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Abstract— Ant colony optimization (ACO) algorithms are iterations. This is because a high intensity of pheromones
population-based algorithms where ants communicate via tir  may be generated into a single trail, and the ants may stuck
pheromone trails. Usually, this indirect communication leads on a local optimum solution.

the algorithm to a stagnation behaviour, where the ants fobw | ¢ ts d t onl icate indirectly b
the same path from early stages. This is because high levels n nature, ants do not only communicate Iindirectly Dy

of pheromone are generated into a single trail, where all the Pheromone trails, but also directly with other ants and gath
ants are influenced and follow it. As a result, the population important information [15]. A direct communication (DC)
gets trapped into a local optimum solution, which is difficut  scheme has been found beneficial to the TSP, where ants
for the ACO algorithm to escape from it. In this paper, a direct oo mynicate and exchange cities [16]. In this paper, a sim-
communication scheme is proposed and applied to ACO for the . ) .
capacitated vehicle routing problem (CVRP), which is a diff ilar DC scheme is proposed for ACO algorlt_hms to_ address
cult NP-hard optimization problem. The direct communication ~ the CVRP. The ants will be able to communicate with other
scheme allows the ants to exchange customers from different ants within their neighbourhood (or communication range),
routes, with other ants that belong to their communication which is based on a similarity metric. Ants within their
range. Experiments show that the direct communication sct@e .,y mnication range are allowed to exchange customers
S|gn|f|cantly improves the solutlop quallty' of a conyent[oral ith h oth v if th . - t and th
ACO algorithm regarding CVRP with and without service time with each o e_r, only | erg IS an Imprpyemen an e
constraints. CVRP constraints are not violated. Additionally, a small
amount of pheromone is added to the exchanged customers
|. INTRODUCTION in order to influence ants towards new promising paths
Ant colony optimization (ACO) algorithms are inspiredgenerated from DC.
from the behaviour of real ant colonies, when ants search|n grder to investigate the performance of the proposed
for food from their nest to food sources. Ants cooperat®C scheme for ACO algorithms, we consider the AS for the
and communicate indirectly via their pheromone, where thquRP [3], and experiments are carried out to compare the
leave a trail to the path they explore. The more pheromongnventional AS algorithm and the AS with the proposed
on a SpeCiﬁC trail, the hlgher the pOSSlb”lty of that tral t DC scheme, denoted as AS+DC, on a set of benchmark
be followed by the ants. CVRP instances. Experimental results show that the prapose
This behaviour inspired researchers to develop the firgtheme improves the solution quality of the conventional AS
ACO algorithm, called the ant system (AS) [6], [8], whichgince it enables ants to avoid local optima and leads the
has been applied to the well-known travelling salesmaﬁopmaﬁon towards the global optimum.
problem (TSP). Moreover, AS has been applied to other The rest of the paper is organized as follows. Section
combinatorial optimization problems, such as the quatiratj| defines the framework of two CVRP variations, i.e., the
assignment problem [10], the job scheduling problem [7hasic CVRP and CVRP with service time constraints. In
the vehicle routing problem (VRP) [2], [9], and many otherlsection 11, we describe the AS algorithm for the CVRP,
optimization problems. _ which will be used in the experiments. In Section IV, we
In this paper, we focus on the VRP because it shargfscribe the proposed DC scheme, giving details on how it
many similarities with real-world applications [21], wieea  can be applied to AS, and to any ACO algorithm. In addition,
population of ants begins from a depot and visits customeygs discuss possible advantages and disadvantages of using
(or delivery points). When the demand of all the customerigis scheme. Section V presents the experimental restiits wi
are satisfied, the ants will return back to the depot. Eage corresponding statistical tests of the proposed AS+DC
ant represents several vehicle routes, due to the vehigecomparison with the conventional AS on different CVRP
capacity constraint, which represent a complete capaditatprob|em instances. Finally, Section VI provides concligdin

VRP (CVRP) solution. The AS has been applied to theemarks and several directions for future work.
CVRP [2], and later on improved [3] using different heudsti

information. However, it suffers from the stagnation be- Il. THE VEHICLE ROUTING PROBLEM

haviour, where all ants generate the same solution frory earl The VRP became one of the most popular combinatorial
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without the capacity constraint or with one vehicle can béhe next customer to visit. However, when the choice of
seen as a TSP. There are many variations and extensidths next customer would lead to infeasible solution, i.e.,
of the VRP, such as the multiple depot VRP, the VRRxceeding the maximum capacity or the total service time
with pickup and delivery, the VRP with time windows andconstraint of the vehicle, the depot is chosen and a new
combinations of different variations (for more details seeoute is started. Therefore, the neighbourhood of availabl
[23]). In this paper we will consider the CVRP with andcustomers for ant, when its current customer is;, is
without service time constraints. defined asN} = {u; € V : u; is feasiblé U {uo}, and
Usually, the CVRP is represented by a complete weightdtle probabilistic rule is defined as follows:
graph G = (V,E), with n + 1 nodes, whereV = ar 18
. . . ) [733]% [ni5] if u, e Nk
{uo,...,u,} is a set of vertices corresponding to the cus D B S A e AR i
tomers (or delivery pointsy; (i = 1,---,n) and the depot Py = 0 e :
. o , otherwise
uo and B = {(u;,u;) : ¢ # j} is a set of edges. Each
edge (u;, u;) is associated with a non-negatidg; which  wherer;; is the existing pheromone trail between customers
represents the distance (or travel time) betwegmndu;. i and j, n;; is the heuristic information available a priori,
For each customar;, a non-negative demangl is given for ~ N* denotes the neighbourhood of unvisited customers for
both the CVRPs with or without service time constraintsant £ when its current customer i o and 5 are two
and, for the case of CVRP with service time constraintgarameters which determine the relative influence @nd
an additional non-negative service timgis given. For the 75, respectively, and they have a significant impact on ACO
depotug, a zero demand and service time is associated, i.@lgorithms to achieve a robust behaviour. The heuristic
qo = 0o = 0. information, i.e.,n;;, determines the visibility of customers
The aim of the CVRP is to find the route (or a set ofand it is based on the parametrical saving function [3], Whic
routes) with the lowest cost without violating the followin is defined as follows:
constraints:

o Every customer is visited exactly once by only one

1)

nij = dio + doj — g X dij + f x |dso — djol (2)

vehicle. whered;; is the distance (or travel time) between customers
« Every vehicle starts and finishes at the depot. i andj, g and f are constant parameters.
« The total demand of every vehicle route must not exceed

the vehicle capacity). B. Pheromone Trail Update

« The total route travel time must not exceed the vehicle after all ants have visited all customers and gener-

service time constrainl, (in case of the CVRP with ateq a complete feasible CVRP solution, they update their
service time constraints). pheromone trails using a rank-based method [1]. Initiailly,

A lot of algorithms have been proposed to solve smatrails contain an equal amount of pheromone on each edge.
instances of different variations of the VRP, either exact dn each iteration, all the ants are ranked according to their
approximation algorithms [19], [22]. Although exact algo-solution quality. Only the(oc — 1) best ranked ants, called
rithms guarantee to provide the global optimum solutiorglitist ants, and the best-so-far ant are allowed to deposit
an exponential time is required in the worst case scenaripheromone which is weighted according to their ranKhe
because the CVRP islP-hard [13]. On the other hand, best-so-far ant is weighted with the highest value, ie.,
approximation algorithms, i.e., evolutionary algorithraan  Note that the best-so-far ant may not necessarily belong to
provide a good solution efficiently but cannot guarantee thge population of the current iteration. Then, the elitistsa
global one [11]. and best-so-far ant retrace their solutions to deposithved)

In this paper, we focus on ACO algorithms due to theipheromones to the edges that belong to their solutions. This
good results in real-world applications related to the VRIprocess is defined as follows:

[21]. ACO algorithms are able to provide the optimum or a o1

near-optimum solution in a sufficient amount of time, since . 3 r best

they sacrifice their solution quality for the sake of efficign Tig € Tij 21 (0= 1) Amj + oA, ®
(time) [18]. ACO algorithms have been successfully applied ) - . )

on the VRP with time windows [9], and to the VRP variationwherer is the rank of an elitist anty is the number of the

described in this paper [3] (for more details see Section 111 €litist ants (including the best-so-far ant, denotedbes),
and A7/, is the amount of pheromone that theh best ant

1. CONVENTIONAL ANT SYSTEM FOR THECVRP deposits, which is defined as follows:
A. Construction of Vehicle Routes ) 1/C, i (us,uy) € T7,
The AS has been applied to the CVRP [2], and later on ATy = 0 otherwise (4)

improved using the savings algorithms [3], [5]. Each aiitific

ant will construct a complete CVRP solution, which consistevhere 7" is the CVRP solution (or the vehicle routes)
of the routes of each vehicle. Initially, all the ants arecpldh constructed by the-th best ant and’” is the total length of
on the depot. Each arit uses a probabilistic rule to chooseT”. The correspondingxfgest for the vehicle routes of the



Algorithm 1 AS for the CVRP Algorithm 2 AS+DC for the CVRP

1: initialize data 1: initialize data

2: while termination-condition not satisfiedo 2: while termination-condition not satisfiedo

3:  construct vehicle routes 3:  construct vehicle routes

4. update best ants 4. perform direct communication

5. global pheromone update (evaporation + deposit) 5. update best ants

6: end while 6: global pheromone update (evaporation + deposit)
7:  local pheromone update
8: end while

solution constructed by the best-so-far ant, is defined as in
EqQ. (4), but withC?est and T¢st.

Furthermore, a constant amount of pheromone is deductdd swaps which are beneficial are allowed in order to limit
from all trails due to the evaporation of pheromone. Thishe risk. For example, il;; between the current successor
process enables the population to eliminate bad decisiodisy of city u; in ant anty is less than the successor city

from previous tours and is defined as follows: obtained from the neighbour amt:t;, then ant; remains
unchanged. The same happens with the predecessor city of
Tij = (L= p) 75, ¥ (ui, u5), (®)  city u; in ant ant,. Moreover, the swaps may violate the
where( < p < 1 is the pheromone evaporation rate. capacity and service time constrains of the vehicle routes
A general framework of a conventional ACO algorithm forand generate an infeasible solution. Therefore, only ttapsw
the CVRP is represented in Algorithm 1. that do not violate any of the constraints are allowed. The

swap method for the CVRP has been introduced in [19],
IV. DIRECT COMMUNICATION OF ANTS FOR THECVRP  where customers from different vehicle routes are exchéinge

The traditional AS algorithm suffers from the stagnatiorin Our case, the moves of the swaps are made adaptively since
behaviour, where all ants follow the same path from théey are inherited from other ants.
initial stages of the algorithm. This is because a high isitgn ~ Apart from the swaps, a small amount of pheromone
of pheromone is generated to a single trail and attracts tie deposited to the edges affected by the adaptive swaps
ants to those areas. Therefore, AS is more likely to g&f order to determine the influence and explore possible
trapped in a local optimum solution, which may degrade thigprovements. This process is defined as follows:
solution quality. (Tmaz — Tmin) (1 — w)

In nature, ant colonies communicate not only indirectly Tij = Tij + ’ (6)

n
via their pheromone trails, but also directly by exchangin . . .
P el 9 %/herew is a constant parameter to determine the influence of

important information [15]. To avoid the stagnation be- ible improvements ands the number of customer
haviour, we can integrate a DC scheme into AS algorithms b € possible Improvements ands he numboer ot customers.
The communication range of an amt¢; with other ants

allowing ants to exchange customers after they constreot th . NN ! ,
vehicle routes, as shown in Algorithm 2. The DC scheme is based on the similarities of ants and is defined as follows:
based on adaptive swaps and has been recently applied tORk — {ant; € P|1 — CEj; L@

the TSP with promising results [16]. For the CVRP, a similar ! n+avg(NVy, NV;) = "0

scheme is proposed, where eachant, communicates with
another ant within its communication range as follows:

where P is the population of antdl}. is a predefined thresh-
old which determines the size of the communication range of

1) A customeru; is randomly selected from antuty. an ant,n is the number of customer§.Ey,; are the common
2) The successor and predecessompfl.e., customers edges between two ants, i.ent; and ant;, and NV;, and
ui—1 andu,,1, respectively, are selected fromut,. NV, are the number of vehiclesit,, andant; have in their

3) Another ant is selected, denotedt;, from the com-  solutions, respectively. If an edd@;, u,) Or (uy,, u;) that
munication range ofint, and customeu; is located appears in the solution afut; also appears in the solution of

in ant;. ant;, then it is counted as a common edge between, and
4) The successor and predecessomgfi.e., customers gy¢;. A larger value off;. indicates a larger communication
u;_; andu;,, respectively, are selected frommt; neighbourhood of dissimilar ants, whereas a value closer to
and located imnty. indicates a smaller communication neighbourhood of simila
5) Swaps are performed imt; between customers,_1  or identical ants.
andu;_, and between custometg,, andu;_ . The DC scheme can be applied to any ACO algorithm right

6) A small extra amount of pheromone is deposited tafter all ants construct their solutions and before theyatmd
the resulting edges between and its successor and their pheromone trails globally. Note that the exchange of
betweenu; and its predecessor imnty. customers is performed locally and customers are exchanged

The proposed communication scheme has a high risk when there is an improvement on the distance of the edge.

degrade the solution quality of the tours constructed by tHe addition, the edge receives an extra amount of pheromone
ants and disturb the optimization process. Therefore, onlgcally, as in Eq. (6), to attract ants to perform more



. . . . . TABLE |
exploration on possible promising areas in the search SpaCerHE PROBLEM CHARACTERISTICS AND MEAN RESULTS OF THE BEST

Therefore, the newly discovered areas on the search space

will be considered by the ants in the next iterations.
Moreover, the swaps may reduce the number of vehicles

used, which usually leads to better solution quality for the Inst. =» Q@ L ¢ AS AS+DC  Sign.

SOLUTION AVERAGED OVER30 RUNS FOR THECVRPWITHOUT
SERVICE TIME CONSTRAINTS

CVRP. For examplegnt;, has the following solution: Random Problems
{(0,1,4,2,0), (0,3,5,6,0), (0,7,9,0), (011(},0) C1 50 160 oo O 639.43 626.90 +
. . . ; . C2 75 140 oo 0O 1062.33 104540 +
WhICh consists of 4 ve_hlcl.es, and communicates witlt; C3 100 200 oo O 121406 114570 +
with the following solution: C4 150 200 oo O 175173 1668.26 +
{(0,5,3,1,0), (0,6,2,10,0), (0,9,7,4,8}0) C5 199 200 oo O 2321.20 2203.73 +

which consists of 3 vehicles. The customer which is ran- Clustered Problems
domly selected fromunt; is customer 2 with customer 4 Cl1l1 120 200 oo O 1589.96 1524.83 +
and depot 0 as the predecessor and successor, respectively. C12 100 200 oo 0 1223.03 1170.90 +

Then, customer 2 is located imt; (selected fromant;’s
communication range), and obtains customers 6 and 10,

. . TABLE 1|

which are the predecessor and successor of customer 2 in

. THE PROBLEM CHARACTERISTICS AND MEAN RESULTS OF THE BEST
ant;, respectively. Assume that the swaps of custorpers)

. . . . . SOLUTION AVERAGED OVER30 RUNS FOR THECVRPWITH SERVICE
and (0, 10) satisfy the capacity and service time constraints
. . . . TIME CONSTRAINTS
and there is an improvement on the distance. The resulting
solution Ofant;c is: Inst. n Q L § AS AS+DC  Sign.
{(0,1,6,2,10,0), (0,3,5,4,0), (0,7,9,0), (0,,0) Random Problems
. , : . C6 50 160 200 10 647.33  624.50
where the last route is removed since it does not contain any
. . ) C7 75 140 160 10 1055.76 1047.76

customers, and, thus, the solution consists of 3 vehicles.

Moreover, it has been shown that the solution quality of c8 100 2000 230 10 118853 1145.56
th " ’ qucted f th i b a i y " C9 150 200 200 10 1743.86 1655.83
the routes constructed from the ants can be significantly . o0 500 500 10 232036 218273
improved with the use of a local search operator [14]. Clustored Problems
I-!ovy?ver,tlsuch me_thlcl)ds m?y mcreaf)(le the_ C(;mputatul)n time CI3 120 200 720 50 174923 172213
significantly especially on large problem instances. In our ., 00 500 1040 90 120060 1179.26
experiments, we will not consider any local search operator
in order to investigate the effect of the proposed schenmie, bu
it is worth to be considered for future work.

The aim of DC scheme is to exchange customers frorpjyob|em instance€’6 — C'10 and C13 — 14, respectively,
different vehicles routes or from the same vehicle routel, arexpect that the latter have service time constraints. Fein su
take advantage of different solutions constructed by ants @roblem instances, all the customers have the same service
each iteration. It is possible that the solution of an ant mayme § =5, = ... = §,,.
be worse than the best ant, but a sub-tour may belong t0For each experiment on each problem instance, 30 inde-
the global optimum. It is also possible that a sub-tour ifendent runs of each algorithm were performed for stadistic
the best tour may belong to a local optimum. Therefore, it isyrposes. For each run, 1000 iterations were performed in
difficult for an ACO algorithm to escape from local optimumgrder to have the same number of evaluations (expect on
because the pheromone trails will always lead the ants infRoblem instance&’s and C'10 where 2500 iterations were

the same path. The adaptive swaps may help to elimingigrformed) and an observation of the best-so-far ant was
such behaviour and possibly enhance the solution quality gfken every iteration.

the conventional AS algorithm.

+++ 2+

+ +

B. Parameter Setting
V. EXPERIMENTAL STUDY ) ) o
Most of the parameters used in the algorithms are inspired

from the literature since they have been found effective
The proposed AS+DC is compared with the conventiongB], [16]. For both AS and AS+DC, the parametersand
AS [3], which is the only existing ACO algorithm for the 5 used in Eq. (1) were set to 1 and 5, respectively. The
CVRP. For the experiments, 14 CVRP instances with anelaporation constant used in Eq. (5) was set to 0.75 as
without service time constraints are considered as destribin [3]. However, adapting the evaporation rate may help the
in [4]. The problem instances contain between 50 and 19$bpulation escape possible local optima and may improve the
customers in addition to the single depot. The probleraverall performance of ACO algorithm and it worth future
instancesC'1 — C'10 are randomly distributed, whereas theinvestigation. The constant parametgrs- g = 2 in Eq. (2)
problem instance€'11 — C14 are clustered. The problem ando = 6 in Eq. (3). The population size was setrto= 50
instancesC1 — C5 and C11 — C12 are identical with the for both algorithms. A good value for the parameter used

A. Experimental Setup
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B ———— 1500 1t Fig. 2. Dynamic performance (averaged over 30 runs) of thelg8rithm

1500 1450 with and without DC for the clustered CVRP problem instances

1450 1400

5 1400 @ 1950
8 1350 8
S 1300 S 130 . . . . .
Rl R o non-parametric statistical test, i.e., Wilcoxon rank-stast,
0 S at the 0.05 level of significance are also shown in the last
usof I B neor I— column, where 4" indicates that the AS+DC algorithm is
1100 1 1 1 1 1 1 1 1 1 1100 1 1 1 1 1 1 1 1 1 . . . - .
0 100 200 300 AT{Jef;?i;go 700 800 900 1000 0 100 200 300 AT{Jef;?i;go 700 800 900 1000 Slgnlflcantly better than the AS algonthm, and |nd|CateS
ca co no statistical significance. Furthermore, in Figs. 1 anc@, t
R == R A best-so-far solution, averaged over 30 runs, of the alyost
ol | 2} 1 over each iteration are plotted, for the random and cludtere
g g o problem instances, respectively.
5 o 5 In both CVRP variations, the AS+DC algorithm out-
F o F o performs the conventional AS algorithm on almost all the
1 problem instances, which can be observed from Tables | and
TOL L e PO II, expect onC'7 where they are not significantly different.
Iteration Iteration This is because the conventional AS algorithm has more
& _ cwo chances to get trapped on local optimum due to the stagnation
3000 3000 behaviour.
- - On the other hand, the proposed AS+DC algorithm in-
8 ol & 2o creases the exploration ability and avoids possible local
E - E - optima. This can be observed from Figs. 1 and 2, where
2100 2100 . the two algorithms have similar convergence in most of
mop el 1 the problem instances, but the AS algorithm gets trapped
2200 R 2200 - e o . . . .
o w  wm o mm wo o w me e ae me L0 @ local optimum solution, while the AS+DC algorithm
Iteration Iteration

keeps exploring the search space and improves the solution
Fig. 1. Dynamic performance (averaged over 30 runs) of thelg8rithm  quality. This is due to the extra local pheromone update of
with and without DC for the random CVRP problem instances. the DC scheme to the possible improvements found from the
adaptive swaps. Moreover, in some cases, (:8,,C'12, and
C14 the convergence of AS+DC is slightly delayed.
in Eq. (6) was found to be 0.5 afl” = 0.7 in Eq. (7) from However, when the population of ants is identical, the DC

our preliminary experiments. scheme will not be effective since the ants will communicate
) with identical ants. This may be a possible reason why the
C. Analysis of the Results AS+DC algorithm is not significantly better in some cases,

In Tables | and I, the characteristics of the problen€.g., onC7.
instances and mean results of AS and AS+DC are presented
for the CVRPs without and with service time constraints,
respectively. In Tables | and I, the corresponding staist =~ The communication between ants in conventional ACO
results of comparing the AS+DC and AS algorithms by algorithms is achieved indirectly via pheromone trailsthis

VI. CONCLUSIONS



paper, a scheme is proposed for ACO to solve the CVRPI5]
with and without service time constraints, which enables th
ants to communicate both directly and indirectly. The ants 6]
are allowed to communicate and exchange customers from
different vehicle routes, using adaptive swaps. Althouga o 0
solution may not be better than another, it may contain a
sub-tour which corresponds to the global optimum. The DC
scheme helps ACO algorithms to escape from local optimum(8l
solutions and hence improves the solution quality. However
when the stagnation behaviour is reached, it becomes meffe
tive because all the ants in the population will be identical [©]

For the experiments, we use the AS algorithm, which is the
only ACO algorithm applied to the CVRP, with or without
the proposed DC scheme, on a set of CVRP instancesll
Generally speaking, the experimental results show clearly
that the use of the proposed scheme with an appropriate1]
communication range between ants improves the overall
performance of the AS algorithm for the CVRP. The im-
provement regarding the solution quality is significant on[12]
almost all problem instances.

For further work, it will be interesting to apply the DC [13]
scheme with other ACO algorithms for other variations of
VRPs [21]. Another future work is to investigate the effect [14]
of DC when an ACO algorithm is applied with a local
search operator, e.g., the 2-opt operator [14]. Usually, omis]
larger problem instances, the solution quality of algonish
is more likely to be degraded, whereas a local search may g
improve it at the price of more computation time. Therefore,
DC may be able to guide the local search operator for
better solution quality and computation time. Finally, the[17]
proposed approach may be effective for VRPs under dynamic
environments since it delays the convergence and provide[fsl
valuable diversity to the population of ACO algorithms [17]
Such characteristics are suitable to help the population to
adapt well to environmental changes [12]. (19]
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