
Ant Colony Optimization with Heuristic Repair for
the Dynamic Vehicle Routing Problem

Iaê S. Bonilha†, Michalis Mavrovouniotis∗, Felipe M. Müller‡, Georgios Ellinas∗, Marios Polycarpou∗
∗KIOS Research and Innovation Center of Excellence,

Department of Electrical and Computer Engineering, University of Cyprus, 2109 Nicosia, Cyprus.

email: {mavrovouniotis.michalis,gellinas,mpolycar}@ucy.ac.cy
†PPGEP,

Federal University of Santa Maria, 97105-900, Santa Maria, Brazil.

email: iaesb@hotmail.com
‡Department of Applied Computing,

Federal University of Santa Maria, 97105-900, Santa Maria, Brazil.

email: felipe@inf.ufsm.br

Abstract—Ant colony optimization (ACO) algorithms have
proved to be suitable for solving dynamic optimization problems.
The intrinsic characteristics of ACO algorithms enables them
to transfer knowledge from past optimized environments via
their pheromone trails to shorten the optimization process in the
current environment. In this work, change-related information
is also utilized when a dynamic change occurs. The dynamic
vehicle routing problem is addressed where nodes are removed,
representing customers that have already been visited, or added,
representing customers that placed a new order and need to be
visited. These change-related information are used to heuristically
repair the solution of the previous environment, based on effective
moves of the unstringing and stringing operator. Experimental
results show that utilizing change-related information is beneficial
in the generated dynamic test cases.

Index Terms—Ant colony optimization, heuristic repair, dy-
namic vehicle routing problem

I. INTRODUCTION

Ant colony optimization (ACO) algorithms have proved to

be powerful problem-solving tools. They are able to provide

the optimal (or near optimal) solution for difficult vehicle

routing problems (VRPs) [1], [2]. Traditionally, researchers

have focused their attention on static optimization problems,

where the environment of the problem remains fixed during

the optimization process of an algorithm. However, many

real-world applications are subject to dynamic environments.

Dynamic optimization problems (DOPs) are challenging, since

the aim of an algorithm is not only to locate the optimum of

the problem quickly, but also to efficiently track the moving

optimum when changes occur [3]. A dynamic change may

involve factors such as the objective function, input variables,

problem instance, and constraints.

This work has been supported by the European Union’s Horizon 2020
research and innovation programme under grant agreement No. 739551 (KIOS
CoE) and from the Government of the Republic of Cyprus through the Di-
rectorate General for European Programmes, Coordination and Development.

A simple way to address DOPs is to restart the optimization

process of an algorithm whenever a dynamic change occurs.

However, this strategy is usually used in case the dynamic

changes are severe. On the contrary, when dynamic changes

are small to medium, it is more efficient to adapt to the

changing environment by transferring past knowledge since

the new environment will be in some sense related to the

previous one. ACO is a good choice in adapting to dynamic

changes because it naturally implements a memory structure

via the pheromone trails, allowing ACO to remember and

transfer the past knowledge [4].

Furthermore, previous works on dynamic versions of the

well-known traveling salesperson problem (TSP) proved that

a dynamic change also contains information that could be

useful in the optimization process of the newly generated

environment. Guntsch and Middendorf [5] utilized the location

of the dynamic changes to locally repair the pheromone trails

of ACO. Later on, the same authors utilized change-related

information to repair previous infeasible solutions [6].

In this work, change-related information are utilized for

the dynamic VRP (DVRP) where nodes are inserted (i.e.,

representing orders from new customers) and removed (i.e.,

representing already visited customers). Suppose that new

orders have arrived and need to be served causing a dynamic

change to the current solution. But the vehicles have already

left the depot serving the already scheduled orders. A new

feasible solution that includes the new orders and omits the

already served orders is required. Therefore, change-related

information is used to repair the previous solution, which

becomes infeasible by the insertion and/removal of nodes,

when a dynamic change occurs. The Unstringing and Stringing

(US) [7] moves are used to heuristically repair the solution.

In particular, the unstringing moves are used to remove the

affected nodes from the solution, whereas the stringing moves

are used to insert the new nodes in the solution. Although

the US has been designed for TSP solutions, in this work we

extend it for VRP solutions which is the main contribution of

this paper.978-1-7281-2547-3/20/$31.00 ©2020 IEEE

The rest of the paper is organized as follows. Section II de-

scribes the VRP and the construction of the dynamic test cases

used in the experiments. Section III describes the application

of one of the best variations of ACO, i.e., the MAX -MIN
Ant System (MMAS) [8], to the DVRP. The core logic

of repairing the solution heuristically when dynamic changes

occur is also described. Section IV gives the experimental

results and analysis. Finally, Section V concludes this paper.

II. DYNAMIC VEHICLE ROUTING PROBLEM

A. Problem Formulation

The VRP is a challengingNP-hard combinatorial optimiza-

tion problem [9]. The problem can be described as follows:

given a fleet of vehicles with limited cargo load capacity, we

need to find the best possible route for each vehicle, starting

and ending at the central depot, while satisfying the delivery

demands of a set of customers.

Typically, a VRP instance is modeled by a fully connected

weighted graph G = (N,A), where N = {1, . . . , n} ∪ {0} is

a set of n+1 nodes and A = {(i, j) | i, j ∈ N, i 6= j} is a set

of arcs connecting these nodes. A non-negative value wij ∈
R

+ is associated with each arc, representing the euclidean

distance between nodes i and j. Node 0 denotes the central

depot whereas the remaining nodes denote the customers. Each

customer i ∈ N is assigned a positive value δi indicating the

customer’s delivery demand1. Each vehicle2 has a maximal

cargo capacity C.

Let xij denote the binary decision variables with the fol-

lowing interpretation:

xij =

{

1, if a vehicle visits node j immediately after node i

0, otherwise.
(1)

Then, the VRP objective is defined as follows:

min
∑

i,j∈N,i6=j

wijxij , (2)

s.t.
∑

i,j∈N,i6=j

δixij ≤ C, (3)

∑

j∈N,i6=j

xij −
∑

j∈N,i6=j

xji = 0, ∀i ∈ N, (4)

∑

j∈N,i6=j

xij = 1, ∀i ∈ N\{0}, (5)

∑

i∈S,j∈S

xij ≤ |S| − 1, ∀S ⊆ {1, . . . , n}, (6)

xij ∈ {0, 1}, ∀i ∈ N, ∀j ∈ N, i 6= j, (7)

where Eq. (2) defines the objective to minimize the total

distance traveled, Eq. (3) ensures that the vehicle’s cargo

capacity constraint is satisfied, Eq. (4) ensures that if a vehicle

1For the central depot the demand is set to zero, i.e., δ0 = 0.
2A homogeneous fleet of vehicles is considered.

visits a customer it also leaves the customer, Eq. (5) requires

that all customers are visited once, Eq. (6) ensures subtour

elimination, and finally, Eq. (7) is the aforementioned binary

decision variable.

B. Generating Dynamic Test Environments

A DVRP was introduced in [10], [11] in which customers

are revealed in different time slices, and a DVRP was consid-

ered in [12], [13] in which the weights of arcs connecting the

customers increase/decrease. For more details, a comprehen-

sive survey of the DVRP is available in [14].

In this work, we adopt the dynamic framework recently

proposed in [4] as follows. Every VRP instance consists of

a weight matrix that contains all the weights associated with

the arcs of the corresponding graph G. In order to generate

dynamic test cases the weight matrix of the problem is subject

to changes as follows:

W(T)={wij(T)}(n+1)·(n+1), (8)

where W(·) is the weight matrix and T is the environmental

period index which is synchronized with the algorithm during

the optimization process. Therefore, the environmental period

index is defined as T = ⌈t/f⌉, where f is the frequency of

change and t is the evaluation counter of the algorithm.

The key idea is to replace nodes from the current working

node set Nin(T), where Nin(0) = N , with newly introduced

nodes drawn from another node set Nout(T). The latter node

set Nout(T) is initially generated with n new random nodes

in the range of the N set. A dynamic change occurs as

follows. Every f evaluations exactly ⌈mn⌉ nodes are randomly

selected from Nout(T) to replace exactly ⌈mn⌉ randomly

selected nodes from Nin(T), where m (m ∈ (0, 1]) denotes

the magnitude of change. The higher the value of m, the more

nodes will be replaced. In this way, the weight matrix will

be affected because the weights on the arcs connecting the

nodes that have been replaced will be modified. Note that

the introduced dynamic changes are synchronized with the

optimization process of the algorithm. Hence, the parameter

f is expressed in algorithmic evaluations.

Such a dynamic change to the node components will also

cause a change to the weight matrix defined in Eq. (8) and,

thus, it may affect the algorithm’s output: the best output

before a change may not be the best (or even feasible)

after the change. Real-world applications that encompass the

aforementioned dynamic change can be found in many fields,

including transportation. For example, changes in the visiting

locations (e.g., removal of nodes denoting customers already

served and the addition of nodes denoting arrival of new

customer orders). Suppose that new customer orders have

arrived and need to be served causing a dynamic change to

the current solution. But the vehicles have already left the

depot serving the already scheduled customer orders. A new

feasible solution that includes the new orders and omits the

already served orders is required.

III. ACO FOR DVRP

The MMAS [8] variant is used which is one of the

most-studied ACO variants. In this section we describe the

application of MMAS to the DVRP, including the proposed

method to heuristically repair solutions when dynamic changes

occur.

A. Initialization

A colony of ω ants is initially positioned at the central depot,

i.e., component 0. All the solution components of the problem

are associated with a pheromone trail value which is uniformly

initialized at the start of the execution as follows:

τij ← τ0, ∀(i, j) ∈ A, (9)

where τij is the pheromone trail value associated with arc

(i, j) connecting solution components i and j, and τ0 is the

initial pheromone trail value. A good value for τ0 was found

to be 1/ρCnn, where ρ is the evaporation rate (more details

are provided later on) and Cnn is the solution quality of the

solution generated by the nearest-neighbor heuristic [8].

B. Solution Construction

Each ant k represents a complete VRP solution T k (i.e.,

the routes of all vehicles) and makes selections biased by

the existing pheromone trails and some heuristic information

associated with the solution components of the problem, until

all the customers are selected.

The probability distribution with which ant k selects the next

customer component j from solution component i is defined

as follows:

pkij =







[τij]
α[ηij]

β

∑
l∈Nk

i
[τil]

α[ηil]
β , if j ∈ N k

i ,

0, otherwise,
(10)

where τij and ηij = 1/wij(T) are, respectively, the existing

pheromone trail and the heuristic information available a priori

between components i and j. Parameters α and β are the

two parameters which determine the relative influence of

τij and ηij , respectively, while N k
i is the set of unselected

customers components for k–th ant adjacent to component i.
The customer included in N k

i must satisfy the vehicle capacity

constraint defined in Eq. (4). Whenever the N k
i set is empty it

denotes that there is no unvisited customer that can be visited

(e.g., the capacity constraint is violated). Subsequently, the

depot component is added to the VRP solution to close the

route of the vehicle (i.e., denotes the return of the vehicle to

the central depot). Note that the depot is never included in the

N k
i set.

C. Pheromone Update

In the MMAS variant [8], [15], the pheromone trails

are updated by first decreasing the pheromone trails on all

arcs (using pheromone evaporation), and then increasing the

pheromone trails on the arcs of the solution constructed

by the best ant (using pheromone deposit). The pheromone

evaporation is applied as follows:

τij ← (1− ρ)τij , ∀(i, j) ∈ A, (11)

where ρ ∈ (0, 1] is the evaporation rate.

After pheromone evaporation, the best ant deposits

pheromone on the arcs of its solution components as follows:

τij ← τij +∆τbestij , ∀(i, j) ∈ T best, (12)

where ∆τbestij = 1/Cbest(t) is the amount of pheromone

that the best ant deposits and Cbest(t) is the quality of the

best solution T best at time3 t. The “best” ant that is allowed

to deposit pheromone may be either the best-so-far ant4, in

which case Cbest(t) = Cbs(t), or the iteration-best ant, in

which case Cbest(t) = Cib(t). These two ants are allowed to

deposit pheromone in an alternate way. More precisely, the

iteration-best ant deposits pheromone at each iteration and the

best-so-far ant deposits pheromone occasionally (i.e., every 25

iterations in this work – more details are provided in [15]).

TheMMAS variant explicitly imposes the lower and upper

limits on the pheromone trail values, preventing in this way

the excessive growth of pheromone trails on the arcs of the

best ant, as follows:

τij ←















τmax, if τij > τmax,

τmin, if τij < τmin,

τij , otherwise,

∀(i, j) ∈ A, (13)

where τmin and τmax are, respectively, the minimum and

maximum pheromone trails.

D. Heuristic Repair When a Dynamic Change Occurs

ACO algorithms are able to use knowledge from previous

environments via their pheromone trails and can be applied

directly to DOPs without any modifications [16], [17]. For

example, when the changing environments are similar, the

pheromone trails of the previous environment may provide

knowledge to speed up the optimization process to the new

environment. However, the algorithm must be flexible enough

to accept the knowledge transferred from the pheromone trails,

or eliminate the pheromone trails, in order to better adapt

to the new environment. When a dynamic change occurs,

evaporation eliminates the pheromone trails of the previous

environment from areas that are generated on the old optimum

and helps ants to explore areas for the new optimum. In

case the changing environments are completely different, then

pheromone reinitialization may be a better choice rather than

transferring the knowledge from previous pheromone trails [6],

[16], [17].

In this work, we also transfer change-related information

[4], (e.g., the nodes to be replaced), to the optimization

process of the algorithm. The removal (or unstringing) and

3Synchronized with algorithmic evaluations
4A special ant that represents the best solution from all iterations so far and,

hence, may not necessarily belong to the constructing colony at the current
iteration.

Fig. 1: Segmentation of a complete VRP solution. Black

circles denotes customers and the white circle in the middle

denotes the depot.

insertion (or stringing) moves of the US heuristic [7] are

used to heuristically repair the current best-so-far solution

generated by ACO when dynamic changes occur. In particular,

the unstringing moves are used to remove the affected nodes

from the solution, whereas the stringing moves are used to

insert the new nodes in the solution.

The US heuristic was initially designed for the TSP prob-

lem, whereas in this work we extend it to the VRP. Since

one route of a VRP solution is in fact a TSP solution (e.g.,

a Hamiltonian path starting and ending at the central depot),

a segmentation phase is applied to the VRP solution initially

to separate the vehicle routes as presented in Fig. 1. In the

example of Fig. 1, four vehicle routes are extracted from the

VRP solution.

The new node will be added in the same route where the

removed node existed to avoid violating the capacity constraint

of the route. The overall procedure of the heuristic repair is

presented in Algorithm 1. In the following, a description of

the unstringing and stringing moves applied to replace nodes

for the DVRP is provided.

1) Removal of Nodes: The main feature of the US heuristic

is that the re-insertion of nodes occurs between non-adjacent

nodes, resulting in a tour where both nodes become adjacent

to the node being inserted [7], [18]. Suppose that we wish

to insert Vx between any two nodes Vi and Vj . For a given

orientation of a tour, consider node Vk in the subtour from

Vj to Vi, and node Vl in the subtour from Vi to Vj . We also

consider for any node Vh on the tour, node Vh+1 (successor)

and node Vh−1 (predecessor). The re-insertion of Vx between

Vi and Vj can be done in several ways using different types

of insertions and removals.

In [7], [19] two types of removals [i.e., Type I in Fig. 2(a)

and Type II in Fig. 2(b)] for the unstringing procedure have

been proposed. The unstringing procedure removes a given

node from the tour and repairs the connections with the

remaining nodes in order to have a closed tour. The procedure

Algorithm 1 HeuristicRepair(T bs)

1: INPUT: T bs %current best-so-far VRP solution

2: Apply segmentation in T bs

3: for (each subtour Si in T bs) do

4: if (Si contains a node to be replaced) then

5: while (no further improvement in Si) do

6: for (each node j in Si) do

7: Calculate cost of all Type I and Type II removals

8: S′
i ← Apply best removal move to Si

9: Calculate cost of all Type I and Type II inser-

tions

10: S′
i ← Apply best insertion move to Si

11: if (S′
i is better than Si) then

12: Si ← S′
i

13: end if

14: end for

15: end while

16: end if

17: end for

18: OUTPUT: T bs %repaired VRP solution

(a)

(b)

Fig. 2: (a) Type I removal, (b) Type II removal

consists of the following removals:

• Type I removal: Assume that Vj belongs to the neigh-

borhood of Vi+1 and Vk belongs to the neighborhood of

Vi−1, with Vk being part of the subtour (Vi+1, . . . , Vj−1).

The removal of node Vi results in the deletion of arcs

(Vi−1, Vi), (Vi, Vi+1), (Vk, Vk+1) and (Vj , Vj+1); and the

(a)

(b)

Fig. 3: (a) Type I insertion, (b) Type II insertion

insertion of arcs (Vi−1, Vk), (Vi+1, Vj) and (Vk+1, Vj+1).
Also, the subtours (Vi+1, . . . , Vk) and (Vk+1, . . . , Vj) are

reversed.

• Type II removal: Assume that Vj belongs to the neigh-

borhood of Vi+1, Vk belongs to the neighborhood of

Vi−1, with Vk being part of the subtour (Vj+1, . . . , Vi−2)
and Vl belongs to the neighborhood of Vk+1, with Vl

being part of the subtour (Vj , . . . , Vk−1). The removal

of node Vi results in the deletion of arcs (Vi−1, Vi),
(Vi, Vi+1), (Vj−1, Vj), (Vk, Vk+1) and (Vl, Vl+1); and the

insertion of arcs (Vi−1, Vk), (Vl+1, Vj−1), (Vi+1, Vj) and

(Vl, Vk+1). As above, the subtours (Vi+1, . . . , Vj−1) and

(Vl+1, . . . , Vk) are reversed.

2) Insertion of Nodes: In [7], [19] two types of insertions

[i.e., Type I in Fig. 3(a) and Type II in Fig. 3(b)] for

the stringing procedure have been proposed. The stringing

procedure is basically the reverse of the unstringing procedure

and consists of the following insertions:

• Type I insertion: Assume that Vk 6= Vi and Vk 6= Vj . The

insertion of Vx results in the deletion of arcs (Vi, Vi+1),
(Vj , Vj−1) and (Vk, Vk+1), and the insertion of arcs

(Vi, Vx), (Vx, Vj), (Vi+1, Vk) and (Vj+1, Vk+1). Also, the

subtours (Vi+1, . . . , Vj) and (Vj+1, . . . , Vk) are reversed.

• Type II insertion: Assume that Vk 6= Vj , Vk 6= Vj+1,

Vl 6= Vi, and Vl 6= Vi+1. The insertion of Vx results in

the deletion of arcs (Vi, Vi+1), (Vl−1, Vl), (Vj , Vj+1) and

(Vk−1, Vk), and the insertion of arcs (Vi, Vx), (Vx, Vj),
(Vl, Vj+1), (Vk−1, Vl−1) and (Vi+1, Vk). As above, the

subtours (Vi+1, . . . , Vl−1) and (Vl, . . . , Vj) are reversed.

IV. EXPERIMENTAL STUDIES

A. Experimental Setup

In the experiments, we investigate the effect of repairing the

best solution heuristically, utilizing change-related information

when dynamic changes occur. TheMMAS with the proposed

heuristic repair (denotedMMAS+H) is compared against the

MMAS with complete re-initialization of pheromone trails

when dynamic changes occurs (denoted MMAS+R), and

the MMAS with simple repair in which the inserted nodes

are placed in the position of the removed nodes (denoted

MMAS+S).

AllMMAS algorithmic parameters were set to commonly

used values: α = 1, β = 5, ρ = 0.8 and the number of ants

was set to ω = 50. Dynamic test cases are generated from

six static benchmark instances [22] obtained from CVRPLIB5:

X-n101-k25, X-n143-k7, X-n219-k73, X-n313-k71,

X-n429-k61 and X-n561-k42 using the dynamic gen-

erator described in Section II. The frequency of change f
was set to 10e4 algorithmic evaluations and the magnitude

of change m was set to 0.1, 0.25, 0.5, and 0.75, indicating

small to medium to severe dynamic changes. Totally, a series

of 4 DVRP test cases were constructed from each stationary

instance to systematically analyze the performance of the

algorithms. For each algorithm on a DVRP, 30 independent

runs were executed on the same set of random seed numbers.

For each run, 50 environmental changes were allowed and

an observation (i.e., the value of the best-so-far ant after a

dynamic change) was recorded. For a fair comparison, all the

algorithms performed the same number of evaluations. The

proportional evaluations required when applying the moves for

the heuristic repair used in MMAS+H are added to the total

evaluations of the algorithm between the dynamic changes.

The offline performance [23] was used to evaluate the

overall performance of the algorithms, which is defined as:

P̄offline =
1

E

E
∑

t=1

Cbs(t), (14)

where E is the total number of evaluations and Cbs(t) is the

best-so-far solution quality after a change.

B. Experimental Results and Discussion

The experimental results regarding the offline performance

of the investigated algorithms for all DVRPs are presented

in Table I. The corresponding statistical results are presented

in Table II, in which pairwise Mann–Whitney statistical tests

with a significance level of 0.05 were performed. In Table

II, the results are shown as “+”, “−” and “∼” when the

first algorithm is significantly better than the second one,

5Available from http://vrp.galgos.inf.puc-rio.br/index.php/en/

TABLE I: Experimental results regarding the average offline performance of ACO algorithms on DVRP test cases.

Problem Instance m MMAS+H MMAS+S MMAS+R

X-n101-k25 0.1 29089 29098 29125

0.25 29386 29401 29417

0.5 29473 29504 29517

0.75 29299 29337 29352

X-n143-k7 0.1 17772 17830 17851

0.25 17726 17816 17795

0.5 17765 17849 17815

0.75 17840 17927 17893

X-n219-k73 0.1 121163 121166 121144

0.25 121305 121311 121274

0.5 121750 121764 121723

0.75 121341 121349 121319

X-n313-k71 0.1 99824 99852 99903

0.25 99286 99352 99384

0.5 98342 98439 98428

0.75 97925 98048 98010

X-n429-k61 0.1 68803 68861 68832

0.25 68864 69044 68958

0.5 69218 69484 69327

0.75 69214 69461 69332

X-n561-k42 0.1 46638 46888 46842

0.25 47021 47424 47241

0.5 47143 47583 47371

0.75 47207 47633 47447

TABLE II: Statistical results regarding the average offline performance of ACO algorithms on DVRP test cases.

Problem Instance m MMAS+H vs.

MMAS+S
MMAS+H vs.

MMAS+R
MMAS+S vs.

MMAS+R

X-n101-k25 0.1 ∼ + ∼

0.25 + + ∼

0.5 + + ∼

0.75 + + ∼

X-n143-k7 0.1 + + ∼

0.25 + + +

0.5 + + +

0.75 + + +

X-n219-k73 0.1 ∼ − −

0.25 ∼ − −

0.5 ∼ − −

0.75 ∼ − −

X-n313-k71 0.1 + + +

0.25 + + +

0.5 + + +

0.75 + + +

X-n429-k61 0.1 + + −

0.25 + + −

0.5 + + −

0.75 + + −

X-n561-k42 0.1 + + ∼

0.25 + + −

0.5 + + −

0.75 + + −

when the second algorithm is significantly better than the first one, and when the two algorithms are not significantly

 115000

 120000

 125000

 130000

 135000

 140000

40 41 42 43 44 45 46 47 48 49 50

A
v
er

ag
e

O
ff

li
n
e

P
er

fo
rm

an
ce

Dynamic Change

X-n219-k73, m = 0.25

MMAS+H
MMAS+S
MMAS+R

Fig. 4: Dynamic average performance of ACO algorithms on

the X-n219-k73 problem instance for the last ten dynamic

changes.

different, respectively. In Figs. 4 and 5 the dynamic aver-

age offline performance against the algorithmic iterations of

MMAS+H, MMAS+S, and MMAS+R are plotted for the

last ten dynamic changes to better understand the behavior

of the algorithms on X-n219-k73 and X-n516-k42 prob-

lem instances, respectively. From the experimental results the

following observations can be drawn.

First, MMAS+H significantly outperforms MMAS+S in

most DVRP cases (except for the X-n219-k73 problem

instance). These results were expected because MMAS+H

replaces a node in vehicle routes and at the same time

optimizes the route using the heuristic moves. In contrast,

MMAS+S replaces the nodes in the positions of the removed

nodes. This observation confirms that proper utilization of the

change-related information further improves the performance

of the algorithm. For example, in Fig. 5 it can be observed

that MMAS+H obtains better offline performance than the

competing algorithms in most dynamic changes.

Second, MMAS+H significantly outperforms MMAS+R

in most DVRP cases (except for the X-n219-k73 prob-

lem instance in which MMAS+R significantly outperforms

MMAS+H). These results confirm that transferring knowl-

edge from previous environments shortens the re-optimization

process compared to the case where the re-optimization

process restarts from scratch (it can also be observed in

Fig. 5). However, the comparisons between MMAS+S and

MMAS+R show that improper utilization of change-related

information may have a negative impact on the performance

of the algorithm.

Finally, a possible reason concerning the inferior perfor-

mance ofMMAS+H on the X-n219-k73 problem instance

 45500

 46000

 46500

 47000

 47500

 48000

 48500

 49000

 49500

 50000

40 41 42 43 44 45 46 47 48 49 50

A
v
er

ag
e

O
ff

li
n
e

P
er

fo
rm

an
ce

Dynamic Change

X-n561-k42, m = 0.25

MMAS+H
MMAS+S
MMAS+R

Fig. 5: Dynamic average performance of ACO algorithms on

the X-n561-k42 problem instance for the last ten dynamic

changes.

is that a solution for this instance consists of several vehicles

routes (i.e., 73). Considering the size of the problem (i.e.,

219) it is possible that vehicle routes of small size are formed

that cannot be optimized by the heuristic moves. Therefore,

the replacement procedure will be similar with the one used

in MMAS+S. In fact, from Fig. 4 it can be observed that

all three algorithms have similar dynamic performance on the

X-n219-k73 problem instance.

V. CONCLUSIONS

In this work, we utilize change-related information to im-

prove the solution quality of ACO when a dynamic change

occurs. The DVRP is used in which nodes are inserted

and removed. The unstringing and stringing moves are used

to heuristically repair the best solution from the previous

environment. The performance of ACO with the proposed

heuristic repair is investigated on dynamic test cases of the

DVRP that are systematically constructed. The experimental

results confirm the positive effect on the performance of ACO

when utilizing change-related information.

For future work, it would be interesting to investigate more

effective ways of utilizing change-related information, e.g.,

with additional removal and insertion moves.

REFERENCES

[1] M. Mavrovouniotis, C. Li, G. Ellinas, and M. Polycarpou, “Parallel ant
colony optimization for the electric vehicle routing problem,” in 2019

IEEE Symposium Series on Computational Intelligence (SSCI), 2019,
pp. 1660–1667.

[2] A. E. Rizzoli, R. Montemanni, E. Lucibello, and L. M. Gambardella,
“Ant colony optimization for real-world vehicle routing problems,”
Swarm Intelligence, vol. 1, no. 2, pp. 135–151, Dec 2007.

[3] Y. Jin and J. Branke, “Evolutionary optimization in uncertain
environments–a survey,” IEEE Transactions on Evolutionary Compu-

tation, vol. 9, no. 3, pp. 303–317, June 2005.
[4] M. Mavrovouniotis, S. Yang, M. Van, C. Li, and M. Polycarpou, “Ant

colony optimization algorithms for dynamic optimization: A case study
of the dynamic travelling salesperson problem [research frontier],” IEEE

Computational Intelligence Magazine, vol. 15, no. 1, pp. 52–63, 2020.
[5] M. Guntsch and M. Middendorf, “Pheromone modification strategies for

ant algorithms applied to dynamic TSP,” in Applications of Evolutionary

Computing, ser. Lecture Notes in Computer Science, E. J. W. Boers, Ed.,
vol. 2037. Springer Berlin Heidelberg, 2001, pp. 213–222.

[6] M. Guntsch and M. Middendorf, “Applying population based ACO to
dynamic optimization problems,” in Ant Algorithms, ser. Lecture Notes
in Computer Science, M. Dorigo, G. Di Caro, and M. Sampels, Eds.,
vol. 2463. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002, pp.
111–122.

[7] M. Gendreau, A. Hertz, and G. Laporte, “New insertion and postop-
timization procedures for the traveling salesman problem,” Operations

Research, vol. 40, no. 6, pp. 1086–1094, 1992.
[8] T. Stützle and H. Hoos, “MAX –MIN ant system and local search

for the traveling salesman problem,” in Proceedings of 1997 IEEE

International Conference on Evolutionary Computation, April 1997, pp.
309–314.

[9] M. Garey and D. Johnson, Computer and intractability: A guide to the

theory of NP-completeness. San Francisco: Freeman, 1979.
[10] P. Kilby, P. Prosser, and P. Shaw, “Dynamic VRPs: A study of scenarios,”

University of Strathclyde, U.K, Tech. Rep. APES-06-1998, 1998.
[11] R. Montemanni, L. M. Gambardella, A. E. Rizzoli, and A. V. D-cponati,

“Ant colony system for a dynamic vehicle routing problem,” Journal of

Combinatorial Optimization, vol. 10, no. 4, pp. 327–343, Dec 2005.
[12] M. Mavrovouniotis and S. Yang, “Ant colony optimization with memory-

based immigrants for the dynamic vehicle routing problem,” in 2012

IEEE Congress on Evolutionary Computation (CEC), June 2012, pp.
2645–2652.

[13] M. Mavrovouniotis and S. Yang, “Ant algorithms with immigrants
schemes for the dynamic vehicle routing problem,” Information Sci-

ences, vol. 294, pp. 456–477, 2015.
[14] H. N. Psaraftis, M. Wen, and C. A. Kontovas, “Dynamic vehicle routing

problems: Three decades and counting,” Netw., vol. 67, no. 1, pp. 3–31,
Jan. 2016.

[15] T. Stützle and H. H. Hoos, “MAX –MIN ant system,” Future

Generation Computer Systems, vol. 16, no. 8, pp. 889–914, June 2000.
[16] D. Angus and T. Hendtlass, “Ant colony optimisation applied to a

dynamically changing problem,” in Developments in Applied Artificial

Intelligence, ser. Lecture Notes in Computer Science, T. Hendtlass and
M. Ali, Eds., vol. 2358. Berlin, Heidelberg: Springer Berlin Heidelberg,
2002, pp. 618–627.

[17] M. Mavrovouniotis and S. Yang, “Adapting the pheromone evaporation
rate in dynamic routing problems,” in Applications of Evolutionary

Computation, ser. Lecture Notes in Computer Science, A. Esparcia-
Alcázar, Ed., vol. 7835. Berlin, Heidelberg: Springer Berlin Heidelberg,
2013, pp. 606–615.

[18] G. Pesant, M. Gendreaul, and J.-M. Rousseau, “Genius-CP: A generic
single-vehicle routing algorithm,” in Principles and Practice of Con-

straint Programming-CP97, G. Smolka, Ed. Berlin, Heidelberg:
Springer Berlin Heidelberg, 1997, pp. 420–434.

[19] M. Mavrovouniotis, F. M. Müller, and S. Yang, “An ant colony opti-
mization based memetic algorithm for the dynamic travelling salesman
problem,” in Proceedings of the 2015 Genetic and Evolutionary Com-

putation Conference (GECCO15), 2015, pp. 49–56.
[20] P. M. França, M. Gendreau, G. Laporte, and F. M. Müller, “A tabu search

heuristic for the multiprocessor scheduling problem with sequence
dependent setup times,” International Journal of Production Economics,
vol. 43, no. 2-3, pp. 79–89, 1996.

[21] M. Mavrovouniotis, F. M. Müller, and S. Yang, “Ant colony optimization
with local search for the dynamic travelling salesman problems,” IEEE

Transactions on Cybernetics, vol. 47, no. 7, pp. 1743–1756, July 2017.
[22] E. Uchoa, D. Pecin, A. Pessoa, M. Poggi, T. Vidal, and A. Subramanian,

“New benchmark instances for the capacitated vehicle routing problem,”
European Journal of Operational Research, vol. 257, no. 3, pp. 845–858,
2017.

[23] J. Branke and H. Schmeck, “Designing evolutionary algorithms for dy-
namic optimization problems,” in Advances in Evolutionary Computing,
ser. Natural Computing Series, A. Ghosh and S. Tsutsui, Eds. Springer
Berlin Heidelberg, 2003, pp. 239–262.

