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Dynamic Optimization Problems (DOPs)

• Change is an unavoidable part of many optimization problems and adaptation is
necessary to tackle them.

• A DOP can be defined as: max 𝑓 Ԧ𝑥, Ԧ𝛼 𝑡 , Ԧ𝑥 = 𝑥1, 𝑥2, ⋯ , 𝑥𝑑 ∈ ℝ𝑑

𝑠. 𝑡. : 𝑔( Ԧ𝑥) ≤ 0
ℎ Ԧ𝑥 = 0

o Where f is the objective function, Ԧ𝑥 is a solution in the search space, Ԧ𝛼 s a vector of time-varying

control parameters, and 𝑡 ∈ 1, 𝑇 is the time index.

• Can be converted to unconstrained optimization using penalty method, Lagrangian, etc.

• Our focus is unconstrained DOPs whose environmental changes happen in discrete time
steps:

𝑓 Ԧ𝑥, Ԧ𝛼 𝑡
𝑡=1

𝑇
= 𝑓 Ԧ𝑥, Ԧ𝛼 1 , 𝑓 Ԧ𝑥, Ԧ𝛼 2 , ⋯ , 𝑓 Ԧ𝑥, Ԧ𝛼 𝑇
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Dynamic Optimization Problems (DOPs)
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𝑇
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• In the tth environment, 𝑓 Ԧ𝑥, Ԧ𝛼 𝑡 = 𝑓 𝑡 Ԧ𝑥 is used as the fitness function.

• After each environmental change, the search space alters.

• One common goal is to find the global optimum in each environment.

• It is commonly assumed in the literature that there is a degree of similarity between the
successive environments.

• In such DOPs, the knowledge obtained from previous environments can be useful for accelerating the
optimization process in the current environment.

• If the environmental changes are very severe and there is no similarity between
successive environments, the optimization method must be reinitialized after each
environmental change.
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Dynamic Optimization Problems (DOPs): Classification

De Jong [1]

• DOPs With Drifting Landscapes

o Change severity of the environment is very gradual, but the change frequency is high.

• DOPs With Significant Morphological Changes

o Fitness of different regions can either increase or decrease after environmental changes.

• Periodical DOPs

o Environmental changes in these DOPs show reappearing/cyclic patterns where the landscape visits
a finite set of states repeatedly.

• DOPs With Abrupt Changes

o Huge change severity and very low similarity between successive environments.
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Dynamic Optimization Problems (DOPs): Classification

Besides the change severity and frequency, Branke and Schmeck [1] also used the
following criteria:

• Predictability

o Some aspects of the problem follow a regular pattern, so they can be learned and then predicted.

• Change visibility

o In DOPs with visible changes, the EDOs are informed about the occurrence of environmental
changes.

• Aspects of changes

o Indicates which parts of the problem, such as dimension, objective function, and/or constraints,
change over time.
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[1] J. Branke and H. Schmeck, “Designing evolutionary algorithms for dynamic optimization problems,” in Advances in Evolutionary Computing, A. Ghosh and S. Tsutsui, Eds.
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Dynamic Optimization Problems (DOPs): Classification

Other criteria:

• Policy of deploying solution

o Tracking the moving optimum (TMO) [1]: the main goal is to find a desirable solution (i.e., the
global optimum) for deployment in each environment.

o Robust optimization over time (ROOT) [2]: the main goal is to find solutions for deployment,
which are not necessarily the best in term of fitness, but their quality over longer time horizons
involving multiple environmental changes remain acceptable.

• Time linkage [3]: deployed solution in one environment influences the environment(s) encountered
in the future.
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Dynamic Optimization Problems (DOPs): Classification

• These classifications consider different criteria for categorizing DOPs.

• What can we learn from these classifications? How can we use them when we are
designing an algorithm? Here are some examples:

o To solve DOPs with abrupt changes, the obtained knowledge from previous environments is
considerably less useful. Reinitializing the optimization method after each environmental change might
be the best option.

o To solve DOPs with significant morphological changes, we need a high global diversity (e.g., using
multi-population methods) to make the algorithm capable of locating global optimum after changes.

o To solve periodical DOPs, we should use an explicit archive to store some gathered information from
each environment and use them when these environments reappear in the future.

o To solve DOPs with visible environmental changes, the optimization algorithm does not need to use a
change detection component since the algorithm is informed about occurrence of each change.

o To solve a ROOT, we also need to consider the future fitness and robustness of solutions.
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Evolutionary Dynamic Optimization

• Methods for solving DOPs [1]

o Heuristics

o Dynamic Programming

o Stochastic Programming

o Metaheuristics

• Evolutionary algorithms (EA) and swarm intelligence (SI) methods have been vastly used
for optimizing DOPs.
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Evolutionary Dynamic Optimization

Challenges of DOPs:

• Global diversity loss

o This occurs due to the intrinsic nature of EAs and SIs converging to promising regions.

• Local diversity loss

o This occurs since individuals usually collapse to an optimum during exploitation.

• Limited computational resources

o Usually, there are limited available computational resources during each environment.

• Outdated memory

o After each environmental change, any stored fitness values, which were calculated based on the previous
environment, will become outdated.
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Evolutionary Dynamic Optimization

• Usage percentages of different EA/SI methods in the field [1].
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[1] D. Yazdani, R. Cheng, D. Yazdani, J. Branke, Y. Jin, and X. Yao, “A survey of evolutionary continuous dynamic optimization over two decades—Part B,” IEEE Trans. Evol.
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Evolutionary Dynamic Optimization: Overall Picture 
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EA/SI methods are originally designed for solving static optimization problems. To solve
DOPs, they are usually used together with some other components:

• In some DOPs, the optimization algorithm needs to detect environmental changes. This is very
important because the algorithm needs to react to changes and prepare for the new environment.

• After convergence, the population loses its diversity. Consequently, after an environmental change,
both exploration and exploitation capabilities of the population are hindered. EDOs usually use some
diversity control components to address this issue.

• Using obtained knowledge from previous environments is beneficial. To this end, some algorithms use
an explicit archive to store some obtained information.

• To increase the exploration ability and also the capability of monitoring/covering multiple promising
regions, EDOs usually use multiple sub-populations. To manage several sub-populations, these EDOs
use some population division and management components.

• Many procedures of diversity control, explicit archiving, and population management components are
triggered after convergence of a sub-population. Therefore, EDOs usually also use a convergence
detection component.



Evolutionary Dynamic Optimization: Components
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[1] D. Yazdani, R. Cheng, D. Yazdani, J. Branke, Y. Jin, and X. Yao, “A survey of evolutionary continuous dynamic optimization over two decades—Part A,” IEEE Trans. Evol.

Comput., vol. 25, no. 4, pp. 609 - 629, Aug. 2021.

Components of Evolutionary Dynamic Optimization [1]

Convergence Detection

Change Detection

Diversity Control

Explicit Archiving 

Population Division 

and Management

• Usually, the procedure of EA/SI is independent of

these components.

• In each iteration of an EDO, an internal iteration of

EA/SI is run for each sub-population chosen by the

population division and management component.

• Some of these components run every iteration.

• Some of these components are triggered when some

certain conditions are met, such as after

environmental changes or after convergence.



Convergence Detection
• Convergence detection by monitoring the fitness of the best found position by the sub-

population.

Where 𝒈∗ 𝑖 is the best found position by the sub-population in the ith iteration.

• This method only can detect convergence if the best found position has not improved during the last k
iterations. This shortcoming is solved in [2]:

Where 𝜖 is a small constant.
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[1] M. C. du Plessis and A. P. Engelbrecht, “Differential evolution for dynamic environments with unknown numbers of optima,” J. Global Optim., vol. 55, no. 1, pp. 73–99, 2013.

[2] D. Yazdani, B. Nasiri, A. Sepas-Moghaddam, and M. R. Meybodi, “A novel multi-swarm algorithm for optimization in dynamic environments based on particle swarm

optimization,” Appl. Soft Comput., vol. 13, no. 4, pp. 2144–2158, 2013.

[1]ቐ
Converged 𝑓 𝑡 𝒈∗ 𝑖 = 𝑓 𝑡 𝒈∗ 𝑖−𝑘

Unconverged 𝑓 𝑡 𝒈∗ 𝑖 > 𝑓 𝑡 𝒈∗ 𝑖−𝑘

ቐ
Converged 𝑓 𝑡 𝒈∗ 𝑖 − 𝑓 𝑡 𝒈∗ 𝑖−𝑘 ≤ 𝜖

Unconverged 𝑓 𝑡 𝒈∗ 𝑖 − 𝑓 𝑡 𝒈∗ 𝑖−𝑘 > 𝜖



Convergence Detection
• Convergence detection by monitoring the spatial size of a sub-population

o A sub-population a has converged if its spatial size 𝑠𝑎 is smaller than a threshold.
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[1] X. Li, J. Branke, and T. Blackwell, “Particle swarm with speciation and adaptation in a dynamic environment,” in Proc. Genet. Evol. Comput. Conf., 2006, pp. 51–58.

[2] K. Trojanowski, “Properties of quantum particles in multi-swarms for dynamic optimization,” Fundamenta Informaticae, vol. 95, nos. 2–3, pp. 349–380, 2009.

[3] C. Li and S. Yang, “A clustering particle swarm optimizer for dynamic optimization,” in Proc. IEEE Congr. Evol. Comput., 2009, pp. 439–446.

[1]

[3]

𝑠𝑎 = max
𝑖∈𝑎

𝒈∗ − 𝒙𝑖

𝑠𝑎 = max
𝑖,𝑗∈𝑎

𝒙𝑖 − 𝒙𝑗

𝑠𝑎 =
1

𝑛𝑎


𝑖∈𝑎

𝒄𝑎 − 𝒙𝑖

[2]

Where 𝒈∗ is the best found position by the ath sub-population and 𝒙𝑖 is the position of the

ith individual in the ath sub-population.

Where 𝒄𝑎 is the center position of the ath sub-population and 𝑛𝑎 is its number of individuals. 

Detecting convergence by monitoring spatial size of sub-
populations is more accurate in comparison to the fitness
monitoring based methods. Most EDOs use spatial size
monitoring based methods for convergence detection.



Change Detection
• Fitness monitoring-based methods

• Reevaluation-based methods
• A number of solutions, called detectors, are reevaluated frequently. If the obtained fitness values are

different from the previous values, an environmental change is detected [1].
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[1] J. Branke, “Memory enhanced evolutionary algorithms for changing optimization problems,” in Proc. IEEE Congr. Evol. Comput., vol. 3, 1999, pp. 1875–1882.

[2] A. Carlisle and G. Dozier, “Adapting particle swarm optimization to dynamic environments,” in Proc. Int. Conf. Artif. Intell., 2000, pp. 429–434.

[3] X. Hu and R. C. Eberhart, “Adaptive particle swarm optimization: Detection and response to dynamic systems,” in Proc. IEEE Congr. Evol. Comput., 2002, pp. 1666–1670.

[4] T. Blackwell and J. Branke, “Multi-swarm optimization in dynamic environments,” in Applications of Evolutionary Computing (Lecture Notes in Computer Science), vol. 3005, G.

R. Raidl et al., Eds. Berlin, Germany: Springer, 2004, pp. 489–500.

[5] A. Carlisle and G. Dozler, “Tracking changing extrema with adaptive particle swarm optimizer,” in Proc. World Autom. Congr., 2002, pp. 265–270.

Detector

A fixed solution [2]
The best found 

position [3]

The best found 
position of each sub-

population [4]

A predefined number 
of randomly chosen 

individuals [5]



Change Detection: Discussion
• Existing fitness monitoring-based methods may miss an environmental change or detect a

false one [1].

• Reevaluation methods are capable of performing robust 100% detection if a sufficient
number of detectors are used [1].

o Computationally expensive

o Cannot be directly used in presence of noise

• In many real-world DOPs, environmental changes are visible and algorithms are
informed about them [2].
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[1] H. Richter, “Detecting change in dynamic fitness landscapes,” in Proc. IEEE Congr. Evol. Comput., 2009, pp. 1613–1620.

[2] T. T. Nguyen, “Continuous dynamic optimisation using evolutionary algorithms,” Ph.D. dissertation, Sch. Comput. Sci., Univ. Birmingham, Birmingham, U.K., 2011.



Explicit Archiving
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• Some obtained information from previous environments is archived and used to
accelerate tracking process in the new environment.

o This information usually contains the location(s) of promising region(s).

oThese components can be reviewed from three different perspective [1]:

1) What solutions to store and when

2) What solutions to delete and when

3)What solutions to retrieve and when

[1] D. Yazdani, R. Cheng, D. Yazdani, J. Branke, Y. Jin, and X. Yao, “A survey of evolutionary continuous dynamic optimization over two decades—Part A,” IEEE Trans. Evol.

Comput., vol. 25, no. 4, pp. 609 - 629, Aug. 2021.



Explicit Archiving
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• What solutions to store and when 

o The best found position by each subpopulation

▪ At the end of each environment [1]

▪ After convergence [2]

• What solutions to delete and when 

o The oldest archived solution is replaced by the new one [3]

o The worst archived solution is replaced by the new one [4]

o The most similar (i.e., the closest one) archived solution is replaced by the new one [5]

[1] J. Brest, A. Zamuda, B. Boskovic, M. S. Maucec, and V. Zumer, “Dynamic optimization using self-adaptive differential evolution,” in Proc. IEEE Congr. Evol. Comput., 2009, pp.

415–422.

[2] U. Halder, D. Maity, P. Dasgupta, and S. Das, “Self-adaptive cluster-based differential evolution with an external archive for dynamic optimization problems,” in Swarm,

Evolutionary, and Memetic Computing, B. K. Panigrahi, P. N. Suganthan, S. Das, and S. C. Satapathy, Eds. Berlin, Germany: Springer, 2011, pp. 19–26.

[3] Y. G. Woldesenbet and G. G. Yen, “Dynamic evolutionary algorithm with variable relocation,” IEEE Trans. Evol. Comput., vol. 13, no. 3, pp. 500–513, Jun. 2009.

[4] A. M. Turky and S. Abdullah, “A multi-population harmony search algorithm with external archive for dynamic optimization problems,” Inf. Sci., vol. 272, pp. 84–95, Jul. 2014.

[5] T. Zhu, W. Luo, and L. Yue, “Combining multipopulation evolutionary algorithms with memory for dynamic optimization problems,” in Proc. IEEE Congr. Evol. Comput., 2014,

pp. 2047–2054.

Usually, an archive has a finite capacity; therefore, several methods

have been designed to remove solutions if the archive is full.



Usually, after environmental changes, the archived solutions are used to locate

some individuals around the previously discovered promising regions.

Explicit Archiving
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• What solutions to retrieve and when

• A predefined number (n) of the best archived solutions are distributed almost uniformly among all m
subpopulations and replace their worst individuals [1].

• A clustering procedure is performed on the archived solutions, and the n best cluster heads (the best
solution in a cluster) are distributed almost uniformly among all m subpopulations and replace their
worst individuals [1].

• Each individual is randomized around a solution from the archive that is chosen randomly with a
predefined probability [2].

• In [3], archived solutions participate in the selection process of the parents for crossover in the EA.

[1] T. Zhu, W. Luo, and L. Yue, “Combining multipopulation evolutionary algorithms with memory for dynamic optimization problems,” in Proc. IEEE Congr. Evol. Comput., 2014,

pp. 2047–2054.

[2] J. Brest, A. Zamuda, B. Boskovic, M. S. Maucec, and V. Zumer, “Dynamic optimization using self-adaptive differential evolution,” in Proc. IEEE Congr. Evol. Comput., 2009, pp.

415–422.

[3] Y. G. Woldesenbet and G. G. Yen, “Dynamic evolutionary algorithm with variable relocation,” IEEE Trans. Evol. Comput., vol. 13, no. 3, pp. 500–513, Jun. 2009.

[4] J. Branke, “Memory enhanced evolutionary algorithms for changing optimization problems,” in Proc. IEEE Congr. Evol. Comput., vol. 3, 1999, pp. 1875–1882.

Using explicit archiving is suitable only for a class of DOPs where the optimum returns to a

previous location, or previous environments reappear periodically [4].



Diversity Control
• Diversity loss is one of the most critical challenges of DOPs and one of the main reasons behind the inefficiency of

static optimization algorithms in solving DOPs, because converged populations are incapable of efficiently searching
for the new optimum after an environmental change.
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Diversity Control 
Components

Global Diversity 
Control 

Local Diversity 
Control

Improve ExploitationImprove Exploration



Global Diversity Control 

Why do we have to care about global diversity loss in EDOs?
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Global optimum position 

in the tth environment
Global optimum position 

in the (t+1)th environment



Global Diversity Control 
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Global Diversity Control 

Components [1]

Randomizing redundant 

subpopulations/individuals

Randomization after environmental 

changes

Randomizing converged subpopulations

[1] D. Yazdani, R. Cheng, D. Yazdani, J. Branke, Y. Jin, and X. Yao, “A survey of evolutionary continuous dynamic optimization over two decades—Part A,” IEEE Trans. Evol.

Comput., vol. 25, no. 4, pp. 609 - 629, Aug. 2021.



Global Diversity Control 
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[1] J. Branke, T. Kaussler, C. Schmidt, and H. Schmeck, “A multi-population approach to dynamic optimization problems,” in Evolutionary Design and Manufacture. London, U.K.:

Springer, 2000, pp. 299–307.

[2] T. Blackwell and J. Branke, “Multi-swarm optimization in dynamic environments,” in Applications of Evolutionary Computing (Lecture Notes in Computer Science), vol. 3005, G.

R. Raidl et al., Eds. Berlin, Germany: Springer, 2004, pp. 489–500.

[3] D. Parrott and X. Li, “A particle swarm model for tracking multiple peaks in a dynamic environment using speciation,” in Proc. IEEE Congr. Evol. Comput., vol. 1, 2004, pp. 98–

103.

• Randomizing redundant subpopulations/individuals [1]

o Using one subpopulation with a reasonable number of individuals is usually enough to cover a
promising region and tracking it.

o Exclusion method [2]: if the Euclidean distance between two subpopulations’ best found positions
becomes less than a predefined radius rexcl, then the subpopulation with better best found position is
kept and the other one will be randomized.

o In speciation-based method proposed in [3], subpopulations that reside on the same promising region
will be merged since their distance will become closer by converging to the summit. Thereafter, if the
number of individuals in a subpopulation is more than a predefined threshold, the redundant inferior
individuals are randomized across the search space.



Global Diversity Control 
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[1] R. C. Eberhart and Y. Shi, “Tracking and optimizing dynamic systems with particle swarms,” in Proc. IEEE Congr. Evol. Comput., vol. 1, 2001, pp. 94–100.

[2] C. Li and S. Yang, “A clustering particle swarm optimizer for dynamic optimization,” in Proc. IEEE Congr. Evol. Comput., 2009, pp. 439–446.

[3] P. Novoa-Hernández, D. A. Pelta, and C. C. Corona, “Improvement Strategies for Multi-swarm PSO in Dynamic Environments," in Nature Inspired Cooperative Strategies for

Optimization, J.R. González, D.A. Pelta, C.Cruz, G.Terrazas, and N. Krasnogor, Eds. Berlin, Germany: Springer, 2010, pp. 371–383.

[4] I. Rezazadeh, M. R. Meybodi, and A. Naebi, “Particle swarm optimization algorithm in dynamic environments: Adapting inertia weight and clustering particles,” in Proc. Eur.

Symp. Comput. Model. Simulat., 2011, pp. 76–82.

• Randomization after environmental changes

o In the single-population EDO proposed in [1], a predefined number of inferior individuals are
randomized after each environmental change.

o In [2], the best individual of each subpopulation is kept, and the rest are randomized across the search
space.

o In [3], a predefined percentage of the inferior individuals in each subpopulation is randomized across
the search space.

o In [4], subpopulations are divided into two groups of better and worse subpopulations. The individuals
of the subpopulation in the worse group are randomized across the search space.



Global Diversity Control 
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[1] R. I. Lung and D. Dumitrescu, “A collaborative model for tracking optima in dynamic environments,” in Proc. IEEE Congr. Evol. Comput., 2007, pp. 564–567.

[2] D. Yazdani, B. Nasiri, A. Sepas-Moghaddam, and M. R. Meybodi, “A novel multi-swarm algorithm for optimization in dynamic environments based on particle swarm

optimization,” Appl. Soft Comput., vol. 13, no. 4, pp. 2144–2158, 2013.

[3] T. Blackwell and J. Branke, “Multiswarms, exclusion, and anticonvergence in dynamic environments,” IEEE Trans. Evol. Comput., vol. 10, no. 4, pp. 459–472, Aug. 2006.

• Randomizing converged subpopulations

o Used in many EDOs with explicit archiving. When a subpopulation has converged, its best found
position is archived, then it will be reinitialized [1].

o In multi-population EDOs with an adaptive number of subpopulations where a finder subpopulation is
used for exploration [2].

o Anti-convergence component [3]: when all subpopulations have converged, the subpopulation with the
worst best found position is randomized.



Global Diversity Control 
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• Randomizing redundant subpopulations/individuals:

o They are very useful and vital in multi-population EDOs with fixed population size. In such EDOs,
using these components also results in saving computational resources.

• Randomization after environmental changes:

o Using them can result in losing track of the promising regions.

• Randomizing converged subpopulations:

o They are very useful since they usually increase the global diversity when the algorithm has lost its
exploration capability.



Local Diversity Control 

Why do we have to care about local diversity loss in EDOs?
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Individuals collapsed on summit



Local Diversity Control 
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[1] T. Blackwell and J. Branke, “Multiswarms, exclusion, and anticonvergence in dynamic environments,” IEEE Trans. Evol. Comput., vol. 10, no. 4, pp. 459–472, Aug. 2006.

[2] R. Mendes and A. S. Mohais, “DynDE: A differential evolution for dynamic optimization problems,” in Proc. IEEE Congr. Evol. Comput., vol. 3, 2005, pp. 2808–2815.

[3] S. Bird and X. Li, “Using regression to improve local convergence,” in Proc. IEEE Congr. Evol. Comput., 2007, pp. 592–599.

[4] D. Yazdani, B. Nasiri, A. Sepas-Moghaddam, and M. R. Meybodi, “A novel multi-swarm algorithm for optimization in dynamic environments based on particle swarm

optimization,” Appl. Soft Comput., vol. 13, no. 4, pp. 2144–2158, 2013.

• Maintaining local diversity over time
o Using quantum particles [1]

o Adding noise to the position of individuals [2]

o Another way suggested in the literature is to first allow the local diversity to decrease upto a threshold,
then increasing it [3]

• Increasing local diversity after environmental changes
o Randomization in a Limited Area [4]

• In the first group, a significant amount of the computational resources is used to maintain
local diversity over time. The methods in the second group are more effective since they
consume considerably less computational resources.



Population Division and Management

• Bi-population

o They use two subpopulations where one is usually used for exploration, and the other is responsible for
exploitation.

• Multi-population

o These EDOs use several subpopulations where the number of subpopulations is a parameter that can be
set by either the user or adaptively.

o They are the most effective and flexible methods to tackle DOPs.
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Multi-population EDOs

Population clustering
approach

Clustering frequency
Subpopulation 
homogeneity

Population size and 
number of 

subpopulations

Computational 
resource allocation



Population clustering approach
• By index: In this commonly used method, the individuals of each subpopulation are clustered according

to their indices [1].

• By Position and Fitness Values: In some multi-population EDOs, the population is divided into
subpopulations using clustering methods that work based on the position and fitness value of individuals.

o K-means and fuzzy c-means were used for forming sub-populations in [2,3]. 

▪ Number of sub-populations is an input parameter.

▪ Fitness of individuals is not considered.

o In [4], all individuals are listed in a list L. Then, the best individual in L and its m − 1 nearest
individuals are chosen as a subpopulation with the size m, and then all will be removed from L. This
process is repeated until L becomes empty.
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Population clustering approach
• Clustering frequency

o At the beginning

o After each environmental change

o Every iteration

• Homogeneity of subpopulations

o Homogeneous

o Heterogeneous

▪ Different configurations, such as different sub-population sizes

▪ Different optimization component

• Population size and number of subpopulations

o Fixed population size and number of sub-populations

o Fixed population size and changing number of sub-populations

o Changing population size and number of sub-populations
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Population clustering approach
• Index-based clustering approaches are easy to implement and without additional

computational load. However, they do not consider the attributes of individuals, such as
their positions.

• Clustering methods that consider individuals’ attributes are computationally heavy as they
need to calculate many Euclidean distances. These methods need some input parameters,
such as the number of subpopulations, maximum subpopulation size, or subpopulation
radius, which affect their flexibility and performance.

• Among multi-population EDOs, those with varying population size and the number of
subpopulations are the most efficient. In these EDOs, such numbers are usually adapted
to the number of discovered promising regions.
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Computational resource allocation

• Computational resource allocation

• Round Robin/Parallel

• Deactivating Converged Sub-populations [1]

• Using a Local Search Operator Around the Best Found Position [2]

• Subpopulation Size Control [3]

• Performance-Based Subpopulation Selection [4]

• Fitness value of the best found position by a sub-population

• The improvement of subpopulation’s best found position in the last iteration that it was active
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Benchmark Problems
• To assess the effectiveness of DOAs, they are usually tested on different generated

problem instances by DOP benchmarks.

o Baseline functions

▪ Basic static functions

▪ The composition of basic static functions [1] (used in GDBG [2])

▪ Moving peaks baseline functions

o Dynamics
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𝑡
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Where 𝕋 Ԧ𝑦, 𝑖 : ℝ𝑑 ↦ ℝ𝑑 is calculated as:

𝕋 𝑦𝑗 , 𝑖 =

exp log 𝑦𝑗 + 𝜏𝑖
𝑡

sin 𝜂𝑖,1
𝑡
log 𝑦𝑗 sin 𝜂𝑖,2

𝑡
log 𝑦𝑗 if 𝑦𝑗 > 0

0 if 𝑦𝑗 = 0

−exp log 𝑦𝑗 + 𝜏𝑖
𝑡

sin 𝜂𝑖,3
𝑡
log 𝑦𝑗 sin 𝜂𝑖,4

𝑡
log 𝑦𝑗 if 𝑦𝑗 < 0

Where 𝐑𝑖
𝑡
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• Landscapes generated by MPB (both scenarios 1 and 2) consist of promising regions that
are smooth, symmetric, unimodal, separable, and easy to optimize, which may not be the
case in many real-world problems.

• Generated Promising regions by GMPB can range from smooth, unimodal, symmetric,
separable, and with circular contour lines to highly irregular, multimodal, asymmetric,
fully nonseparable, and ill conditioned.



Benchmark Problems

• Dynamics [1]

• Small step:       ∆𝜙 = 𝛾𝑟 ෨𝜙 𝜙

• Large step:       ∆𝜙 = ෨𝜙 𝜙 𝛾 sign 𝑟 + 𝑟 𝛾max − 𝛾

• Random:          ∆𝜙 = ෨𝜙𝒩 0,1

• Chaotic:           𝜙 𝑡+1 = 𝐴𝜙 𝑡 1−𝜙 𝑡

𝜙

• Recurrent:      𝜙 𝑡+1 = 𝜙min
𝜙

2
sin

2𝜋

𝑝
𝑡 + 𝜑 + 1

• Recurrent with noise: 𝜙 𝑡+1 = 𝜙min
𝜙

2
sin

2𝜋

𝑝
𝑡 + 𝜑 + 1 + 𝑛𝒩 0,1
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Where ∆𝜙 is the deviation from the

current control parameter values, 𝜙 is

the change range of 𝜙, 𝜙 𝑡 is the offset

in the tth environment, ෨𝜙 ∈ 0,1 is the

change severity of 𝜙 , 𝜙min is the

minimum value of 𝜙, 𝑛 ∈ 0,1 is the

noise severity, 𝛾, 𝛾max ∈ 0,1 and A are

constant values, 𝑟 ∈ 0,1 is a random

number drawn from a uniform

distribution, p is the period number, and

𝜑 is the initial phase.



Benchmark Problems

• Test configurations

oDifferent numbers of peaks from 1 to 200

oDifferent shift severity values from 1 to 5

oDifferent dimension numbers from 2 to 10

oDifferent change frequencies from 500 to 10000

o Initial values should be defined randomly

oNumber of environments is usually set to 100
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Use the same random seeds for generating problem instances in the experiments.
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Performance Analysis Methods

Performance indicators
o Offline error [1]

o Best error before change [2]

o Offline performance [3]
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Future Research Directions

Real-world application

• The majority of the literature is focused on artificial benchmark problems and only a few works address
real-world DOPs, such as:

o Training supervised feed-forward neural networks in dynamic classification problems with concept drift [1]

o Optimizing the hyperparameters of a support vector machine in dynamic environments [2]

o Optimizing the adaptive farming strategies [3]

o Solving odor source localization problem [4]

o Solving contaminant source identification problem [5]

• One extremely important research direction is to formulate objective functions for real-world DOPs and design new
DOAs to solve them. An important group of real-world DOPs that have been ignored in the DOP literature are dynamic
covering location problems.
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Future Research Directions

• Automatic Parameter Tuning
o The majority of components work on the basis of some constant thresholds which need to be tuned for

every problem. The performance of such components is highly dependent on the values decided for
these thresholds. Besides, the optimal values of these thresholds depend on the characteristics of the
current environment, hence, may change over time. This shows the need for components with
automatic parameter tuning [1].

• Hyperheuristics
o An important point in solving DOPs is that if their characteristics change over time, choosing a proper

set of components becomes difficult or sometimes even impossible. In such DOPs, hyperheuristic
approaches can be used in EDOs to choose the best set of components depending on the current status
of the problem [2].
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Future Research Directions
• Robust optimization over time (ROOT)

o The majority of the works in the field are focused on the tracking of a moving optimum, which does not meet the
needs of some real-world problems. ROOT can be tackled effectively by extending EDOs that have been
originally designed for tracking moving optima [1].

• Constrained DOPs

o Constrained DOPs are difficult to optimize since their objective function and constraints may change over time.
These problems can become more challenging when there are multiple disjointed moving feasible regions [2].

• Large-scale DOPs [3]

o Large-scale DOPs are difficult problems since the available computational resources in each environment can be
very limited to perform optimum tracking in high-dimensional search space. This is even more critical for multi-
population EDOs which track multiple moving promising regions using several subpopulations that need a lot of
computational resources.
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Thanks for your attention!
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