
Evolving Neural Networks using Ant Colony

Optimization with Pheromone Trail Limits

Michalis Mavrovouniotis

Centre for Computational Intelligence (CCI)

School of Computer Science and Informatics

De Montfort University, The Gateway

Leicester LE1 9BH, United Kingdom

Email: mmavrovouniotis@dmu.ac.uk

Shengxiang Yang

Centre for Computational Intelligence (CCI)

School of Computer Science and Informatics

De Montfort University, The Gateway

Leicester LE1 9BH, United Kingdom

Email: syang@dmu.ac.uk

Abstract—The back-propagation (BP) technique is a widely
used technique to train artificial neural networks (ANNs). How-
ever, BP often gets trapped in a local optimum. Hence, hybrid
training was introduced, e.g., a global optimization algorithm with
BP, to address this drawback. The key idea of hybrid training
is to use global optimization algorithms to provide BP with
good initial connection weights. In hybrid training, evolutionary
algorithms are widely used, whereas ant colony optimization
(ACO) algorithms are rarely used, as the global optimization
algorithms. And so far, only the basic ACO algorithm has been
used to evolve the connection weights of ANNs. In this paper,
we hybridize one of the best performing variations of ACO with
BP. The difference of the improved ACO variation from the basic
ACO algorithm lies in that pheromone trail limits are imposed to
avoid stagnation behaviour. The experimental results show that
the proposed training method outperforms other peer training
methods.

I. INTRODUCTION

Artificial neural networks (ANNs) are commonly used for
classification problems [1]. However, in order for an ANN
to perform classification properly, a prior configuration is
required, e.g., to decide the architecture of the ANN and the
values of the connection weights.

In this paper, we focus on the selection of the optimal
combination of the connection weights. Typically, gradient
descent algorithms, such as back-propagation (BP) [2] are used
to adjust the values of the connection weights. A drawback of
BP is that it often gets trapped in a local optimum and is
not capable of finding the global optimum [3], [4]. One way
to overcome this drawback is to adopt evolutionary ANNs
(EANNs), in which global optimization algorithms are used
to find near to the global optimum combinations for the
connection weights. Global optimization algorithms are less
likely to get trapped in a local optimum solution than gradient
descent algorithms.

Usually, evolutionary algorithms (EAs) [5] are used to
evolve the connection weights in EANNs [6]. Ant colony
optimization (ACO) is another global optimization algorithm,
initially introduced for applications for discrete optimization
problems [7], [8], which has attracted less attention in EANNs.
ACO algorithms are inspired by the foraging behaviour of real
ant colonies. Within the ACO framework, a population of self-
organizing agents communicate via their pheromone trails to
construct solutions for a given problem.

A hybrid framework was introduced in [9], where good
initial weight values are obtained via basic ACO training
and are passed to the BP training for further improvement.
However, the pheromone trails generated may lead the al-
gorithm into stagnation behaviour, where all ants select the
same combination from the initial phase. In this paper, an
improvement of the basic ACO training is proposed in which
pheromone trail limits are imposed in order to eliminate high
concentration of pheromone trails that may lead to stagnation
behaviour. This way, the improved ACO training has even
lower risk getting trapped in a local optimum than the basic
ACO training. In fact, the experimental results on several
datasets support this claim.

The rest of the paper is outlined as follows. Section II
describes the concept of supervised learning and the evolution
in ANNs. Section III describes the differences of the basic
ACO training and the proposed ACO training, both of which
are hybridized with the BP. In Section IV the experimental
results and analysis are given. Finally, several concluding
remarks and direction for future work are given in Section
V.

II. NEURAL NETWORKS

A. Architecture

An ANN consists of a number of units that are allocated in
different layers, i.e., input, hidden, or output layers, which are
interconnected. Typically, directed graphs are used to represent
ANNs, where nodes represent the units and arcs represent the
connections between them. Each arc holds a value which is
the connection weight between the units. Each unit i performs
a function which is defined as:

yi = fi





n
∑

j=1

wijxj − θi



 , (1)

where fi represents the activation function (usually sigmoid
or Gaussian function) of unit i, yi is the output of unit i,
wij represents the connection weight between units i and j,
xj represents the j-th input of the unit, θi is the threshold (or
bias) of unit i. Fig. 1 represents an ANN with four input units,
two hidden units and three output units.



B. Supervised Learning

Supervised learning requires a training set that consists of
several input parameters and a corresponding target parameter.
Each input parameter is associated with a single unit from
the input layer. The target parameter is used to calculate the
network error, i.e., the difference between the actual and the
target outputs. When the network error becomes sufficiently
small it means that the network has generalized and the training
process must stop to avoid possible over-fitting of the network.
On the other hand, stopping the training process earlier may
lead in under-fitting.

Generally, the aim of training is to minimize the error of
the network by adjusting the connection weights. This process
can be performed on-line in which the weights are adjusted
after each training pattern (selected randomly) is processed,
or batch in which the weights are adjusted when all training
patterns are processed by the network.

C. Evolving Neural Networks

Once the ANN architecture is decided, then weight training
needs to be performed before the network is used. Most
training algorithms, e.g., the BP [2], are based on gradient
descent and have been successfully applied to train ANNs
[10], [11], [12]. However, BP has a drawback because it
often gets trapped in a local optimum of the error function,
since it is a local optimization algorithm [3], [4]. One way
to avoid this drawback is to adopt EANNs, i.e., to evolve
the connection weights. A comprehensive survey regarding
EANNs is available in [6]. EAs are typically used to perform
the evolution process. Different from BP, EAs are global
optimization methods, and, thus, are less likely to get trapped
in a local optimum.

There is a trade-off on whether training via evolution is
more efficient than training via gradient descent [13]. Some
researchers have demonstrated that a stand-alone evolution-
ary training is faster than BP training [14], whereas other
researchers have demonstrated that there is no any significant
difference between the two types of training and it really
depends on the problem [15]. It was also discussed that simple
training algorithms usually perform better than complex ones
[16].

Kitano [17] proposed a hybrid genetic algorithm (GA) with
BP (GA-BP) which shows that on small networks evolutionary
training performs equally good as the optimized variances of
BP. GA-BP first uses evolutionary training to find good initial
weights. Then, BP uses these weights to increase accuracy.
Yang-Peng et al. [9] proposed a similar hybrid but with an
ACO algorithm instead of a GA. Their results show that the
ACO with BP (ACO-BP) is more effective and efficient than
the simple BP algorithm. Socha and Blum [15] have also
showed that their ACO training algorithm performs better than
a GA training algorithm, especially on large and complex
problems.

Furthermore, it was suggested that instead of using a single
large ANN to solve large and complex problems, it is better
to use an ANN ensemble that adopts the divide-and-conquer
strategy [18], [19]. ANN ensemble combines a set of ANNs
that learn to decompose the problem into sub-problems and
then solve them efficiently [20].

III. HYBRID ACO AND BP

A. BP Training

The BP algorithm is a local optimization training algorithm
and uses a gradient descent technique. More precisely, the
actual outputs of the ANN for each training pattern are
computed and then the network error is back-propagated. A
gradient descent approach is used to adjust the connection
weights and minimize the error as follows:

∆wi = −η
∂E

∂wi

, (2)

where η is a constant that represents the learning rate, and E
is the network error, in this case the squared error percentage
(SEP), defined as follows:

E = 100
omax − omin

nonp

np
∑

p=1

no
∑

i=1

(tpi − opi )
2, (3)

where omax and omin are the maximum and minimum values
of the output values from the output unit, respectively, np and
no represents the number of patterns and the number of output
units, respectively, tpi and opi are the target and actual values
of the output units, respectively.

B. ACO Training

ACO algorithms were initially proposed to solve discrete
optimization problems [8], [21], [22]. Later on, an ACO
continuous optimization framework (ACOR) was proposed
[15], [23], and was applied to train feed-forward ANNs since
the training process can be considered as a continuous opti-
mization process. Also, other attempts were proposed to train
ANNs that do not follow the original ACO framework [24],
[25]. In contrast, Yang-Peng et al. [9] have proposed an ACO
algorithm to train ANNs and their framework is very close
to the original ACO framework developed for the travelling
salesman problem (TSP) [8].

Considering that an ANN consists of l connection weights
calculated as follows:

l = nh(ni + 1) + no(nh + 1), (4)

where nh, ni and no are the number of hidden, input, and
output units, respectively. The additional units represents the
bias inputs for the hidden and output layer. The optimal
combination of connection weights values needs to be found
by training. Therefore, ACO becomes a sufficient choice to
select good combinations considering its performance on the
TSP. The key idea is to split each connection weight wz into
v discrete points azi , i = 1, . . . , v, z = 1, . . . , l, where each
one represents a value of the corresponding connection weight
wz . The range of each discrete point is within the interval
[wmin, wmax], which is defined by the user.

In ACO-BP [9], each ant selects one and only one discrete
point for each connection weight and stores the tag of the
specific discrete point. When all ants choose a value for all
connection weights, they deposit pheromone. Each connection
weight wz is assigned with a pheromone table τzi , i = 1, . . . , v,
z = 1, . . . , l.



Fig. 1. Illustration of an ant selecting a value for connection weight w5 in an ANN. After connection weight w5 the ant moves to connection weight w6, and
so on.

More precisely, when an ant reaches a connection weight
wz , the probability of selecting a discrete point azi is defined
as follows:

pzi =
τzi

∑v

1=j τ
z
j

, (5)

where v represents the number of discrete points azi , and τzi
represents the existing pheromone trail of connection weight
wi for discrete point azi . For example, in Fig. 1, an ant has
already selected values a1

2
, a2

10
, a3

7
and a4

42
for connection

weights w1, w2, w3 and w4, respectively, and selects a value
for w5 according to the existing pheromone trails. The process
is repeated until all ants select a value for all connection
weights.

Then, each ant retraces the path according to the discrete
points tags stored in the construction phase and deposits
pheromone as follows:

τzi ← τzi +∆τzi , ∀ azi ∈ T k, (6)

where T k is the combination of discrete points selected by the
k-th ant, and ∆τzi is the amount of pheromone to be deposited
in pheromone table z, which is defined as follows:

∆τzi = Q/E, (7)

where Q is a constant (a good value is Q = 1) and E is a
measurement to calculate the error between the actual output
of the network and the target output defined in Eq. (3). The less
network error the more pheromone is deposited. Furthermore,
pheromone evaporation is applied in all pheromone tables, in
which all trails are deducted as follows:

τzi ← (1− ρ)τzi , ∀ azi , (8)

where ρ ∈ (0, 1) is a constant that defines the pheromone evap-
oration rate. The pheromone evaporation helps to eliminate bad
decisions made in the past.

C. Improved ACO Training

Heuristic information is not considered in the probabilistic
rule in Eq. (5) as in the traditional ACO framework. For
example, in the TSP, the distance between cities is considered

as heuristic information, together with existing pheromone
trails, when solutions are constructed. Dorigo and Stützle [7,
pp. 97–98] stated that “when only pheromone amplification is
at work without heuristic bias ACO leads in very poor results”.

The use of heuristic information is very important for
ACO and has a great impact to the overall performance of
the algorithm. For example, at the initial stage of training
an ANN, the pheromone trails in all tables assigned to each
connection weight are initialized with an equal amount. Hence,
the construction of the combinations at early stages is random
since only pheromone trails are considered. As a result, high
intensity of pheromone trails will be generated at early stages
on a single combination that may have poor quality. Even if a
higher pheromone evaporation rate is applied, it will not have
an effect since all pheromone trails will be evaporated by the
same factor and any previous knowledge may be destroyed.

According to the preliminary experiments on the TSP in
[7], ACO without heuristic information but with the use of
local search showed comparable results with an ACO with
heuristic information. Therefore, the experiments give a good
indication that ACO can provide good initial combination
weights to the BP in order to perform a local search improve-
ment. It was also suggested that in problems where heuristic
information is not available, ACO needs to be applied with
a local search scheme. In fact, training an ANN is one of
these problems because it is not possible to consider the value
of the connection weights as heuristic information. This is
because the training of ANN is not a traditional minimization
or maximization problem, e.g., the TSP where the less the
distance the better the choice. In ANN, both negative and
positive values might be the best choice for a connection
weight, and, thus, it is impossible to distinguish if a higher
or lower value is better in the combination selection process.

The existing ACO-BP [9] described in Section III-B satis-
fies the statements above, since heuristic information is not
used, but BP is used as a local search operator. However,
in ACO-BP the simplest case of ACO, i.e., ant system (AS)
[26], is used, whereas in the experiments [7, pp. 97–98] other
variations of the AS, e.g., MAX −MIN AS (MMAS)
[27], are used. The main difference between AS andMMAS



Fig. 2. Framework of hybrid training of ANNs via ACO and BP.

lies in that pheromone trail limits are imposed in theMMAS.
It is very important to keep the maximum and minimum
pheromone trail values at a closer range in order to eliminate
the high intensity of pheromone trails that may bias ants
to search at non-promising areas. Therefore, our proposed
neural network ACO-BP (NNACO-BP) inherits the MMAS
framework and the pheromone is updated as follows:

τzi ← τzi +∆τzi , ∀ azi ∈ T best, (9)

where T best is the combination of discrete points selected by
the best ant and ∆τzi is defined as in Eq. (7). In addition,
pheromone evaporation is used as in Eq. (8). Note that in
the proposed NNACO-BP only the best ant is allowed to
deposit pheromone whereas in ACO-BP all the ants deposit
pheromone. Within NNACO-BP, the range of possible range of
pheromone trail values is limited to the interval [τmin, τmax],
where τmax = 1/(ρEbest) is the maximum pheromone trail
limit, ρ is defined in Eq. (8), Ebest is the network error
of the best combination, i.e., T best, calculated in Eq. (7),
τmin = τmax/2l is the minimum pheromone trail limit and
l is defined as in Eq. (4).

D. Hybrid Framework

Hybrid training algorithms, such as GA-BP [28] and ACO-
BP [9], usually perform better than stand-alone evolutionary
or traditional training algorithms. This is due to the fact that
global optimization algorithms are less sensitive on the initial
condition of training, whereas local optimization algorithms
find the local optimum in the neighbourhood of the initial
weights given. In many cases the initial weights selected for
BP may lead to a very poor local optimum.

The general idea behind hybrid training is to use global
optimization algorithms to find near-optimal initial connection
weights and then use a local search operator to improve the
accuracy of the specific near-optimal solution found; see Fig. 2.

TABLE I. OVERVIEW OF THE DATASETS FOR THE PROBLEMS USED

Dataset Testing Set Training Set

Cancer 174 525

Diabetes 192 576

Heart 230 690

TABLE II. OVERVIEW OF THE ANN’S ARCHITECTURE FOR DIFFERENT

PROBLEMS.

Dataset Input

Layer

Hidden

Layer

Output

Layer

Connection

Weights

Cancer 9 6 2 74

Diabetes 8 6 2 68

Heart 35 6 2 230

IV. EXPERIMENTAL STUDY

A. Experimental Setup

To evaluate the proposed NNACO-BP with other algo-
rithms the training of feed-forward ANN for classification
problems is used. The algorithms used in the experimental
study are the following:

1) BP [2]: in this algorithm, the simple BP training, as
described in Section III-A, is used on its own.

2) ACO-BP [9]: this hybrid training algorithm uses an
ACO based on the basic AS framework as a global
optimization algorithm and BP as a local optimizer,
as described in Section III-B.

3) NNACO-BP: this is our proposed hybrid training
algorithm, which uses an ACO based on theMMAS
framework as a global optimization algorithm and BP
as a local optimizer, as described in Section III-C.

All the algorithms perform 1000 evaluations in order to
have a fair comparison. A four cross-validation is used where
a set of patterns is divided into four equal subsets. Then,
four experiments are performed where one subset is used
as the test dataset (patterns that the network has never seen
before) and the remaining subsets are used as the training
dataset. The classification error percentage (CEP) from all
the four experiments is computed and the effect of the set
division between the training and test dataset is averaged for
50 independent runs.

1) Problem Datasets: To evaluate the performance and ef-
fectiveness of NNACO-BP, three different benchmark datasets,
i.e., Cancer, Diabetes and Heart, are used, which were taken
from PROBEN1 [29]. All these datasets arise from the medical
field. They consist of a pattern of real numbers which form a
measurement and are classified as pathological or normal.

• Cancer: Taken from a database of diagnostics of breast
cancer. It consists of 699 examples, where each one
consists of 9 inputs in the interval of [0, 1] and boolean
target outputs [30], [31].

• Diabetes: Based on medical examinations which de-
cides whether a Prima Indian diabetes is positive or
not. It consists of 768 examples, where each one
consists of 8 inputs in the interval of [0, 1] and boolean
target outputs [32].



TABLE III. PARAMETER SETTINGS FOR THE ALGORITHMS INVESTIGATED

Cancer Diabetes Heart

Algorithm m e t η ρ m e t η ρ m e t η ρ

ACO-BP 50 500 10 0.002 0.9 50 500 10 0.01 0.8 50 500 10 0.001 0.8

BP - 1000 - 0.002 - - 1000 - 0.01 - - 1000 - 0.001 -

NNACO-BP 50 500 10 0.002 0.009 50 500 10 0.01 0.008 50 500 10 0.001 0.008

TABLE IV. EXPERIMENTAL RESULTS REGARDING CEP FOR EACH ALGORITHM OVER ALL RUNS FOR ALL CROSS-VALIDATION EXPERIMENTS.

Cancer Diabetes Heart

Algorithm Testing Training Testing Training Testing Training

ACO-BP 3.90 ± 1.43 3.02 ± 0.76 26.17 ± 2.76 24.93 ± 1.28 20.56 ± 2.10 18.38 ± 0.76

BP 4.01 ± 1.30 3.27 ± 0.38 26.55 ± 2.82 25.70 ± 1.27 22.63 ± 1.67 19.68 ± 0.64

NNACO-BP 3.66 ± 1.65 2.88 ± 0.55 24.47 ± 2.27 23.95 ± 1.29 17.77 ± 1.46 15.42 ± 0.79

• Heart: Based on medical examinations which predicts
heart disease. It consists of 920 examples, where each
one consists of 35 inputs in the interval of [0, 1] and
boolean target outputs [33].

Since cross-validation is used, it means that the 75% of the
dataset example is used for training dataset and the rest 25%
is used for the test dataset. Table I indicates the division of
the training and test dataset. For each experiment in cross-
validation, the same sizes of the datasets are used.

2) Parameter Settings: The structure of the ANNs and
the parameters of the algorithms are mainly inspired by the
literature [15]. In Table II, the network architecture is given,
which consists of one input layer, one hidden layer, and one
output layer. The reason that the specific parameters are used,
is to later on compare the results of NNACO-BP with the
results of another ACO training [15] algorithm and a GA
training [28] algorithm that use the same network architectures
on the same problem datasets.

The parameters for ACO-BP, the stand-alone BP, and the
proposed NNACO-BP are given in Table III. The parameters
for BP and ACO-BP are the same with the ones used in [15],
[9]. Hybrid training algorithms perform less e (epochs) in order
to have equal number of evaluations with the basic BP. More
precisely, each ant counts for a single evaluation, and, thus,
m ants for t algorithmic iterations equal to m× t evaluations.
And further e evaluations with BP equal to the same number of
evaluations with the basic BP algorithm. Although algorithms
perform the same number of evaluations, it does not mean
that they use the same computational time. However, the same
stopping criteria is used, i.e., when the maximum number of
evaluations is reached. For ACO-BP and NNACO-BP wmin =
−1, wmax = 1 and v = 50.

In the following sections, we first present the comparison
between the investigated algorithms in detail with statistical
results, and then compare the proposed algorithm with other
hybrid training algorithms based on the experimental setup
described above.

B. Analysis of the Results

The mean CEP with the standard deviation results, for
both testing and training datasets, for each algorithm of all
cross-validation experiments are presented in Table IV. The

corresponding Wilcoxon rank sum statistical results (with
Bonferroni correction) of the algorithms on the testing dataset
are presented in Table V. Furthermore, the experimental results
are presented in the form of box-plots in Figs. 3, 4, and
5, for the datasets Cancer, Diabetes, and Heart, respectively.
Each figure contains two box-plots. The left box-plots illustrate
the distribution of the CEP values, whereas the right box-
plots the ranks of each algorithm. The corresponding ranks
are calculated as follows. The CEP values are exchanged for
their corresponding ranked value, i.e., having 3 algorithms and
running 50 independent runs for each of the 4 cross-validation
experiments; then the possible ranked results vary from 1 to
600. The box-plots based on the ranks of the algorithms usually
give a clearer identification of the differences between the
investigated algorithms. For example, in Fig. 3, from the CEP
box-plots, it is difficult to identify which algorithm performs
better, whereas from the corresponding ranked box-plots it is
more clear.

Cancer (see Fig. 3) is the smallest dataset among the
problems tested. All algorithms have good performance, but
there is no any statistical significance between them (see Tables
IV and V). It appears that the specific dataset is not noisy and
it is easy for the training algorithms to classify it. However,
none of the algorithms was able to classify all the patterns from
the testing dataset correctly. This may be due to the limited
number of patterns in the training dataset.

Diabetes (see Fig. 4) is again a small dataset but is slightly
larger than Cancer. NNACO-BP significantly outperforms BP
and ACO-BP (see Tables IV and V). In general, all algorithms
have a relatively poor performance in terms of CEP. Different
from Cancer, this dataset is harder for training algorithms
to classify. This may be due to some noisy/missing patterns
or the limited size of the training dataset, which similarly
with Cancer, might not represent all the necessary patterns
to classify more test patterns correctly.

Heart (see Fig. 5) is a large dataset and it is the largest
problem among the other datasets. All algorithms are sta-
tistically different. The proposed NNACO-BP significantly
outperforms ACO-BP and BP, whereas ACO-BP outperforms
BP (see Tables IV and V). This may be due to the size of the
dataset which is extremely large and it is easier for gradient
descent algorithms, e.g., BP, to get stuck in local optima. On
the other hand, ACO-BP and NNACO-BP can overcome this



 0

 2

 4

 6

 8

 10

ACO-BP BP NNACO-BP

C
E

P

Cancer (CEP)

 0

 100

 200

 300

 400

 500

 600

ACO-BP BP NNACO-BP

R
an

k

Cancer (Ranks)

Fig. 3. Box-plots for Cancer drawn between the first and the third quartile of the distribution.

 20

 22

 24

 26

 28

 30

 32

 34

ACO-BP BP NNACO-BP

C
E

P

Diabetes (CEP)

 0

 100

 200

 300

 400

 500

 600

ACO-BP BP NNACO-BP

R
an

k

Diabetes (Ranks)

Fig. 4. Box-plots for Diabetes drawn between the first and the third quartile of the distribution.

 16

 18

 20

 22

 24

 26

 28

 30

ACO-BP BP NNACO-BP

C
E

P

Heart (CEP)

 0

 100

 200

 300

 400

 500

 600

ACO-BP BP NNACO-BP

R
an

k

Heart (Ranks)

Fig. 5. Box-plots for Heart drawn between the first and the third quartile of the distribution.

problem and have better results on large problems.

Generally, the basic BP algorithm is usually outperformed
by the other hybrid algorithms as the problem size increases.
This is probably because the selected initial weights of the BP
may lead to a poor local optimum. ACO-BP and NNACO-
BP perform better since they are able to provide better initial
weights for the BP. However, NNACO-BP significantly out-
performs ACO-BP in Heart even if both algorithms use hybrid

training. This shows the importance of imposing limits to the
pheromone trails. The initial stages of NNACO-BP is more
explorative than ACO-BP since the convergence is delayed.
Hence, it has less risk, than ACO-BP, to get trapped in any
local optima.

Finally, if the CEP results of the testing over the training
datasets are compared, it shows that all the algorithms suffer
from a slight over-fitting in all problems. Probably a higher



TABLE V. STATISTICAL TESTS OF THE CEP EXPERIMENTAL RESULTS

ON THE TESTING DATASET.

Algorithm ACO-BP BP NNACO-BP

Cancer

ACO-BP - -

BP - -

NNACO-BP - -

Diabetes

ACO-BP - +

BP + +

NNACO-BP + +

Heart

ACO-BP + +

BP + +

NNACO-BP + +

number of cross-validation experiments may be necessary. In
fact, the performance regarding CEP may be further improved
for all algorithms if more cross-validation experiments are
performed.

C. Comparison with other hybrid algorithms

It is interesting to compare the proposed NNACO-BP
with GA-BP [28], which is a hybrid training algorithm using
a GA and BP. Additionally, it is more interesting to com-
pare NNACO-BP with another hybrid ACO approach, that is
ACOR-BP [34], which does not use the original framework of
an ACO as the proposed NNACO-BP and the ACO-BP.

Both GA-BP and ACOR-BP were applied with the same
stopping criteria based on the same training datasets used in
our experimental setup. Table VI summarizes the CEP results
obtained by GA-BP and ACO. Note that the results were not
obtained by a four cross-validation and we only performed
the first experiment of the four cross-validation experiments.
Therefore, the results of NNACO-BP algorithm refer only
to the first cross-validation experiment. All three algorithms
performed 50 independent runs for each problem.

In the Diabetes and Heart problems, NNACO-BP out-
performs both GA-BP and ACOR-BP. However, GA-BP is
comparable with NNACO-BP in Cancer, whereas NNACO-
BP performs better than ACOR-BP. The difference on Cancer
between all three algorithms is small. It might need further
investigation, or according to the no free lunch theory [35] it
may be impossible to have an algorithm that performs best for
all problems.

V. CONCLUSIONS

The connection weights in ANN are usually adjusted using
the BP algorithm, which is a gradient descent method. Often
the initial connection weights selected for BP may lead to
the convergence to a local optimum. In this paper, the BP
algorithm is hybridized with a global optimization algorithm,
i.e., ACO. The basic idea of the proposed framework is to
obtain good initial connection weight values via ACO and
pass the results to the BP. The experimental results show
that the hybrid training usually performs better than the basic
BP training, especially in large problems. As the problem
becomes larger, it may increase the probability of the basic

TABLE VI. COMPARISONS OF THE CEP VALUES OF THE PROPOSED

ALGORITHM WITH OTHER HYBRID TRAINING ALGORITHMS

Algorithm Cancer Diabetes Heart

NNACO-BP 1.44 ± 0.52 20.83 ± 0.71 15.65 ± 0.31

GA-BP 1.43 ± 4.87 36.36 ± 0.0 54.30 ± 20.03

ACOR-BP 2.14 ± 1.09 23.80 ± 1.73 18.29 ± 1.00

BP algorithm to get stuck in local optima. Furthermore, the
proposed hybrid ACO training with pheromone trail limits
performs better than the basic hybrid ACO training and other
hybrid training algorithms.

For future work, it will be interesting to apply other ACO
improvements with the BP, or even use other local search
approaches such as the Levenberg-Marquardt algorithm [36].
Moreover, it will be interesting to apply the algorithm on more
complex benchmark problems, or even investigate NNACO-
BP’s adaptability to a dynamic environment [6].

ACKNOWLEDGMENT

This work was supported by the Engineering and Physical
Sciences Research Council (EPSRC) of U.K. under Grant
EP/K001310/1.

REFERENCES

[1] G. Zhang, “Neural networks for classification: a survey,” IEEE Trans-

actions on Systems, Man, and Cybernetics-Part C: Applications and

Reviews, vol. 30, no. 4, pp. 451–462, 2000.

[2] D. Rumelhart, G. Hinton, and R. Williams, “Learning representations
by backpropagation errors,” Nature, vol. 536, pp. 323–533, 1986.

[3] R. Sutton, “Two problems with backpropagation and other steepest-
descent learning procedures for networks,” in Proceedings of the 8th

Annual Conference Cognitive Science Socitey, 1986, pp. 823–831.

[4] D. Whitley, T. Starkweather, and C. Bogart, “Genetic algorithms and
neural networks: Optimizing connections and connectivity,” Parallel

Computing, vol. 14, no. 3, pp. 347–361, 1990.

[5] J. Holland, Adaption in Natural and Artifical Systems. Ann Arbor:
University of Michigan Press, 1975.

[6] X. Yao, “Evolving artificial neural networks,” in Proceedings of the

IEEE, vol. 89, no. 9. IEEE Press, 1999, pp. 1423–1447.

[7] M. Dorigo and T. Stützle, Eds., Ant colony optimization. London,
England: MIT Press, 2004.

[8] M. Dorigo and L. Gambardella, “Ant colony system: A cooperative
learning approach to the traveling salesman problem,” IEEE Transac-

tions on Evolutionary Computation, vol. 1, no. 1, pp. 53–66, 1997.

[9] L. Yan-Peng, W. Ming-Guang, and Q. Ji-Xin, “Evolving neural net-
works using the hybrid of ant colony optimization and bp algorithm,”
in Advances in Neural Networks - 3rd International Symposium on

Neural Networks, ser. LNCS, vol. 3971. Springer-Verlag, 2006, pp.
714–722.

[10] G. Hinton, “Connectionist learning approaches,” Artificial Intelligence,
vol. 40, no. 1-3, pp. 185–234, 1989.

[11] K. Lang, A. Waibel, and G. Hinton, “A time-delay neural network
architecture for isolated word recognition,” Neural Networks, vol. 3,
no. 1, pp. 33–43, 1990.

[12] S. Fels and G. Hinton, “Glove-talk: A neural network interface
between a data-glove and a speech synthesizer,” IEEE Transactions

in Neural Networks, vol. 4, pp. 2–8, 1993.

[13] J. Bullinaria, “Evolving neural networks: Is it really worth the effort?”
in Proceedings of the European Symposium on Artificial Neural

Networks, 2005, pp. 267–272.



[14] D. Montana and L. Davis, “Training feedforward neural network using
genetic algorithms,” in Proceedings of the 11th International Joint

Conference Artificial Intelligence. Morgan Kaufmann, 1989, pp. 762–
767.

[15] K. Socha and C. Blum, “An ant colony optimization algorithm for
continuous optimization: Application to feed-forward neural network
training,” in Proceedings of Neural Computation and Applications,
vol. 16. Springer-Verlag, 2007, pp. 235–247.

[16] E. Cantu-Paz and C. Kamath, “An empirical comparison of combina-
tions of evolutionary algorithms and neural networks for classification
problems,” IEEE Transactions on Systems, Man, and Cybernetics-Part

B: Cybernetics, vol. 35, no. 5, pp. 915–927, 2005.

[17] H. Kitano, “Empirical studies on the speed of convergence of neural
network using genetic algorithms,” in Proceedings of the 8th National

Conference on Artificial Intelligence, vol. 2. Springer-Verlag, 1990,
pp. 789–795.

[18] X. Yao and Y. Liu, “Ensemble structure of evolutionary artificial
neural networks,” in Proceedings of 1996 International Conference

on Evolutionary Computation, 1996, pp. 659–664.

[19] ——, “Making use of population information in evolutionary artificial
neural networks,” IEEE Transactions on Systems, Man, Cybernetics-

Part B, vol. 28, no. 3, pp. 417–425, 1998.

[20] X. Yao and M. M. Islam, “Evolving artificial neural network ensem-
bles,” IEEE Computational Intelligence Magazine, vol. 3, no. 1, pp.
31–42, 2008.

[21] B. Bullnheimer, R. Hartl, and C. Strauss., “A new rank-based version
of the ant system: A computational study,” Central European Journal

for Operations Research and Economics, vol. 7, no. 1, pp. 25–38,
1999.

[22] M. Dorigo, G. D. Caro, and L. M. Gambardella, “Ant algorithms for
discrete optimization,” Artificial Life, vol. 5, no. 2, pp. 137–172, 1999.

[23] K. Socha and M. Dorigo, “Ant colony optimization for continuous
domains,” European Journal of Operational Research, vol. 185, no. 3,
pp. 1155–1173, 2008.

[24] B. Bilchev and I. Parmee, “The ant colony metaphor for searching
continuous design spaces,” in Proceedings of the AISB Workshop on

Evolutionary Computation, ser. LNCS, vol. 993. Springer-Verlag,
1995, pp. 25–39.

[25] J. Dreo and P. Siarry, “A new ant colony algorithm using the het-
erarchical concept aimed at optimization of multiminima continuous
functions,” in Proceedings of the 3rd International Workshop on Ant

Algorithms, ser. LNCS, M. Dorigo, G. D. Caro, and M. Samples, Eds.,
vol. 2463. Springer-Verlag, 2002, pp. 216–221.

[26] M. Dorigo, V. Maniezzo, and A. Colorni, “Ant system: Optimization
by a colony of cooperating agents,” IEEE Transactions on System Man

and Cybernetics-Part B: Cybernetics, vol. 26, no. 1, pp. 29–41, 1996.

[27] T. Stützle and H. Hoos, “The max-min ant system and local search
for the traveling salesman problem,” in Proceedings of the 1997 IEEE

International Conference on Evolutionary Computation. IEEE Press,
1997, pp. 309–314.

[28] E. Alba and J. Chicano, “Training neural networks with ga hybrid
algorithms,” in Proceedings of the 2004 Genetic and Evolution-

ary Computation Conference, ser. LNCS, K. Deb, Ed., vol. 3102.
Springer-Verlag, 2004, pp. 852–863.

[29] L. Prechelt, “Proben1 - a set of neural network benchmark prob-
lems and benchmarking rules,” University Karlsruhe, Germany, Tech.
Rep. 21, 1994.

[30] O. Mangasarian and W. Wolberg, “Cancer diagnosis via linear pro-
gramming,” SIAM News, vol. 23, no. 5, pp. 1–18, 1990.

[31] W. Wolberg and O. Mangasarian, “Multisurface method for pattern
separation for medical diagnosis applied to breast cytology,” in Pro-

ceedings of the National Academy of Sciences, vol. 87, 1990, pp. 9193–
9196.

[32] J. Smith, J. Everhart, W. Dickson, W. Knowler, and R. Johannes,
“Using the adap learning algorithm to forecast the onset of diabetes
mellitus,” in Proceedings of the Twelfth Annual Symposium on Com-

puter Applications in Medical Care, vol. 9. IEEE Computer Society
Press, 1988, pp. 261–265.

[33] R. Detrano, A. J. W., Steinbrunn, M. Pfisterer, J. Schmid, S. Sandhu,
K. Guppy, S. Lee, and V. Froelicher, “International application of a
new probability algorithm for the diagnosis of coronary artery disease,”
American Journal of Cardiology, vol. 64, no. 5, pp. 304–310, 1989.

[34] K. Socha, “ACO for continuous and mixed-variable optimization,” in
Proceedings of the 4th International Workshop on Ant Algorithms and

Swarm Intelligence, ser. LNCS, M. Dorigo, M. Birattari, C. Blum,
L. M. Gambardella, F. Mondada, and T. Stuzle, Eds., vol. 3172.
Springer-Verlag, 2004, pp. 25–36.

[35] D. Wolpert and W. Macready, “No free lunch theorems for optimiza-
tion,” IEEE Transactions on Evolutionary Computation, vol. 1, pp.
67–82, 1997.

[36] K. Levenberg, “A method for solution of certain problems in least
squares,” The Quarterly of Applied Mathematics, vol. 2, pp. 164–168,
1944.


