).

However, both methods are limited because they do not take

into account the location of the dynamic change. In other

words, they do not utilize any change-related or heuristic

information of the problem. Such information may help to

shorten the re-optimization process when dynamic changes

occur.

IV. HEURISTIC-BASED PHEROMONE STRATEGY

Considering the currently available information and com-

munication technologies (e.g., global position system, cloud

computing, etc.) the period and location of changes can be

easily made available for the optimization algorithm to explore

and utilize. Specifically, when a dynamic change occurs,

the heuristic information (i.e., ηij ) that ACO utilizes when

constructing solutions using Eq. (6) are modified due to the

changes on the weights of the arcs in Eq. (3). However, the

pheromone trails (i.e., τij) of the affected arcs typically remain

unchanged (and regulated by the pheromone evaporation [11])

or re-initialized to τ0 [5], [7].

A better strategy would be to modify the pheromone trails

according to the change of the heuristic information. This

corresponds to the modified degree of each arc (i, j) calculated

as follows:

δij =
ηij(T )− ηij(T − 1)

max (ηij(T ), ηij(T − 1))
, (11)

where ηij is defined in Eq. (6). Basically, is the normalized

difference of the heuristic information of the previous envi-

ronment T − 1 and the current environment T for each arc

(i, j).

The key idea of the heuristic-based pheromone strategy is to

regulate the current pheromone trails (i.e., τij ) according to the

information gathered from the heuristic information of ACO in

Eq. (11). More precisely, if the weight of arc (i, j) is decreased

(i.e., a negative δij value); then the pheromone trails on the

arc must be increased accordingly. Otherwise, if the weight

of arc (i, j) is increased (i.e., a positive δij value); then the

pheromone trails on the arc must be decreased accordingly.

In this way, the arcs with increasing weights will become

less attractive to ants by reducing the pheromone trails and

vice versa. Therefore, every arc (i, j) is regulated by a factor

defined as follows:

γij =







1+ | δij |, if δij < 0,

1− δij , if δij > 0,
(12)

where δij is defined as in Eq. (11).

Using the aforementioned factors, the current pheromone

trails associated to the modified arcs at time T (i.e., AS(T ))
are regulated as follows:

τij ← τ0 +
γij(τij − τ0)

ψ
, ∀(i, j) ∈ AS(T ), (13)

where τ0 is the initial pheromone trail defined in Eq. (7),

γij is the factor that regulates arc (i, j) defined in Eq. (12)

and ψ is a constant parameter. Recall that this pheromone

modification is used as an ExplicitAction in Algorithm 1 –

line 11. The pheromone trails are regulated by considering

the accumulated pheromone trails (i.e., the difference of the

current with the initial pheromone trails). This is to avoid

reducing the pheromone trails below the initial pheromone

value.

V. EXPERIMENTAL STUDY

A. Experimental Setup

The benchmark generator described in Section II can con-

vert any static TSP problem instance into a DTSP. Three static

TSP benchmark instances (i.e., i.e., kroA100, kroA150, and

kroA200,) were obtained from TSPLIB2 to generate different

test cases of DTSP with weight changes. More precisely, the

frequency of change was set to f = 50, f = 100 and f = 500
iterations indicating environmental changes from high to low

frequencies, respectively, and the magnitude of change was

set to m = 0.1, m = 0.25, m = 0.5, and m = 0.75,

indicating the degree of environmental changes from small,

to medium, and to large, respectively. As a result, twelve

DTSP test cases (i.e., three values of f × four values of m)

were generated from each problem instance to systematically

analyze the proposed pheromone strategy. For each DTSP test

case, 25 environmental changes were allowed.

An observation of the best-so-far solution after a dynamic

change was recorded every algorithmic iteration and used

to evaluate the performance for 30 independent executions

2A library that consists of TSP problem instances with their optimal
solutions, which is available at http://comopt.ifi.uni-heidelberg.de/software/
TSPLIB95/
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Fig. 1. Experimental results on varying the ψ parameter for different DTSPs.

(with a different random seed for an algorithm and the same

random seed for the dynamic environment on each execution).

Therefore, the overall offline performance [8] is defined as

follows:

P̄OFF =
1

K

K
∑

i=1





1

E

E
∑

j=1

P ∗
ij



 , (14)

where K is the total number of iterations, E is the number

of independent executions and P ∗
ij is the best-so-far solution

cost (after a change) of iteration i of execution j. For a fair

comparison, all the algorithms performed the same number

of iterations, and for each iteration the same number of

ants (corresponding to function evaluations) is allowed. The

experiments were performed under a Linux System with an

Intel Core i7–6700 4.0GHz processor with 8MB cache and

16GB RAM.

In order to investigate the effect of the proposed heuristic-

based pheromone strategy the following ACO variants were

used in the experiments:

• ACO: An algorithm with a standard pheromone policy as

described in Section III. When a dynamic change occurs

no explicit actions are performed. Out of date pheromone

trails are regulated by the pheromone evaporation. In

Algorithm 1 the respond parameter is set to false
• ACO+global: Same algorithm as ACO above but when

a dynamic change occurs all pheromone trails are re-

initialized back to their initial value (i.e., τ0). In Algo-

rithm 1 the respond parameter is set to true.
• ACO+partial: Same algorithm as ACO+global



TABLE I
EXPERIMENTAL RESULTS REGARDING THE OFFLINE PERFORMANCE OF ACO ALGORITHMS

Algorithms & DTSPs kroA100 kroA150 kroA200

f = 50, m⇒ 0.1 0.25 0.5 0.75 0.1 0.25 0.5 0.75 0.1 0.25 0.5 0.75

ACO 21468 21973 22249 22348 27744 27955 27887 28376 30917 30799 31290 31470

ACO+global 21540 22307 22384 22554 27929 28235 28399 28464 31320 31292 31646 31762

ACO+partial 21447 22073 22318 22579 27794 28069 28289 28578 31155 31228 31868 31862

ACO+heuristic 21450 21879 22124 22321 27756 27844 27838 28215 30921 30753 31225 31327

f = 100, m⇒ 0.1 0.25 0.5 0.75 0.1 0.25 0.5 0.75 0.1 0.25 0.5 0.75

ACO 21170 21793 22044 21985 27416 27513 27536 28012 30501 30264 30846 31003

ACO+global 21198 21854 21943 22090 27463 27704 27831 27899 30775 30713 31046 31172

ACO+partial 21046 21646 21919 22139 27355 27595 27764 28068 30614 30672 31318 31310

ACO+heuristic 21027 21594 21848 22009 27293 27448 27386 27828 30402 30288 30684 30883

f = 500, m⇒ 0.1 0.25 0.5 0.75 0.1 0.25 0.5 0.75 0.1 0.25 0.5 0.75

ACO 21325 21709 21963 21972 27346 27213 27235 27444 30243 29855 30279 30435

ACO+global 20700 21128 21146 21267 26612 26713 26754 26822 29848 29555 29849 29968

ACO+partial 20830 20973 21201 21340 26703 26658 26854 26975 29715 29511 30034 30193

ACO+heuristic 20945 21029 21080 21188 26850 26613 26602 26859 29852 29354 29668 29899

above but when a dynamic change occurs only the

pheromone trails associated with the modified arcs are

re-initialized back to their initial pheromone value (i.e.,

τ0). In Algorithm 1 the respond parameter is set to true.
• ACO+heuristic: This is the ACO with the pro-

posed pheromone strategy. It is the same algorithm as

ACO+partial regarding which pheromone trails will

be modified but differ on how the pheromone trails are

modified (i.e., they are regulated heuristically based on

Eq. (13)). In Algorithm 1 the respond parameter is set to

true.

The colony size consists of 10 ants for all ACO variants.

The common parameters used were set to typical values as

follows: α = 1, β = 5, ρ = 0.05, l = 0.25 and q0 = 0.5
whereas the effect of the ψ parameter was investigated (see

the following subsection).

B. Experimental Results on the Effect of ψ Parameter

The ψ parameter defined in Eq. (13) determines the rel-

ative influence of change-related information. Since it is a

key parameter it was further investigated with values ψ ∈
{1, 2, 3, 4, 5}. The offline performance of ACO+heuristic

with different ψ values is given in Fig. 1 for all dynamic test

cases.

From Fig. 1 it can be observed that when the influence of

change-related information is strong (i.e., ψ = 1) the offline

performance is poor in almost all dynamic test cases. This is

probably because the optimization process gets trapped in a

poor local optimum due to the strong knowledge imposed after

the dynamic change. When ψ > 1 the offline performance

is improved significantly with ψ = 2 having acceptable

performance in most DTSP test cases for all three problem

instances. Therefore, for the remaining experiments the ψ
parameter is set to ψ = 2 for the ACO+heuristic variation.

C. Experimental Results and Analysis

The experimental results regarding the offline performance

of the aforementioned ACO variants for each dynamic test case

are presented in Table I. The corresponding statistical results

of the proposed ACO+heuristic against the competing

variants are presented in Table II, where pairwise comparisons

are performed using Mann–Whitney statistical test. In Table

II, the results are shown as “+”, “−” and “∼” when the

first algorithm is significantly better than the second one,

when the second algorithm is significantly better than the

first one and when the two algorithms are not significantly

different, respectively. Moreover, the dynamic behaviour of

ACO variants in terms of offline performance for the first 10

environmental changes with f = 50 and m = 0.25, with

f = 100 and m = 0.25, and with f = 500 and m = 0.25,

are presented in Fig. 2, Fig. 3 and Fig. 4, respectively. From

the experimental results, several observations can be made

by comparing the behaviour of ACO+heuristic with the

competing ACO variants.

First, ACO+heuristic is competitive with a conventional

ACO when f = 50, significantly better in most DTSP

test cases when f = 100 and significantly better in all

DTSP test cases when f = 500; see the comparisons of

ACO+heuristic ⇔ ACO in Table II. This observations

shows that the proposed heuristic requires some time to

express its effect. When not enough time is available the

colony does not have enough time to utilize the change-related



TABLE II
STATISTICAL RESULTS REGARDING THE OFFLINE PERFORMANCE OF ACO ALGORITHMS

Algorithms & DTSPs kroA100 kroA150 kroA200

f = 50, m⇒ 0.1 0.25 0.5 0.75 0.1 0.25 0.5 0.75 0.1 0.25 0.5 0.75

ACO+heuristic ⇔ ACO ∼ ∼ + ∼ ∼ + ∼ + ∼ ∼ ∼ +

ACO+heuristic ⇔ ACO+global + + + − + + + + + + + +

ACO+heuristic ⇔ ACO+partial ∼ + + + ∼ + + + + + + +

f = 100, m⇒ 0.1 0.25 0.5 0.75 0.1 0.25 0.5 0.75 0.1 0.25 0.5 0.75

ACO+heuristic ⇔ ACO + + + ∼ ∼ ∼ + + ∼ ∼ + +

ACO+heuristic ⇔ ACO+global + + + + + + + + + + + +

ACO+heuristic ⇔ ACO+partial ∼ ∼ + + ∼ + + + + + + +

f = 500, m⇒ 0.1 0.25 0.5 0.75 0.1 0.25 0.5 0.75 0.1 0.25 0.5 0.75

ACO+heuristic ⇔ ACO + + + + + + + + + + + +

ACO+heuristic ⇔ ACO+global − + + + − + + ∼ ∼ + + +

ACO+heuristic ⇔ ACO+partial − ∼ + + ∼ ∼ + + ∼ + + +
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Fig. 2. Dynamic offline performance of ACO variants for the first 10 environmental changes for DTSPs with f = 50 and m = 0.25.
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Fig. 3. Dynamic offline performance of ACO variants for the first 10 environmental changes for DTSPs with f = 100 and m = 0.25.

information imposed to the pheromone trails. Furthermore,

it can be observed from Fig. 4 that ACO gets trapped in a

local optimum solution (approximately) after the fifth dynamic

change when f = 500.

Second, ACO+heuristic is significantly better than

ACO+global in almost all DTSP test cases; see the com-

parisons of ACO+heuristic⇔ ACO+global in Table II.

This observation supports the limitation of ACO+global of
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Fig. 4. Dynamic offline performance of ACO variants for the first 10 environmental changes for DTSPs with f = 500 and m = 0.25.

not taking into account the location of the dynamic changes.

The poor performance of ACO+global is expected because

all the previously gained knowledge of the algorithm is erased

after a dynamic change. In fact, the offline performance results

in Table I of ACO+global against ACO+partial shows

the positive effect of utilizing change-related information.

The difference of these two algorithms is that the former

reinitializes the pheromone trails of all arcs to τ0 whereas

the latter reinitializes only the pheromone trails of the arcs

affected by the changes to τ0.

Third, ACO+heuristic is significantly better than

ACO+partial in almost all DTSP test cases; see the com-

parisons of ACO+heuristic ⇔ ACO+partial in Table

II. Although the latter algorithm takes into account the location

of the dynamic changes it does not regulate the pheromone

trails heuristically as the former one. It can be observed from

Fig 2, Fig. 3 and Fig. 4 that the proposed ACO+heuristic

maintains better offline performance in most dynamic changes.

This shows that regulating the pheromone trails according to

the change of the heuristic information has a positive effect in

most DTSP test cases.

VI. CONCLUSIONS

The pheromone trails generated from ACO in one environ-

ment may not be compatible when the environment changes.

Older pheromone trails can be adapted effectively to the

new environment by utilizing change-related and heuristic

information. In this paper the DTSP with weight changes is

used as the base to generate dynamic test cases. A pheromone

strategy based on the heuristic information of the affected arcs

is proposed to enhance the adaptation capabilities of ACO.

From our experimental studies the following concluding

remarks can be drawn. First, pheromone strategies utiliz-

ing change-related information perform significantly better

than conventional pheromone strategies. Second, regulating

the pheromone trails according to the heuristic information

improves the performance of ACO in changing environments.

Third, if too much information is transferred from the existing

heuristic information it may start the optimization process

from (or near) a poor local optimum and get stuck there.

Since the utilization of change-related and heuristic infor-

mation improves the performance of ACO, for future work it

would be interesting to design pheromone strategies based on

fuzzy logic. In this way, the pheromone strategy would be able

to better capture more DTSP test cases and further improve

the performance of ACO in dynamic environments.
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