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Abstract— Ant colony optimization (ACO) algorithms are
population-based algorithms where ants communicate via their
pheromone trails. Usually, this indirect communication leads
the algorithm to a stagnation behaviour, where the ants follow
the same path from early stages. This is because high levels
of pheromone are generated into a single trail, where all the
ants are influenced and follow it. As a result, the population
gets trapped into a local optimum solution, which is difficult
for the ACO algorithm to escape from it. In this paper, a direct
communication scheme is proposed and applied to ACO for the
capacitated vehicle routing problem (CVRP), which is a diffi-
cult NP-hard optimization problem. The direct communication
scheme allows the ants to exchange customers from different
routes, with other ants that belong to their communication
range. Experiments show that the direct communication scheme
significantly improves the solution quality of a conventional
ACO algorithm regarding CVRP with and without service time
constraints.

I. I NTRODUCTION

Ant colony optimization (ACO) algorithms are inspired
from the behaviour of real ant colonies, when ants search
for food from their nest to food sources. Ants cooperate
and communicate indirectly via their pheromone, where they
leave a trail to the path they explore. The more pheromone
on a specific trail, the higher the possibility of that trail to
be followed by the ants.

This behaviour inspired researchers to develop the first
ACO algorithm, called the ant system (AS) [6], [8], which
has been applied to the well-known travelling salesman
problem (TSP). Moreover, AS has been applied to other
combinatorial optimization problems, such as the quadratic
assignment problem [10], the job scheduling problem [7],
the vehicle routing problem (VRP) [2], [9], and many other
optimization problems.

In this paper, we focus on the VRP because it shares
many similarities with real-world applications [21], where a
population of ants begins from a depot and visits customers
(or delivery points). When the demand of all the customers
are satisfied, the ants will return back to the depot. Each
ant represents several vehicle routes, due to the vehicle
capacity constraint, which represent a complete capacitated
VRP (CVRP) solution. The AS has been applied to the
CVRP [2], and later on improved [3] using different heuristic
information. However, it suffers from the stagnation be-
haviour, where all ants generate the same solution from early
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iterations. This is because a high intensity of pheromones
may be generated into a single trail, and the ants may stuck
on a local optimum solution.

In nature, ants do not only communicate indirectly by
pheromone trails, but also directly with other ants and gather
important information [15]. A direct communication (DC)
scheme has been found beneficial to the TSP, where ants
communicate and exchange cities [16]. In this paper, a sim-
ilar DC scheme is proposed for ACO algorithms to address
the CVRP. The ants will be able to communicate with other
ants within their neighbourhood (or communication range),
which is based on a similarity metric. Ants within their
communication range are allowed to exchange customers
with each other, only if there is an improvement and the
CVRP constraints are not violated. Additionally, a small
amount of pheromone is added to the exchanged customers
in order to influence ants towards new promising paths
generated from DC.

In order to investigate the performance of the proposed
DC scheme for ACO algorithms, we consider the AS for the
CVRP [3], and experiments are carried out to compare the
conventional AS algorithm and the AS with the proposed
DC scheme, denoted as AS+DC, on a set of benchmark
CVRP instances. Experimental results show that the proposed
scheme improves the solution quality of the conventional AS
since it enables ants to avoid local optima and leads the
population towards the global optimum.

The rest of the paper is organized as follows. Section
II, defines the framework of two CVRP variations, i.e., the
basic CVRP and CVRP with service time constraints. In
Section III, we describe the AS algorithm for the CVRP,
which will be used in the experiments. In Section IV, we
describe the proposed DC scheme, giving details on how it
can be applied to AS, and to any ACO algorithm. In addition,
we discuss possible advantages and disadvantages of using
this scheme. Section V presents the experimental results with
the corresponding statistical tests of the proposed AS+DC
in comparison with the conventional AS on different CVRP
problem instances. Finally, Section VI provides concluding
remarks and several directions for future work.

II. T HE VEHICLE ROUTING PROBLEM

The VRP became one of the most popular combinatorial
optimization problems, due to its similarities with many real-
world applications. The VRP is classified asNP-hard [13].
The basic VRP is the CVRP, where a number of vehicles
with a fixed capacity need to satisfy the demand of all the
customers, starting from and finishing to the depot. A VRP



without the capacity constraint or with one vehicle can be
seen as a TSP. There are many variations and extensions
of the VRP, such as the multiple depot VRP, the VRP
with pickup and delivery, the VRP with time windows and
combinations of different variations (for more details see
[23]). In this paper we will consider the CVRP with and
without service time constraints.

Usually, the CVRP is represented by a complete weighted
graph G = (V,E), with n + 1 nodes, whereV =
{u0, . . . , un} is a set of vertices corresponding to the cus-
tomers (or delivery points)ui (i = 1, · · · , n) and the depot
u0 and E = {(ui, uj) : i 6= j} is a set of edges. Each
edge (ui, uj) is associated with a non-negativedij which
represents the distance (or travel time) betweenui and uj.
For each customerui, a non-negative demandqi is given for
both the CVRPs with or without service time constraints,
and, for the case of CVRP with service time constraints,
an additional non-negative service timeδi is given. For the
depotu0, a zero demand and service time is associated, i.e.,
q0 = δ0 = 0.

The aim of the CVRP is to find the route (or a set of
routes) with the lowest cost without violating the following
constraints:

• Every customer is visited exactly once by only one
vehicle.

• Every vehicle starts and finishes at the depot.
• The total demand of every vehicle route must not exceed

the vehicle capacityQ.
• The total route travel time must not exceed the vehicle

service time constraintL (in case of the CVRP with
service time constraints).

A lot of algorithms have been proposed to solve small
instances of different variations of the VRP, either exact or
approximation algorithms [19], [22]. Although exact algo-
rithms guarantee to provide the global optimum solution,
an exponential time is required in the worst case scenario,
because the CVRP isNP-hard [13]. On the other hand,
approximation algorithms, i.e., evolutionary algorithms, can
provide a good solution efficiently but cannot guarantee the
global one [11].

In this paper, we focus on ACO algorithms due to their
good results in real-world applications related to the VRP
[21]. ACO algorithms are able to provide the optimum or a
near-optimum solution in a sufficient amount of time, since
they sacrifice their solution quality for the sake of efficiency
(time) [18]. ACO algorithms have been successfully applied
on the VRP with time windows [9], and to the VRP variation
described in this paper [3] (for more details see Section III).

III. C ONVENTIONAL ANT SYSTEM FOR THECVRP

A. Construction of Vehicle Routes

The AS has been applied to the CVRP [2], and later on
improved using the savings algorithms [3], [5]. Each artificial
ant will construct a complete CVRP solution, which consists
of the routes of each vehicle. Initially, all the ants are placed
on the depot. Each antk uses a probabilistic rule to choose

the next customer to visit. However, when the choice of
the next customer would lead to infeasible solution, i.e.,
exceeding the maximum capacity or the total service time
constraint of the vehicle, the depot is chosen and a new
route is started. Therefore, the neighbourhood of available
customers for antk, when its current customer isui, is
defined asNk

i = {uj ∈ V : uj is feasible} ∪ {u0}, and
the probabilistic rule is defined as follows:

pkij =







[τij ]
α[ηij ]

β

∑
ul∈Nk

i
[τil]

α[ηil]
β , if uj ∈ Nk

i ,

0, otherwise,
(1)

whereτij is the existing pheromone trail between customers
i and j, ηij is the heuristic information available a priori,
Nk

i denotes the neighbourhood of unvisited customers for
ant k when its current customer isi, α and β are two
parameters which determine the relative influence ofτ and
η, respectively, and they have a significant impact on ACO
algorithms to achieve a robust behaviour. The heuristic
information, i.e.,ηij , determines the visibility of customers
and it is based on the parametrical saving function [3], which
is defined as follows:

ηij = di0 + d0j − g × dij + f × |di0 − dj0| (2)

wheredij is the distance (or travel time) between customers
i andj, g andf are constant parameters.

B. Pheromone Trail Update

After all ants have visited all customers and gener-
ated a complete feasible CVRP solution, they update their
pheromone trails using a rank-based method [1]. Initially,all
trails contain an equal amount of pheromone on each edge.
In each iteration, all the ants are ranked according to their
solution quality. Only the(σ − 1) best ranked ants, called
elitist ants, and the best-so-far ant are allowed to deposit
pheromone which is weighted according to their rankr. The
best-so-far ant is weighted with the highest value, i.e.,σ.
Note that the best-so-far ant may not necessarily belong to
the population of the current iteration. Then, the elitist ants
and best-so-far ant retrace their solutions to deposit weighted
pheromones to the edges that belong to their solutions. This
process is defined as follows:

τij ← τij +

σ−1
∑

r=1

(σ − r)∆τrij + σ∆τbestij , (3)

wherer is the rank of an elitist ant,σ is the number of the
elitist ants (including the best-so-far ant, denoted asbest),
and∆τrij is the amount of pheromone that ther-th best ant
deposits, which is defined as follows:

∆τrij =

{

1/Cr, if (ui, uj) ∈ T r,

0, otherwise,
(4)

where T r is the CVRP solution (or the vehicle routes)
constructed by ther-th best ant andCr is the total length of
T r. The corresponding∆τbestij for the vehicle routes of the



Algorithm 1 AS for the CVRP
1: initialize data
2: while termination-condition not satisfieddo
3: construct vehicle routes
4: update best ants
5: global pheromone update (evaporation + deposit)
6: end while

solution constructed by the best-so-far ant, is defined as in
Eq. (4), but withCbest andT best.

Furthermore, a constant amount of pheromone is deducted
from all trails due to the evaporation of pheromone. This
process enables the population to eliminate bad decisions
from previous tours and is defined as follows:

τij ← (1− ρ) τij , ∀ (ui, uj), (5)

where0 < ρ ≤ 1 is the pheromone evaporation rate.
A general framework of a conventional ACO algorithm for

the CVRP is represented in Algorithm 1.

IV. D IRECT COMMUNICATION OF ANTS FOR THECVRP

The traditional AS algorithm suffers from the stagnation
behaviour, where all ants follow the same path from the
initial stages of the algorithm. This is because a high intensity
of pheromone is generated to a single trail and attracts the
ants to those areas. Therefore, AS is more likely to get
trapped in a local optimum solution, which may degrade the
solution quality.

In nature, ant colonies communicate not only indirectly
via their pheromone trails, but also directly by exchanging
important information [15]. To avoid the stagnation be-
haviour, we can integrate a DC scheme into AS algorithms by
allowing ants to exchange customers after they construct their
vehicle routes, as shown in Algorithm 2. The DC scheme is
based on adaptive swaps and has been recently applied to
the TSP with promising results [16]. For the CVRP, a similar
scheme is proposed, where each antantk communicates with
another ant within its communication range as follows:

1) A customerui is randomly selected from antantk.
2) The successor and predecessor ofui, i.e., customers

ui−1 andui+1, respectively, are selected fromantk.
3) Another ant is selected, denotedantj , from the com-

munication range ofantk and customerui is located
in antj .

4) The successor and predecessor ofui, i.e., customers
u′

i−1 and u′

i+1, respectively, are selected fromantj
and located inantk.

5) Swaps are performed inantk between customersui−1

andu′

i−1 and between customersui+1 andu′

i+1.
6) A small extra amount of pheromone is deposited to

the resulting edges betweenui and its successor and
betweenui and its predecessor inantk.

The proposed communication scheme has a high risk to
degrade the solution quality of the tours constructed by the
ants and disturb the optimization process. Therefore, only

Algorithm 2 AS+DC for the CVRP
1: initialize data
2: while termination-condition not satisfieddo
3: construct vehicle routes
4: perform direct communication
5: update best ants
6: global pheromone update (evaporation + deposit)
7: local pheromone update
8: end while

the swaps which are beneficial are allowed in order to limit
the risk. For example, ifdij between the current successor
city of city ui in ant antk is less than the successor city
obtained from the neighbour antantj, then antk remains
unchanged. The same happens with the predecessor city of
city ui in ant antk. Moreover, the swaps may violate the
capacity and service time constrains of the vehicle routes
and generate an infeasible solution. Therefore, only the swaps
that do not violate any of the constraints are allowed. The
swap method for the CVRP has been introduced in [19],
where customers from different vehicle routes are exchanged.
In our case, the moves of the swaps are made adaptively since
they are inherited from other ants.

Apart from the swaps, a small amount of pheromone
is deposited to the edges affected by the adaptive swaps
in order to determine the influence and explore possible
improvements. This process is defined as follows:

τij ← τij +
(τmax − τmin)(1− w)

n
, (6)

wherew is a constant parameter to determine the influence of
the possible improvements andn is the number of customers.

The communication range of an antantk with other ants
is based on the similarities of ants and is defined as follows:

Rk = {antj ∈ P |1−
CEkj

n+ avg(NVk, NVj)
≤ Tr}, (7)

whereP is the population of ants,Tr is a predefined thresh-
old which determines the size of the communication range of
an ant,n is the number of customers,CEkj are the common
edges between two ants, i.e.,antk andantj, andNVk and
NVj are the number of vehiclesantk andantj have in their
solutions, respectively. If an edge(ul, um) or (um, ul) that
appears in the solution ofantk also appears in the solution of
antj , then it is counted as a common edge betweenantk and
antj . A larger value ofTr indicates a larger communication
neighbourhood of dissimilar ants, whereas a value closer to0
indicates a smaller communication neighbourhood of similar
or identical ants.

The DC scheme can be applied to any ACO algorithm right
after all ants construct their solutions and before they update
their pheromone trails globally. Note that the exchange of
customers is performed locally and customers are exchanged
when there is an improvement on the distance of the edge.
In addition, the edge receives an extra amount of pheromone
locally, as in Eq. (6), to attract ants to perform more



exploration on possible promising areas in the search space.
Therefore, the newly discovered areas on the search space
will be considered by the ants in the next iterations.

Moreover, the swaps may reduce the number of vehicles
used, which usually leads to better solution quality for the
CVRP. For example,antk has the following solution:

{(0,1,4,2,0), (0,3,5,6,0), (0,7,9,0), (0,10,0)},

which consists of 4 vehicles, and communicates withantj
with the following solution:

{(0,5,3,1,0), (0,6,2,10,0), (0,9,7,4,8,0)},

which consists of 3 vehicles. The customer which is ran-
domly selected fromantk is customer 2 with customer 4
and depot 0 as the predecessor and successor, respectively.
Then, customer 2 is located inantj (selected fromantk ’s
communication range), and obtains customers 6 and 10,
which are the predecessor and successor of customer 2 in
antj, respectively. Assume that the swaps of customers(4, 6)
and (0, 10) satisfy the capacity and service time constraints
and there is an improvement on the distance. The resulting
solution ofant′k is:

{(0,1,6,2,10,0), (0,3,5,4,0), (0,7,9,0), (0,0,0)}

where the last route is removed since it does not contain any
customers, and, thus, the solution consists of 3 vehicles.

Moreover, it has been shown that the solution quality of
the routes constructed from the ants can be significantly
improved with the use of a local search operator [14].
However, such methods may increase the computation time
significantly especially on large problem instances. In our
experiments, we will not consider any local search operator
in order to investigate the effect of the proposed scheme, but
it is worth to be considered for future work.

The aim of DC scheme is to exchange customers from
different vehicles routes or from the same vehicle route, and
take advantage of different solutions constructed by ants on
each iteration. It is possible that the solution of an ant may
be worse than the best ant, but a sub-tour may belong to
the global optimum. It is also possible that a sub-tour in
the best tour may belong to a local optimum. Therefore, it is
difficult for an ACO algorithm to escape from local optimum
because the pheromone trails will always lead the ants into
the same path. The adaptive swaps may help to eliminate
such behaviour and possibly enhance the solution quality of
the conventional AS algorithm.

V. EXPERIMENTAL STUDY

A. Experimental Setup

The proposed AS+DC is compared with the conventional
AS [3], which is the only existing ACO algorithm for the
CVRP. For the experiments, 14 CVRP instances with and
without service time constraints are considered as described
in [4]. The problem instances contain between 50 and 199
customers in addition to the single depot. The problem
instancesC1 − C10 are randomly distributed, whereas the
problem instancesC11 − C14 are clustered. The problem
instancesC1 − C5 and C11 − C12 are identical with the

TABLE I

THE PROBLEM CHARACTERISTICS AND MEAN RESULTS OF THE BEST

SOLUTION AVERAGED OVER30 RUNS FOR THECVRPWITHOUT

SERVICE TIME CONSTRAINTS

Inst. n Q L δ AS AS+DC Sign.

Random Problems

C1 50 160 ∞ 0 639.43 626.90 +

C2 75 140 ∞ 0 1062.33 1045.40 +

C3 100 200 ∞ 0 1214.06 1145.70 +

C4 150 200 ∞ 0 1751.73 1668.26 +

C5 199 200 ∞ 0 2321.20 2203.73 +

Clustered Problems

C11 120 200 ∞ 0 1589.96 1524.83 +

C12 100 200 ∞ 0 1223.03 1170.90 +

TABLE II

THE PROBLEM CHARACTERISTICS AND MEAN RESULTS OF THE BEST

SOLUTION AVERAGED OVER30 RUNS FOR THECVRPWITH SERVICE

TIME CONSTRAINTS

Inst. n Q L δ AS AS+DC Sign.

Random Problems

C6 50 160 200 10 647.33 624.50 +

C7 75 140 160 10 1055.76 1047.76 ∼

C8 100 200 230 10 1188.53 1145.56 +

C9 150 200 200 10 1743.86 1655.83 +

C10 199 200 200 10 2320.36 2182.73 +

Clustered Problems

C13 120 200 720 50 1749.23 1722.13 +

C14 100 200 1040 90 1200.60 1179.26 +

problem instancesC6 − C10 and C13 − 14, respectively,
expect that the latter have service time constraints. For such
problem instances, all the customers have the same service
time δ = δ1 = . . . = δn.

For each experiment on each problem instance, 30 inde-
pendent runs of each algorithm were performed for statistical
purposes. For each run, 1000 iterations were performed in
order to have the same number of evaluations (expect on
problem instancesC5 andC10 where 2500 iterations were
performed) and an observation of the best-so-far ant was
taken every iteration.

B. Parameter Setting

Most of the parameters used in the algorithms are inspired
from the literature since they have been found effective
[3], [16]. For both AS and AS+DC, the parametersα and
β used in Eq. (1) were set to 1 and 5, respectively. The
evaporation constantρ used in Eq. (5) was set to 0.75 as
in [3]. However, adapting the evaporation rate may help the
population escape possible local optima and may improve the
overall performance of ACO algorithm and it worth future
investigation. The constant parametersf = g = 2 in Eq. (2)
andσ = 6 in Eq. (3). The population size was set tom = 50
for both algorithms. A good value for thew parameter used
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Fig. 1. Dynamic performance (averaged over 30 runs) of the ASalgorithm
with and without DC for the random CVRP problem instances.

in Eq. (6) was found to be 0.5 andT r = 0.7 in Eq. (7) from
our preliminary experiments.

C. Analysis of the Results

In Tables I and II, the characteristics of the problem
instances and mean results of AS and AS+DC are presented
for the CVRPs without and with service time constraints,
respectively. In Tables I and II, the corresponding statistical
results of comparing the AS+DC and AS algorithms by a
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Fig. 2. Dynamic performance (averaged over 30 runs) of the ASalgorithm
with and without DC for the clustered CVRP problem instances.

non-parametric statistical test, i.e., Wilcoxon rank-sumtest,
at the 0.05 level of significance are also shown in the last
column, where “+” indicates that the AS+DC algorithm is
significantly better than the AS algorithm, and “∼” indicates
no statistical significance. Furthermore, in Figs. 1 and 2, the
best-so-far solution, averaged over 30 runs, of the algorithms
over each iteration are plotted, for the random and clustered
problem instances, respectively.

In both CVRP variations, the AS+DC algorithm out-
performs the conventional AS algorithm on almost all the
problem instances, which can be observed from Tables I and
II, expect onC7 where they are not significantly different.
This is because the conventional AS algorithm has more
chances to get trapped on local optimum due to the stagnation
behaviour.

On the other hand, the proposed AS+DC algorithm in-
creases the exploration ability and avoids possible local
optima. This can be observed from Figs. 1 and 2, where
the two algorithms have similar convergence in most of
the problem instances, but the AS algorithm gets trapped
to a local optimum solution, while the AS+DC algorithm
keeps exploring the search space and improves the solution
quality. This is due to the extra local pheromone update of
the DC scheme to the possible improvements found from the
adaptive swaps. Moreover, in some cases, i.e.,C8, C12, and
C14 the convergence of AS+DC is slightly delayed.

However, when the population of ants is identical, the DC
scheme will not be effective since the ants will communicate
with identical ants. This may be a possible reason why the
AS+DC algorithm is not significantly better in some cases,
e.g., onC7.

VI. CONCLUSIONS

The communication between ants in conventional ACO
algorithms is achieved indirectly via pheromone trails. Inthis



paper, a scheme is proposed for ACO to solve the CVRP
with and without service time constraints, which enables the
ants to communicate both directly and indirectly. The ants
are allowed to communicate and exchange customers from
different vehicle routes, using adaptive swaps. Although one
solution may not be better than another, it may contain a
sub-tour which corresponds to the global optimum. The DC
scheme helps ACO algorithms to escape from local optimum
solutions and hence improves the solution quality. However,
when the stagnation behaviour is reached, it becomes ineffec-
tive because all the ants in the population will be identical.

For the experiments, we use the AS algorithm, which is the
only ACO algorithm applied to the CVRP, with or without
the proposed DC scheme, on a set of CVRP instances.
Generally speaking, the experimental results show clearly
that the use of the proposed scheme with an appropriate
communication range between ants improves the overall
performance of the AS algorithm for the CVRP. The im-
provement regarding the solution quality is significant on
almost all problem instances.

For further work, it will be interesting to apply the DC
scheme with other ACO algorithms for other variations of
VRPs [21]. Another future work is to investigate the effect
of DC when an ACO algorithm is applied with a local
search operator, e.g., the 2-opt operator [14]. Usually, on
larger problem instances, the solution quality of algorithms
is more likely to be degraded, whereas a local search may
improve it at the price of more computation time. Therefore,
DC may be able to guide the local search operator for
better solution quality and computation time. Finally, the
proposed approach may be effective for VRPs under dynamic
environments since it delays the convergence and provides
valuable diversity to the population of ACO algorithms [17].
Such characteristics are suitable to help the population to
adapt well to environmental changes [12].
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