
Universidade de Coimbra

Faculdade de Ciências e Tecnologia

Departamento de Engenharia Informática

Improving Memory-based Evolutionary

Algorithms for Dynamic Environments

Anabela Borges Simões

Coimbra
March 2010

Improving Memory-based Evolutionary

Algorithms for Dynamic Environments

A dissertation submitted to the
University of Coimbra

in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy
in Informatics Engineering

by

Anabela Borges Simões

University of Coimbra
Faculty of Sciences and Technology

Department of Informatics Engineering

March 2010

Financial support by Fundação para a Ciência e a Tecnologia
through the PhD grant SFRH/BD/39293/2006

Improving Memory-based Evolutionary Algorithms for Dynamic Environments
c© 2010 Anabela Borges Simões

ISBN 978-989-20-1900-0

This dissertation was prepared
under the supervision of

Ernesto Jorge Fernandes Costa
Full Professor

of the Department of Informatics Engineering
of the Faculty of Sciences and Technology

of the University of Coimbra

To my beautiful and sweet Daniela.

Acknowledgments

I would like to thank the people who made this research possible:

A special acknowledgment to my teacher, adviser, friend and companion Ernesto
Costa. Without his permanent encouragement, strength and persistence this
work would have never reached the end.

A special thank you to the ECOS (Evolutionary and Complex Systems) group.
Many thanks to Sara Silva for lending me the LaTeX template of her PhD thesis
and to Tiago Baptista for his help and support using the cluster.

An enormous thank you to Carolina, Mário and Kim, who worked so hard
and willingly to improve my bad English in a short period of time.

To my family and friends, a special thanks to you all.

My last words are addressed to a special person. This thesis was made under
difficult conditions, where there were never enough hours in the day to share
among the lectures, my family, the thesis and everything else. Thank you, my
beautiful little daughter Daniela, for your consistent requests for my company to
play, to read or to talk. Thank you, sweetie, for the hours of jokes and laugher
that kept me away from this thesis. Thank you, sweetie, for making me realize
what is really important and for making me see the world with different eyes.

Anabela Simões

Coimbra, March 2010

Abstract

Evolutionary Algorithms (EAs) are powerful tools for optimization problems.
The success of applying EAs to solve hard problems involving static environ-
ments is clear and well recognized. Nevertheless, many real-world problems
have characteristics and conditions that can change over time. The EAs dealing
with this type of problem can face difficulties due to the convergence of the
population toward a specific region of the search space. When the environment
changes it is hard for this converged population to quickly readapt to the new
conditions. Different improvements have been made to the standard EA to make
it more robust in dynamic problems: the increase of diversity, the incorporation
of memory, the use of multi-populations or the inclusion of anticipation methods.

The use of memory is advantageous when the underlying dynamics of the envi-
ronment follows a certain pattern. Typically, memory-based approaches react
to the change after it has happened and use the memory to help the EA readapt
to the new conditions. Also, the memory size is established off-line and kept
constant, and is usually a small fraction of the global number of individuals.
When the capacity of the memory is attained, a replacing strategy must be
used to choose which individual should be deleted to insert a new one.

In this thesis we introduce important and novel contributions, to address some
of the drawbacks of current approaches, thus enhancing memory-based EAs for
coping with dynamic environments. First, we propose different approaches to
make memory more useful and effective: different replacing strategies are pro-
posed, which maximize the capacity and the diversity of the memorized solu-
tions. We also study the influence of the choice of the memory size and propose
an innovative algorithm that allows the memory size to evolve to a suitable
capacity, according to the moment and characteristics of the dynamic problem.
Second, we propose two different biologically inspired genetic operators, which
promote different degrees of diversity of the population. We study the effect that
different levels of diversity have in the performance of the algorithms. We are
interested in analyzing if in memory-based EAs the promotion of high diversity
is always necessary and advantageous. Third, we introduce different prediction
techniques that allow the EA to forecast both the time of the next change and
the direction of this change. Using this information we can anticipate the change
and effectively prepare the EA before that change occurs, highly increasing the
EA’s performance and adaptability.

All the mentioned approaches are tested using different benchmark problems,
working under different types of dynamics. The results obtained from an exhaus-
tive experimentation are statistically analyzed, and they prove the effectiveness
of the proposed contributions.

ix

x

Contents

Acknowledgments . vii
Abstract . ix
List of Tables . xiii
List of Figures . xvi

1 Introduction 1
1.1 Motivation . 1
1.2 Contributions . 2

1.2.1 Improving memory . 2
1.2.2 The importance of diversity 3
1.2.3 Prediction . 4

1.3 Structure . 4

2 Evolutionary Algorithms 7
2.1 Components of Evolutionary Algorithms 7

2.1.1 Population . 8
2.1.2 Representation . 9
2.1.3 Fitness Function . 9
2.1.4 Selection . 9
2.1.5 Genetic Operators . 9
2.1.6 New Population . 10

2.2 An Example . 10

3 Dynamic Environments 13
3.1 Categories of Dynamic Environments 13

3.1.1 When does the environment change? 14
3.1.2 How does the environment change? 14

3.2 Benchmark Problems . 16
3.3 Performance Measures . 18

4 State of the art 21
4.1 Diversity . 21

4.1.1 Generating diversity . 21
4.1.2 Maintaining diversity . 22

4.2 Memory . 25
4.2.1 Implicit Memory . 25
4.2.2 Explicit Memory . 25

xi

xii CONTENTS

4.2.3 Replacing strategies . 29
4.3 Multi-populations . 30
4.4 Anticipation and Prediction . 32
4.5 Hybrid methods . 34

5 Improving Memory 35
5.1 Memory-based Evolutionary Algorithms 35
5.2 Replacing Strategies . 41

5.2.1 Aging . 41
5.2.2 Generational . 43

5.3 Population and Memory Sizes . 46
5.3.1 Size matters? . 49
5.3.2 Variable-size Memory Evolutionary Algorithm 49

6 Promoting Diversity 53
6.1 New genetic operators . 53

6.1.1 Transformation . 54
6.1.2 Biological Conjugation . 59
6.1.3 Computational Conjugation 60

7 Prediction 65
7.1 Predicting when . 65

7.1.1 Linear Regression Predictor 65
7.1.2 Nonlinear Regression Predictor 68

7.2 Predicting how . 74
7.2.1 Markov Chain Predictor 74

7.3 Anticipation . 79
7.3.1 Using the maximum prediction error 81
7.3.2 Using the average of the positive prediction errors 81
7.3.3 Using the average of all the prediction errors (absolute

value) . 81
7.3.4 Using the maximum and the average of the positive pre-

diction errors . 82
7.4 Putting it all together: prediction in the EA 82

7.4.1 Evolutionary Algorithm 83
7.4.2 Memory . 83
7.4.3 Predictor 1 module (P1) 84
7.4.4 Predictor 2 module (P2) 84
7.4.5 Anticipation module (A) 84

8 Experiments 87
8.1 Benchmark problems . 87

8.1.1 Knapsack Problem . 88
8.1.2 Bit-matching Problem . 88
8.1.3 Royal road functions . 89
8.1.4 Dynamic Optimization Problem Generator 90

8.2 Experimentation plan . 92
8.3 Settings . 95

CONTENTS xiii

8.4 Measures, plots and tables . 96
8.5 Statistical validation . 97

9 Memory: Experimental Results 99
9.1 Population and memory sizes . 99

9.1.1 Analysis of the results for MEGA 99
9.1.2 Analysis of the results for MIGA 103
9.1.3 Analysis of the results for AMGA 106
9.1.4 Analysis of the VMEA sizes 109
9.1.5 Discussion . 111

9.2 Replacing strategies . 112
9.2.1 Analysis of the results for MEGA 112
9.2.2 Analysis of the results for MIGA 115
9.2.3 Analysis of the results for AMGA 118
9.2.4 Analysis of the results for VMEA 121
9.2.5 Discussion . 124

10 Diversity: experimental results 127
10.1 Analysis of the results for MEGA 127
10.2 Analysis of the results for MIGA 132
10.3 Analysis of the results for AMGA 136
10.4 Analysis of the results for VMEA 140
10.5 Discussion . 144

11 Prediction: experimental results 145
11.1 Prediction Accuracy . 145
11.2 Algorithms performance . 149
11.3 Discussion . 156

12 Conclusion 157
12.1 Summary . 157
12.2 Future Work . 159

Index 173

xiv CONTENTS

List of Tables

5.1 Initial memory . 44
5.2 Memory updated at generation 6 44
5.3 Memory updated at generation 15 45
5.4 Memory updated at generation 25 45
5.5 Memory at generation 150 . 45
5.6 Memory updated at generation 150 46
5.7 Summary of population and memory sizes 48

7.1 Upper and lower limits for the parameters’ domain 72
7.2 Nonlinear change period . 73

8.1 Experimentation Plan I . 93
8.2 Algorithms tested on experimentation Plan I 93
8.3 Experimentation Plan II . 95
8.4 Algorithms tested on experimentation Plan II 95
8.5 General settings used in the experiments 96
8.6 Specific parameters used in the experiments 96

9.1 Statistical results of comparing MEGA and VMEA 100
9.2 Statistical results of comparing MIGA and VMEA 103
9.3 Statistical results of comparing AMGA and VMEA 107
9.4 Statistical results of comparing MEGA using different replacing

strategies . 115
9.5 Statistical results of comparing MIGA using different replacing

strategies . 118
9.6 Statistical results of comparing AMGA using different replacing

strategies . 121
9.7 Statistical results of comparing VMEA using different replacing

strategies . 124

10.1 Population’s Diversity for MEGA 129
10.2 Statistical results of comparing MEGA using different genetic

operators . 129
10.3 Population’s Diversity for MIGA 133
10.4 Statistical results of comparing MIGA using different genetic

operators . 133
10.5 Population’s Diversity for AMGA 137

xv

xvi LIST OF TABLES

10.6 Statistical results of comparing AMGA using different genetic
operators . 137

10.7 Population’s Diversity for VMEA 141
10.8 Statistical results of comparing VMEA using different genetic

operators . 141

11.1 Accuracy of the Markov model predictions 146
11.2 Accuracy of the Linear and Nonlinear Regression Predictors . . . 148
11.3 PredEA and noPredEA results - dynamic bit matching 150
11.4 PredEA and noPredEA results - dynamic knapsack 151
11.5 Statistical results - dynamic bit matching 152
11.6 Statistical results - dynamic knapsack 153

List of Figures

2.1 Pseudo code of the standard Evolutionary Algorithm 8

3.1 Types of change period . 15
3.2 Types of environmental changes 16

5.1 Pseudo code for the MEGA algorithm 37
5.2 Pseudo code for the MIGA algorithm 39
5.3 Pseudo code for the AMGA algorithm 40
5.4 Pseudo code of the age1 replacing strategy 42
5.5 Pseudo code of the age2 replacing strategy 42
5.6 Pseudo code of the generational replacing strategy 43
5.7 Pseudo code of the Variable-size Memory Evolutionary Algorithm 51

6.1 Biological transformation . 55
6.2 Pseudo code for the Memory-based EA with Transformation . . . 56
6.3 Computational Transformation 57
6.4 Computational transformation 57
6.5 Transforming an individual . 58
6.6 Updating the gene segment pool 59
6.7 Biological conjugation . 60
6.8 Pseudo code for the Memory-based EA with Conjugation 62
6.9 Pseudo code for conjugation . 63
6.10 Computational conjugation . 63

7.1 The asymptotic regression model 69
7.2 Different types of nonlinear change periods 70
7.3 The nonlinear regression predictor 71
7.4 Nonlinear change period . 73
7.5 Markov chain with 5 states . 75
7.6 Prediction modules in the memory-based Evolutionary Algorithm 82
7.7 Pseudo code of the PredEA . 86

8.1 Royal Road Function 1 . 90
8.2 Royal Road Function 2 . 90

9.1 Global results obtained in the dynamic Knapsack problem using
MEGA with different population and memory sizes 101

xvii

xviii LIST OF FIGURES

9.2 Global results obtained in the dynamic Onemax problem using
MEGA with different population and memory sizes 101

9.3 Global results obtained in the dynamic Royal Road F1 problem
using MEGA with different population and memory sizes 102

9.4 Global results obtained in the dynamic Royal Road F2 problem
using MEGA with different population and memory sizes 102

9.5 Global results obtained in the dynamic Knapsack problem using
MIGA with different population and memory sizes 104

9.6 Global results obtained in the dynamic Onemax problem using
MIGA with different population and memory sizes 104

9.7 Global results obtained in the dynamic Royal Road F1 problem
using MIGA with different population and memory sizes 105

9.8 Global results obtained in the dynamic Royal Road F2 problem
using MIGA with different population and memory sizes 105

9.9 Global results obtained in the dynamic Knapsack problem using
AMGA with different population and memory sizes 107

9.10 Global results obtained in the dynamic Onemax problem using
AMGA with different population and memory sizes 108

9.11 Global results obtained in the dynamic Royal Road F1 problem
using AMGA with different population and memory sizes 108

9.12 Global results obtained in the dynamic Royal Road F2 problem
using AMGA with different population and memory sizes 109

9.13 Population sizes at the end of the run obtained using VMEA . . 110
9.14 Population sizes during the run obtained using VMEA for the

Onemax problem using r = 10 (figure on the left) and r = 200
(figure on the right) and ρ = 0.5 111

9.15 Global results obtained in the dynamic Knapsack problem using
MEGA with different replacing strategies 113

9.16 Global results obtained in the dynamic Onemax problem using
MEGA with different replacing strategies 113

9.17 Global results obtained in the dynamic Royal Road F1 problem
using MEGA with different replacing strategies 114

9.18 Global results obtained in the dynamic Royal Road F2 problem
using MEGA with different replacing strategies 114

9.19 Global results obtained in the dynamic Knapsack problem using
MIGA with different replacing strategies 116

9.20 Global results obtained in the dynamic Onemax problem using
MIGA with different replacing strategies 116

9.21 Global results obtained in the dynamic Royal Road F1 problem
using MIGA with different replacing strategies 117

9.22 Global results obtained in the dynamic Royal Road F2 problem
using MIGA with different replacing strategies 117

9.23 Global results obtained in the dynamic Knapsack problem using
AMGA with different replacing strategies 119

9.24 Global results obtained in the dynamic Onemax problem using
AMGA with different replacing strategies 119

LIST OF FIGURES xix

9.25 Global results obtained in the dynamic Royal Road F1 problem
using AMGA with different replacing strategies 120

9.26 Global results obtained in the dynamic Royal Road F2 problem
using AMGA with different replacing strategies 120

9.27 Global results obtained in the dynamic Knapsack problem using
VMEA with different replacing strategies 122

9.28 Global results obtained in the dynamic Onemax problem using
VMEA with different replacing strategies 122

9.29 Global results obtained in the dynamic Royal Road F1 problem
using VMEA with different replacing strategies 123

9.30 Global results obtained in the dynamic Royal Road F2 problem
using VMEA with different replacing strategies 123

10.1 Global results obtained in the dynamic Knapsack problem using
MEGA with different genetic operators 128

10.2 Global results obtained in the dynamic Onemax problem using
MEGA with different genetic operators 130

10.3 Global results obtained in the dynamic Royal Road F1 problem
using MEGA with different genetic operators 130

10.4 Global results obtained in the dynamic Royal Road F2 problem
using MEGA with different genetic operators 131

10.5 Global results obtained in the dynamic Knapsack problem using
MIGA with different genetic operators 134

10.6 Global results obtained in the dynamic Onemax problem using
MIGA with different genetic operators 134

10.7 Global results obtained in the dynamic Royal Road F1 problem
using MIGA with different genetic operators 135

10.8 Global results obtained in the dynamic Royal Road F2 problem
using MIGA with different genetic operators 135

10.9 Global results obtained in the dynamic Knapsack problem using
AMGA with different genetic operators 138

10.10Global results obtained in the dynamic Onemax problem using
AMGA with different genetic operators 138

10.11Global results obtained in the dynamic Royal Road F1 problem
using AMGA with different genetic operators 139

10.12Global results obtained in the dynamic Royal Road F2 problem
using AMGA with different genetic operators 139

10.13Global results obtained in the dynamic Knapsack problem using
VMEA with different genetic operators 140

10.14Global results obtained in the dynamic Onemax problem using
VMEA with different genetic operators 142

10.15Global results obtained in the dynamic Royal Road F1 problem
using VMEA with different genetic operators 142

10.16Global results obtained in the dynamic Royal Road F2 problem
using VMEA with different genetic operators 143

11.1 Best of generation for PredEA and noPredEA, bit matching
problem . 146

xx LIST OF FIGURES

11.2 Examples of good and bad predictions for the Linear and Non-
linear predictors. 147

11.3 Off-line performance for the bit matching problem using PredEA-
LR, PredEA-NLR and NoPredEA for 5-10-5 change period . . . 154

11.4 Off-line performance for the bit matching problem using PredEA-
LR, PredEA-NLR and NoPredEA for Nlinear 2 change period . . 154

11.5 Off-line performance for the knapsack problem using PredEA-LR,
PredEA-NLR and NoPredEA for 5-10-5 change period 155

11.6 Off-line performance for the knapsack problem using PredEA-LR,
PredEA-NLR and NoPredEA for Nlinear 2 change period 155

11.7 Computational times for noPredEA, PredEA-LR and PredEA-
NLR - Nlinear 2 change period, 20 states, probabilistic changes . 156

Chapter 1

Introduction

1.1 Motivation

Evolutionary Algorithms (EAs) have been successfully used in a wide area of
applications. Traditionally, EAs are well suited to solve problems where the
environment is static. The generational process of evolution often leads the
EA to an optimal (or quasi-optimal) solution. However, most of real-world
applications are non-stationary and the algorithms used to solve them must
be able to adapt to the new circumstances. For this type of optimization, an
effective EA must be able to detect changes and rapidly deal with the changes
when they occur. Classical EAs are not suited for these kinds of problems, since
they have the tendency to prematurely converge to a solution and, when the
conditions of the environment change, the population has all individuals usually
concentrated in a specific point of the search space. So, it takes some time for
the population to readapt and move towards the new solution. To deal with
these limitations, some improvements have been proposed as extensions of the
classical EA. These improvements include:

• maintaining diversity, using several strategies such as triggered hypermu-
tation, random immigrants, new genetic operators or niching techniques;

• using memory schemes;

• using multi-populations;

• anticipating the changes in the environment.

If the environment changes cyclically and past situations reappear later, the use
of memory is beneficial. Memory can be either implicit or explicit. When using
explicit memory in the EA different design issues must be carefully thought,
namely:

• Which is the best choice for the memory size?

• When should memory be updated?

• Which information should be stored?

1

2 1. INTRODUCTION

• When the memory is full, which individuals may be replaced?

Although these subjects have already been studied by several authors (see next
chapter), some questions remain unexplored and will be further investigated in
this work.
In this thesis we are focused on memory-based EAs and our goal is to make this
type of algorithms more robust, efficient and adaptable to situations involving
dynamic environments.

1.2 Contributions

This thesis proposes several contributions to the field of evolutionary optimiza-
tion in dynamic environments, which we believe are novel. These contributions
include methods to improve the adaptability, robustness and performance of
memory-based EAs facing dynamic environments. The main contributions of
this work are centered around three main issues: memory, diversity and predic-
tion.

1.2.1 Improving memory

The first contribution, refers to the improvement of memory itself. The stor-
age of information is critical when using memory-based EAs, since memory has
a limited capacity. It is thus important to decide which individuals must be
replaced by new ones (replacing strategy). The replacing schemes proposed in
this thesis aim to increase the efficacy of the available memory. We propose
different methods of replacing the memory individuals when memory is full.
Our main concern is to avoid redundancy in the memory and to ensure that the
memorized individuals are good solutions for different environments. It is not
very effective to have in the memory two or more individuals related with the
same environment or to have individuals that were good solutions in the past
but are presumably useless in future situations.
We propose three different replacing schemes : two of them are based on the idea
of aging of memory individuals. In the first one (called age1), all individuals of
the memory start with an age equal to zero, and at every generation their age is
increased by one. If they are selected to the population when a change occurs,
their age is increased by a certain value until a limit age is reached. When the
limit age is attained, the individual’s age is reset to zero. When it is necessary
to update memory, the youngest one is selected to be replaced. In a different
age-based replacing scheme (called age2) the age of each individual is calcu-
lated as a linear combination of its actual age and its fitness. Moreover, in this
scheme, memory individuals never die, i.e., their age is not reset to zero. This
way, individuals that last long in memory and contributed to the evolutionary
process are not penalized. The third replacing strategy (called generational),
selects for replacement the worst individual present in the memory since the last
environmental change. For instance, if the last change occurred at generation
t1 and currently the algorithm is in generation t2, when it is time to insert an
individual into the memory, the worst individual that was stored between gen-
eration t1 + 1 and t2− 1 will be replaced. If no individual has been stored since

1.2. CONTRIBUTIONS 3

the last change, the Branke’s similar strategy is used and the closest individ-
ual in terms of Hamming distance is replaced, if it is worse than the current best.

The second issue analyzed under this topic is how the size of the memory
(and the main population) affects the EA’s performance and if the choice of
these sizes can be optimized on-line. We studied several memory-based EAs
using different values for population and memory sizes. Memory-based EAs
for changing environments usually use a memory of small size, compared with
the global number of individuals. In most cases, the dimension of memory is
selected between 5% and 20% of the total number of individuals; 10% is the
most frequent choice. Typically, in memory-based EAs the memory size re-
mains unchanged and is always seen as playing a secondary role in the process,
since it is always used with a smaller value when compared with the population
size. This general assumption is questionable. In this context, our work pro-
vides relevant information for two important questions: first, what is the best
choice for the memory and population sizes? Is the choice of smaller memory
size always the right option? Second, can we develop an EA that can change
the memory and the population sizes according to the stage of the evolutionary
process? It might be advantageous to have a smaller memory size at the begin-
ning of the run, and larger sizes in other phases. The proposed algorithm called
Variable-size Memory Evolutionary Algorithm (VMEA), uses dynamic
sizes for both the population and the memory.

1.2.2 The importance of diversity

The second contribution, is the proposal of two new genetic operators respon-
sible for promoting the population’s diversity and the study of how the level
of diversity in the population affects the EA’s performance. If the environment
is dynamic, the success of the EA seems to depend on the population’s diversity
that the algorithm is able to preserve. If all the individuals of the popula-
tion are concentrated in a region of the search space, when the environment
changes, the EA will have more difficulty to find the new optimum. We looked
to the natural systems and found that certain species (viruses and bacteria, for
instance) use specific mechanisms for exchanging the genetic material. In biol-
ogy, bacterial conjugation is the transfer of genetic material between bacteria
through cell-to-cell contact. Sometimes bacterial conjugation is regarded as the
bacterial equivalent of sexual reproduction or mating. The second biologically
inspired genetic operator is transformation . Some bacteria readily take up
outside DNA. If they have this ability they are said to be competent. Competent
bacteria can absorb fragments of DNA from dead bacteria and present in their
environment. Usually, transformation consists of the transfer of small pieces
of extra cellular DNA between organisms. These strains of DNA, or gene seg-
ments, are extracted from the environment and added to recipient cells. In this
thesis, we introduce, implement and test computational counterparts for those
two genetic operators that are used as alternatives to the standard crossover
operators. An empirical study is performed comparing the diversity promoted

4 1. INTRODUCTION

by different genetic operators and the corresponding EA’s performance under
different types of dynamic environments. Results show that, in some situations,
high diversity can be detrimental to the performance of memory-based EAs.

1.2.3 Prediction

The third contribution, explores the use of prediction to anticipate what will
happen to the environment and when modifications will occur. If we know the
moment when the next change will be observed and the characteristics of the
new environment, we can use the information stored in memory in a more effec-
tive way and introduce it in the population before the change actually occurs.
If the environmental changes are not random or chaotic, but instead follow a
certain repeated behavior, prediction methods can be used to foresee what is
coming. The anticipation consists of preparing the EA to the modifications that
the environment will suffer and to avoid the decrease of its performance when
the change actually happens. The use of prediction mechanisms in this context
is practically nonexistent - this thesis intends to fill this gap and to introduce
significant advances in this field. The explored prediction methods work in two
levels: the algorithm must be able to anticipate when the next change will oc-
cur; also, based on previous observations, the algorithm must predict to where
the optimum will move in the next change. The proposed methods are able to
predict both the time and the trend of the modification. The prediction of the
time when the next change will occur is explained in two phases: first a linear
regression predictor is used. Although effective in many cases, the proposed pre-
dictor has some limitations when the change period follows a nonlinear function.
To overcome these limitations, a nonlinear regression predictor is implemented
and successfully tested. The second predictor is responsible for analyzing how
the environment has changed in the past and for predicting the modifications
that will occur in the environment. This predictor is supported by a Markov
chain consisting of a set of states and transitions. Each state keeps information
about the known environments and the states are linked according to the tran-
sitions observed in the past. Each transition has a probability that indicates
the frequency of the transition between two states. By analyzing all the known
states (environments) and transitions, the predictor estimates which environ-
ment(s) may appear the next time the environment changes. The proposed
modifications are tested using standard benchmark problems, and the results
are statistically analyzed to support the claim that they are indeed beneficial.

1.3 Structure

The next chapter provides a brief introduction to evolutionary computation.
Chapter 3 presents a general overview about dynamic optimization problems.
Chapter 4 describes the state of the art in the field of EAs and dynamic environ-
ments. The issues concerning the usage of memory are explained in Chapter 5,
in which we detail the proposed replacing strategies and the description of the
Variable-size Memory Evolutionary Algorithm (VMEA). Chapter 6 explains the
proposed mechanisms for promoting diversity. Chapter 7 shows the implemen-

1.3. STRUCTURE 5

tation of the proposed predictors. Chapter 8 describes the benchmark problems
and specifies the parameters used along the experiments. The results of the
exhaustive experimental plan are presented in three separated chapters: Chap-
ter 9 reports and analyzes the obtained results concerning memory; Chapter
10 reports the results of the importance of diversity; Chapter 11 provides the
results obtained with the prediction modules. Chapter 12 concludes and points
towards possible future developments of this work.

As a consequence of this work, several papers were published in top interna-
tional conferences of the area. In particular, papers where the main topics were
memory ([91], [89], [90], [93]), diversity ([81], [84], [85], [82], [86], [88]) and
prediction ([92], [80], [83]).

Chapter 2

Evolutionary Algorithms

One hundred and fifty years ago, in 1859, Charles Darwin published The Ori-
gin of Species, where he explained the process of evolution by natural selection.
Together with Greg Mendel’s ideas about the mechanisms of heredity, it consti-
tutes today’s dominant paradigm about how species originate and evolve, called
the Modern Synthesis. Population genetics and the modern molecular biology
principles, developed in the last century, by and large confirmed these principles
and mechanisms. In simple terms, the theory states that the best fit individuals
live longer and have a higher chance of reproducing and passing their traits to
the next generation. Moreover, the offspring are not exact clones of their par-
ents, but suffer from a process of small random variation of their traits. Those
individuals, modified or not, with an increased fitness to the current environ-
ment will, again, have a higher chance to survive and reproduce with variation.
Throughout time, this process leads to species ideally adapted to their ecosys-
tem. Evolutionary Algorithms (EAs) are stochastic search procedures inspired
by the biological principles of evolution by natural selection. In this chapter,
we will explain the main, broad, concepts behind these algorithms, illustrating
them at the end with a simple example. For an in-depth review about EAs the
reader may look into [25].

2.1 Components of Evolutionary Algorithms

Evolutionary Algorithms are based on a simplified model of the theory of evo-
lution by natural selection. The field of Evolutionary Computation comprises
several types, or families, of evolutionary algorithms. These include Genetic
Algorithms (GAs) [39], Genetic Programming (GP) [47], [46] Evolution Strate-
gies [69] and Evolutionary Programming [29]. Their differences are more histor-
ical than based on deep dissimilarities. To solve a particular problem a set of
candidate solutions to that problem is randomly created. This set of solutions
is called population. Then, the quality of each of these potential solutions is
measured 1 and the best ones are selected as parents. The chosen individuals

1In nature there is no direct way to measure the quality of an individual, i.e., there is no
explicit fitness function, and we talk of open-ended evolution. As a matter of fact, in nature

7

8 2. EVOLUTIONARY ALGORITHMS

reproduce and undergo a variation process by means of genetic operators, e.g.,
recombination and mutation, defining a new, offspring, population. Finally, the
next generation of the population is formed by combining parent and offspring
populations. This process is repeated until a certain stop condition, e.g., num-
ber of generations, is attained. Figure 2.1 shows the pseudo code of a standard
EA.

Function EvolutionaryAlgorithm

I n i t i a l i z e populat ion

Evaluate populat ion

repeat

S e l e c t parents

Recombine pa i r s o f parents

Mutate the o f f s p r i n g

Evaluate the o f f s p r i n g

Create new populat ion from parents and o f f s p r i n g

un t i l stop condition i s t rue

Figure 2.1: Pseudo code of the standard Evolutionary Algorithm

Selection and variation are the driving forces of the evolutionary algorithm.
They determine the regions of the solutions’ search space to be explored, and
how well they will be explored when looking for good solutions. We say good
and not optimal, because due to the stochastic nature of the process there is
no guarantee that we will find an optimal solution. EAs, as stochastic search-
based procedures, have been successfully used to solve hard, complex problems,
i.e., problems for which there is no analytical solution or whose dimension of
the search space is so vast, making the problem intractable by conventional
computational techniques. Next, the description of each main aspect or concept
of a simple EA is provided 2.

2.1.1 Population

A population is formed by a set of individuals, also called chromosomes, typically
of a fixed size. Each individual represents a possible solution to the problem
and consists of a sequence of smaller components, called genes. Each gene
may assume different values, or alleles. At the beginning of the evolutionary
process an initial population is generated randomly or using an established
seed. This population evolves and, at the end of the process, it is intended that
the population has converged to a region of the search space that contains an
optimal or quasi-optimal solution. The size of a population is an important
design parameter. Combined with the number of generations, it determines the

there is no goal, no plan, no end [28].
2As we already said, there are some differences among the representatives of the several

families of EAs. Our description is based mainly on the simple genetic algorithm (sGA).

2.1. COMPONENTS OF EVOLUTIONARY ALGORITHMS 9

number of fitness evaluations that are needed, and, implicitly, the computational
cost of the algorithm. Typically, the size of the population is constant, but there
are approaches where this is not the case.

2.1.2 Representation

The choice for the representation of the individuals is made according to the
type of problem to solve. The representation defines how the individuals of
the population will be encoded. Different types of representations can be used,
depending on the problem and the type of EA, e.g., binary, float, integer permu-
tations, trees, graphs. Each encoded solution is called the individual’s genotype.
The genetic operators act on these representations and, therefore, the selection
of a good representation is a critical design choice.

2.1.3 Fitness Function

The fitness function is used to measure the quality of the individuals of the pop-
ulation. To measure it, a decoding process is needed to obtain the individual’s
phenotype. The fitness is a real value obtained by applying the fitness function
to the phenotype. Depending on the type of problem, the best fitness can be the
highest (maximization problems) or the lowest (minimization problems) values.

2.1.4 Selection

The selection method is used to choose a pool of parents based on their fit-
ness. Solutions with higher fitness values have more probability to be chosen
for mating. This way, a more fitter population is created and the EA evolves
towards the optimal solution. There are different selection methods that can be
used: roulette wheel, tournament-based or ranked-based selection. The roulette
wheel method selects individuals based on their relative fitness: a higher fitness
yields to a higher probability of being selected. In the tournament selection, a
certain number (tournament size) of individuals is randomly selected, and the
best individual is included in the mating pool. Rank-based selection orders the
individuals according to their absolute fitness. Each individual has a certain
probability of being chosen, depending on its position in the rank.

2.1.5 Genetic Operators

The role of the genetic operators is to create variation among the individuals
of the population. Genetic operators can be divided in two main categories:
recombination (or crossover) and mutation. Recombination is applied using
two (or more) selected parents and mixing the genetic content of them. The
simplest example of that type of operator is called one-point crossover. It is
applied on two individuals selected from he mating pool. One random point
is chosen, i.e., a point on the frontier of two genes, and the genetic material
of the two selected parents is swapped. We can also use two, or n, points
to control the exchange of genes among the two parents. Another well-known
crossover operator is called uniform crossover where the genes of two parents

10 2. EVOLUTIONARY ALGORITHMS

are swaped according to a random generated mask. Mutation is applied to
the individuals’ genes by making a small change in their corresponding alleles.
There have been many studies made about the relative merits of both operators.
In general, crossover promotes the exploration of the search space, and thus is
very important at the beginning of the search, when the algorithm is searching
for a promising region of the search space. Mutation, on the other hand, permits
the exploitation of the search space and is important at the end of the search
when the algorithm already converged the population into a good region of the
search space. Of course there is an interplay between the genetic operators
and the representation. This means that for different representations, different
operators must be used. The genetic operators are applied according to a chosen
probability [41]. Usually, a small probability (1% to 5%) is used in mutation,
whereas crossover is applied with a probability of 60% to 70%.

2.1.6 New Population

Once we have generated a population of offspring we still have a design decision
to make. In fact, there are two main ways of producing the population of the
next generation. One is to kill all the parents and keep all the offspring. This
is called the generational approach. Another possibility is to merge the two
populations and choose the best ones to pass on to the next population. One
possible variation is to keep a small fraction of the best parents and fill the rest
of the population with the best offspring. This approach is called elitism.

2.2 An Example

To show how the components of an EA work together we will use a simple EA to
evolve a string that matches a given template. Suppose that the goal is to evolve
the string “ANABELA SIMOES”. Each candidate solution in our population,
i.e., each individual, will be a 14 characters long, fixed-length, string. A gene
will be a position in that string and for each of them the possible alleles are the
27 upper case letters from ’A’ to ’Z’ plus the space character. In this simple
case, there is no difference between the genotype and the phenotype. The fitness
function will measure how many characters are already in the correct position.
So, the best fitness, corresponding to the string “ANABELA SIMOES” will be
14. This is a maximization problem.
The first step of the EA is to generate a random initial population. In this ex-
ample we will use a population of size 10. Suppose that we obtain the following
initial population (in brackets is the fitness of each individual):

1. AXDBIEA XEESAS (5)
2. SS OSSAXCIESSD (2)
3. BBEER SSSNE SZ (1)
4. ZAQ DDDWQ SSQW (0)
5. CVFFREAWWEV XX (1)
6. ANAAAAA BBMOXS (8)

2.2. AN EXAMPLE 11

7. ALABERSRRBSIES (5)
8. XMOBELAC IMOER (8)
9. BSSEAJ LIASEE (4)

10. CCBOPSS SSW WW (0)

Using the roulette wheel selection method, the best individuals have a higher
possibility of being selected for the mating pool 3. Using this method, the
mating pool of parents could be the following:

1. XMOBELAC IMOER
2. ANAAAAA BBMOXS
3. XMOBELAC IMOER
4. ALABERSRRBSIES
5. ANAAAAA BBMOXS
6. BSSEAJ LIASEE
7. ANAAAAA BBMOXS
8. SS OSSAXCIESSD
9. XMOBELAC IMOER
10. XMOBELAC IMOER

The next step is the application of the genetic operators. We will use one
point crossover, with a probability of 60%. With that value for crossover’s
probability and with a population of 10 individuals, we expect that (on average)
6 individuals will undergo crossover. For those pairs of parents selected we
randomly choose a crossover point and bond the left part of the first parent
with the right part of the second parent. Similarly, the right part of the first
parent is joined with the left part of the second parent. Suppose that parents 1
and 2 are selected to recombine their genetic material.

Parents:
1. XMOBELAC IMOER
2. ANAAAAA BBMOXS

If the randomly chosen point of crossover is position 3, the new individuals will
be:

Offspring:
1. XMOAAAA BBMOXS
2. ANABELAC IMOER

Crossover is used between the number of parents necessary to generate the
desired number of individuals. After crossover, mutation is applied, say with a
probability of 5%. Those positions (genes) chosen to undergo mutation will have
their character (allele) changed to a new one. Suppose that the first individual
mutates the gene 1 and 4 and the second the gene 8, changing to different and
valid characters:

3With this method individuals of fitness 0 will never be chosen.

12 2. EVOLUTIONARY ALGORITHMS

Mutated Offspring:
BMOBAAA BBMOXS
ANABELA IMOER

After using crossover and mutation, this could be the generated offspring. The
fitness values are already updated and it is clear that this population has better
individuals than the previous one.

1. BMOBAAA BBMOXS (4)
2. ANABELA IMOER (12)
3. AMOBELARRBSIES (7)
4. ANABERSC IMOER (9)
5. ANABELA IMOER (12)
6. ANAAAAA BBMOXS (8)
7. ANABAAAC IMOER (9)
8. AMOBELA BBMOES (10)
8. XMOBELAC IMOER (8)

10. AMOBELAC IMOES (10)

Using a generational approach to select the next population, we repeat the
process of selection, crossover and mutation for several generations until the
algorithm eventually converge to a population containing the desired solution.

Chapter 3

Dynamic Environments

EAs have been used to solve complex, real world, optimization problems. In
most situations these problems are embedded in contexts that make them hard
to solve. For example, if the quality of a candidate solution depends on measure-
ments made by sensors, the fitness function is typically noisy. Another situation
appears when we have to simplify the fitness function, using an approximation,
to reduce the computational costs of our algorithm. Several solutions have been
proposed in the literature to deal with these kind of uncertainties. A third
situation where uncertainties can be found, occurs when the problem has an
associated time-varying fitness function. This last category of problems is said
to operate in dynamic environments.
This thesis is focused on the application of EAs to situations dealing with dy-
namic environments. In this chapter, we describe the main concepts, namely,
how dynamic environments can be classified according to the type of modifica-
tions, the benchmark problems used to test and evaluate the algorithms, and
different performance measures.

3.1 Categories of Dynamic Environments

Dynamic environments can be classified in different ways. For example, Branke
[14] categorized the environments using certain parameters of the problem: the
frequency of change, the severity of change, the predictability of change and
the periodicity of the change (i.e. the cycle length). A different categoriza-
tion [42], used a direct description of the problems, classifying the problems
in cycle, with changing morphology, drifting landscapes or abrupt and discon-
tinuous. Weicker [110] proposed a classification of the dynamic environments
consisting of a combination of these two.
In this thesis we propose an alternate way of classifying the dynamic environ-
ments by dividing the changes into two main groups depending on when the
environment changes and how the environment changes.

13

14 3. DYNAMIC ENVIRONMENTS

3.1.1 When does the environment change?

The time when the changes occur is defined by the change period, which consists
of the number of generations between two consecutive changes. Knowing the
characteristics of the change period, different decisions can be made concerning
the design of the EA. The change period has three main aspects to be considered:
(1) the recurrence of the observed change periods, (2) the length and (3) the
predictability.

(1) Types of change period
The change period can be classified as:

• Periodic or linear: the changes are observed at fixed intervals. If
the change period is called r, in this type of classification, changes
are observed every r generations.

• Patterned: the interval between the changes is not constant, but
instead follows a repeated pattern. For instance, if we observe the
first change at generation 5, the second at generation 15, the third
at generation 20, the fourth at generation 25, and so on, we can say
that the change period follows the pattern 5-10-5.

• Nonlinear: the generations where the changes are observed follow
a nonlinear function.

• Random: the changes happen at random points without any pattern
or periodicity.

Figure 3.1 shows the described types for change periods.

(2) Frequency of the change
Another important characteristic to be analyzed is how often the environ-
ment changes. Changes can occur every generation or at larger intervals.
For example, in the case of periodic or linear changes, this means a dif-
ferent value of r. Smaller values of this parameter mean faster changes,
which are typically harder to deal with. This is an important issue, since
in most approaches using EAs, the algorithm only reacts after the change
is detected and the frequency of change can determine if the EA is able
to quickly readapt to the new environmental conditions.

(3) Predictability of the change
If the change period follows a linear or a repeated trend, we can say that
the moment of the next change can be predicted. However, if the change
period is completely chaotic, no prediction is possible. This aspect is very
important if we are interested in designing EAs that can react before the
change happens. If prediction is possible, the population can be prepared
to the next change before it actually happens.

3.1.2 How does the environment change?

Knowing how the environment changes is important in deciding if the incorpo-
ration of a memory component will be useful to the EA or if the application of
other methods can be more effective.

3.1. CATEGORIES OF DYNAMIC ENVIRONMENTS 15

Figure 3.1: Types of change period

(1) Types of environmental changes

• Cyclic: in a cyclic environment, situations from the past reappear
in the future in a cyclic manner. In this type of environment the
number of different environments can determine the difficulty of the
problem. We say that an environment is cyclic if the environments
reappear always in the same order (A-B-C-A-B-C . . .).

• Cyclic with noise: environments from past reappear but with small
differences introduced by a noise factor (A-B-C-A’-B’-C’- . . .).

• Probabilistic: when the transition between a fixed number of envi-
ronments is governed by some probability.

• Random: the environments change from a state to another com-
pletely different state without any correlation with the past.

Figure 3.2 shows the described types for environmental changes 1.

In this work we will use cyclic and probabilistic types of environmental
changes.

(2) Severity of change
The severity of change measures the strength of the modifications in the
environment. The environment can change to a completely different state
or to a similar one.

1In the probabilistic type, no value attached to transitions means probability equal to 1

16 3. DYNAMIC ENVIRONMENTS

A

Cyclic

Cyclic with noise

B C

A B C

C' B' A'

A B

D C

Probabilistic

0.5

0.5

0.75

0.25

Random

A B C

F E D

Figure 3.2: Types of environmental changes

(3) Predictability of the new environment
If the transitions between the environments are cyclic or follow a trend
that can be captured by the algorithm, it is possible to predict which
modifications will be observed at the next change. All of the previously
mentioned types of environments, except the random ones, present some
predicability.

3.2 Benchmark Problems

Benchmark problems are used to test the performance of the EAs in solving
different types of dynamic environments. Over the years, different benchmark
problems have been used. Those benchmarks have different characteristics and
span from simple mathematical functions to more complicated real-word appli-
cations. Other problems, used for static environments, can be easily changed
and configured to test the EAs in different types of dynamic environments.

Benchmark problems can be divided into two types. The first type includes
problems where the environment is switched between different instances of a
specific stationary problem. In this category the most popular benchmarks are:

3.2. BENCHMARK PROBLEMS 17

• Dynamic Bit-matching: the bit-matching problem is an unimodal prob-
lem which goal is to find a solution that matches a given template. Chang-
ing the template from time to time makes this problem dynamic. This
problem is encoded with binary representation and the number of bits
that change in the template can define the severity of the change. The
difficulty of the problem can be increased by using templates with larger
dimensions.
The onemax problem, where the EA has to find a solution that maximizes
the number of ones, is a particular case of the bit-matching problem.

• Dynamic Knapsack Problem: consists of the dynamic version of the
popular knapsack problem. There is a set of n items that have weights
and values. The goal is to choose the items that maximize the values,
but whose sum of weights doesn’t surpass the capacity of the knapsack.
Usually, this problem is encoded with binary representation and each gene
indicates if an item is selected to be included in the knapsack (gene is 1)
or not (gene is zero).
In the dynamic version of this problem the capacity of the knapsack
changes over time. This means, for instance, that, if the capacity is re-
duced, a previous good solution may become invalid.

The second type of benchmark problems uses a basic function which is changed
to construct the dynamic environments. In this category we can find the fol-
lowing test problems:

• Moving Peaks: the moving peaks benchmark was proposed by Branke
[14] and Morrison et al. [61]. It consists of m peaks, whose height (hi),
width (wi) and location (~pi) can change. The m peaks belong to a n-
dimensional real space and the fitness landscape is defined as the maxi-
mum over all peaks. The environmental changes are made by changing
those three parameters after an established number of evaluations that
defines the frequency of change.

• Moving Parabola: this problem uses a real-numbers encoding and is
analogous to the dynamic bit-matching problem. A basic parabolic func-
tion is used and the dynamics of the environment is created by moving
the parabola in the space. The difficulty of the problem depends on the
number of dimensions. The severity of the change is determined by the
size of the shift and different types of dynamics can be applied to the
parabola: circular, linear or random [1].

• Dynamic Optimization Problems Generators: the most used gener-
ator is the Dynamic Optimization Problems (DOP) generator introduced
by Yang [126]. It is used in problems using binary encoding and is ap-
plied to construct different types of dynamic problems from any stationary
function f(x). The dynamics in the environment is created through the
application of the exclusive-or (XOR) operator to the binary string that
encodes a possible solution. The basic idea of the DOP generator can be

18 3. DYNAMIC ENVIRONMENTS

described as follows: when evaluating an individual x in the population,
first it is performed the operation x ⊗ M where ⊗ is the bitwise XOR
operator and M a binary mask previously generated. Then, the resulting
individual is evaluated to obtain its fitness value. The characteristics of
the problem are controlled by two parameters: r is the change period and
ρ is the severity of the change, consisting of the ratio of ones in the mask
M . Three different types of environment can be constructed: cyclic, cyclic
with noise and random. Later, Tinós et al. [98] proposed a different ver-
sion of this generator to be used with real-valued encoding. A generalized
framework of those generators was proposed and tested by Li et al [49].

• Problem generator based on deceptive functions: this problem gen-
erator was proposed by Yang [113]. It uses a decomposable trap function
to construct a problem generator based on the problem difficulty. The gen-
erator starts from a base stationary function consisting of m basic trap
functions which are justaposed and summed together. A scaling factor is
used to define the weight of each trap function.

Other problems can be used as benchmark for testing EAs solving dynamic en-
vironments. For instance, the job shop scheduling problem, involving a set of n

jobs and m machines. Each job is a sequence of n activities so there are n ∗m

activities in total. Each activity has a duration and requires a single machine
for its entire duration. The activities within a single job all require different
machines. An activity must be scheduled prior to every activity following it
in its job. Two activities cannot be scheduled at the same time if they both
require the same machine. The objective is to find a schedule that minimizes
the overall completion time of all the activities. If a new job arrives when the
scheduling is already defined, it is considered that the environment has changed
and it is necessary that the EA finds a new solution to the problem. Evolution-
ary approaches that use this problem can be found in [9], [10], [16].
Other optimization problems with multi-objective characteristics were used to
test EAs for dynamic problems [26], [27], [40]. Following Branke’s comment
about the inconvenience of using real-world applications, we will be focused on
artificial benchmark problems, like Dynamic Knapsack, Dynamic Bit-matching
and the DOP generator. These problems enable us to better control the possi-
ble dynamics, making an in-depth analysis and comparison of different results
possible, thereby allowing us to assess the quality of our proposals.

3.3 Performance Measures

Performance measures allow to measure the performance, efficacy and adaptabil-
ity of an EA. These aspects can be evaluated by numeric values whose evolution
in time can be plotted for visual inspection. Those numeric values are:

• On-line performance: consists of the average of all evaluations over the
entire run. More formally:

on-line(t) =
1
N

N∑
t=1

et

3.3. PERFORMANCE MEASURES 19

where N is the number of evaluations and et is the evaluation at time t.

• Off-line performance: is calculated as the average of the best individ-
uals’ fitness observed so far at each time step:

off-line(t) =
1
N

N∑
t=1

et
∗

where N is the number of evaluations and et
∗ is the evaluation of the best

individual since the last change.

• Fitness Overall: consists of the average of the best individual’s fitness
observed at each generation

overall =
1
G

G∑
t=1

bestt

where G is the number of generations and besti is the fitness of the best
individual at generation t.

• Average Error: this measure can be used if the desired optimum is
known. It is calculated as the difference between the optimum and the
best individual found by the algorithm. The average error can be used in
an on-line or off-line version.

• Accuracy: is based on a measure proposed by De Jong [41], the off-line
performance. This can be used if the optimum is a known value. It evalu-
ates the difference between the value of the current best individual and the
optimum value, instead of evaluating only the value of the best individual.
Accuracy consists of the difference between the value of the current best
individual in the population of the “just before change” generation and
the optimum value, averaged over the entire cycle. Accuracy measures the
capacity to recover to the new optimum before a new modification occurs.
If the accuracy reaches a zero value it means that the algorithm found the
optimum every time before a change occurred [99].

acc =
1
K

K∑

i=1

Erri,r−1

where K is the number of changes during the run, r the number of gen-
erations between two consecutive changes and Erri,r−1 is the difference
between the fitness of the best individual at change i, just before change,
and the desired optimum.

• Adaptability: also inspired on De Jong’s measure, it is used combined
with accuracy. It consists of the difference between the value of the cur-
rent best individual of each generation and the optimum value averaged
over the entire cycle. Adaptability measures the speed of the recovery.
If adaptability is equal to zero it means that the best individual in the

20 3. DYNAMIC ENVIRONMENTS

population was at the optimum for all generations, i.e., the optimum was
never lost by the algorithm [99].

ada =
1
K

K∑

i=1


1

r

r−1∑

j=0

Erri,j




where K is the number of changes during the run, r the number of genera-
tions between two consecutive changes and Erri,j is the difference between
the fitness of the best individual at generation j, after the last change, and
the desired optimum after the ith change.

In this thesis we will use the off-line performance and the fitness overall, which
are sufficient to a complete and sound analysis of the performance. More infor-
mation about measures used to evaluate the performance of EAs for dynamic
environments can be found in [109].

Chapter 4

State of the art

Through the years various methods and techniques have been developed to
cope with the difficulties raised by dynamics environments. In the following
sections we review the most significant approaches for empowering EAs to deal
with dynamic environments that were reported in the literature. The different
methods are divided in four main classes: promotion of diversity, using memory,
multi-populations approaches and anticipation of the changes.

4.1 Diversity

The main disadvantage of applying a conventional EA in a dynamic environment
is that, once the algorithm starts to converge around some optimal or near-
optimal solution, it will very likely lose its ability to continue the search for a
new optima, when the environment changes. Hence, one key point in optima-
tracking approaches is the need to increase or maintain high diversity among
the individuals in the population, so that the algorithm retains its ability to
explore the new search space when the problem changes, even after when the
population has partially converged to an optimum or near optimum solution. To
overcome this limitation different methods have been used to either increase the
population’s diversity after a change or to maintain the population’s diversity
throughout the entire run. The next section describes the relevant work about
this topic.

4.1.1 Generating diversity

The methods described in this section aim to increase the population’s diversity
after a change is detected.
The first category consists of restarting the EA every time a change is detected.
This approach is simple to implement and is a valid option, if the changes are too
severe or if the representation changes after a modification in the environment.
Since no information from the past is transferred to the actual configuration
of the EA, this method is not suitable for all types of dynamic optimization
problems. We can find this method described in [36], [45] and [44].

21

22 4. STATE OF THE ART

A different approach to promote diversity after a change consists of re-initializing
the EA with individuals from the previous populations.
Ramsey and Grefenstette [68] introduced a case-based method for initializing
the genetic algorithm when a change is detected. Louis and Xu [53] applied
the same idea to the open shop scheduling problem. They used an EA com-
bined with case-based reasoning. Good solutions from previous populations
were memorized and when the problem changed the old solutions were injected
in the EA’s new population that was trying to solve the new problem. These
methods will be detailed next, in the section about explicit memory approaches.

Another approach to promote diversity after a change is to adapt the mutation
rate. Triggered hypermutation was proposed by Cobb [19] and Grefenstette [20]
for reintroducing diversity into an EA population operating in changing envi-
ronments. In these works the authors explored the use of mutation as a control
parameter for enhancing optimization in an incrementally changing environ-
ment. This method was used with a standard generational EA, with a fixed
population size, proportional selection, N-point crossover, and a small mutation
rate (0.001) that was applied uniformly to the population. Where the algorithm
differed from standard EA was that the small mutation rate (called the ’base’
mutation rate) was not always the mutation rate that was applied to the pop-
ulation. The algorithm was adaptive, since the mutation rate did not remain
constant over time. When a change in the fitness landscape was detected, the
mutation rate was multiplied by a hypermutation factor before it was applied.
Morrison and De Jong [62] revisited this mechanism and examined the effects
on EA performance based on the relationship between the hypermutation factor
and the environmental change period.
Angeline [1] compared the use of self adaptive mutation rate against an evolu-
tionary program without self-adaptation for tracking the optimum in dynamic
environments. The comparative study was applied with different dynamics,
and tested with a simple static function. The authors concluded that, for some
dynamic functions, self-adaptation was effective while for others it was detri-
mental.
Vavak and his colleagues [106] proposed a mutation operator, denominated Vari-
able Local Search (VLS). The GA using this adaptive operator was applied on
two industrial applications where the GA was responsible for the on-line con-
trol systems. The VLS slightly increased the mutation rate when a change was
detected. The authors compared their approach with the hypermutation opera-
tor. The experimental results showed that the VLS operator outperformed the
triggered hypermutation operator for small shifts in the environment.

4.1.2 Maintaining diversity

Instead of generating diversity only when the change happens, other approaches
use methods that maintain the diversity during the entire run. This section dis-
cusses relevant work concerning this topic.
Grefenstette introduced the idea of the random immigrants [35]. Random im-
migrants consisted of the replacement of a percentage of the population by

4.1. DIVERSITY 23

randomly generated individuals. The percentage replaced was called the re-
placement rate. This replacement was made in every generation and aimed to
maintain a continuous level of exploration of the search space, while minimizing
the disruption of the ongoing search.
Exploring the same idea, Yang et al. [124] used a hybrid immigrants scheme and
compared their approach to Grefenstette’s random immigrants. This method
combined the concepts of elitism, dualism and random immigrants: the best
individual from the previous generation and its dual individual were retrieved
in order to create immigrants via mutation. These elitism-based and dualism-
based immigrants together with some random immigrants were substituted into
the current population, replacing the worst individuals in the population. The
strategy for using these three kinds of immigrants was to address environmental
changes of slight, medium and significant severity, respectively. Related work
using similar technics can be found in [122], [123] and [18].
Another random immigrants scheme was proposed by Tinós [97]. In this work,
the worst individuals of the population were replaced by new ones. The re-
placement of an individual could affect other individuals in a chain reaction. A
subpopulation was maintained with the new individuals created in the current
chain reaction. One single replacement could affect a large number of individuals
in the population. The system could exhibit a self-organizing behavior, useful
to control the diversity of the population allowing the algorithm to escape from
local optima when the environment changed.
In the Thermodynamical GA proposed in [57] the population’s diversity was ex-
plicitly controlled using a measure called “free energy” (F). This algorithm used
the concepts of temperature (T) and entropy (E) as in the simulated annealing,
and maintained the diversity of the population explicitly and systematically.
The free energy F was computed using the fitness function, the entropy and
the current temperature. The individuals with minimum F were preserved for
the next generation and the temperature T was used to control the diversity of
the population. The algorithm was tested on the time-varying knapsack prob-
lem. A modified version of this algorithm, called Feedback Thermodynamical GA
(FTDGA) was proposed in [59] with some enhancements, namely the adaptive
control of the temperature F to regulate the level of diversity of the population.

Different approaches modify the selection methods for promoting population’s
diversity during the entire run. One of these methods consists of building niches
that force the individuals of the population to explore different areas of the
search space. The most popular methods for creating niches are sharing and
crowding. Sharing was first introduced by Holland [39] and further explored by
Goldberg et al. [31]. When using a sharing mechanism, the individuals in the
same region of the search space shared their fitness. The fitness of the individ-
uals that were highly similar was reduced. This method penalized redundant
individuals while rewarding the individuals that were isolated, thus enabling
the exploration of different areas of the search space. Crowding was introduced
by Holland [39] and selected a proportion of the population (called generation
gap (G)) to reproduce each generation. For each offspring, a certain number of
individuals, called crowding factor (CF), were randomly selected and the most

24 4. STATE OF THE ART

similar individual was replaced by the offspring. By choosing the most similar
member for replacement, the crowding mechanism slowed down the tendency of
the EA to converge to a single point of the search space. Sharing and crowd-
ing mechanisms were used in EAs for dynamic environments by Cedeno and
Vemuri [17]. This work used a replacement scheme called worst among similar
(WAS) to promote competition among similar individuals while allowing com-
petition among members of different niches as well. The authors showed that
the proposed method was capable of tracking different regions and adapting to
new peaks that appeared in the landscape.
Other works using these techniques in dynamic environments can be found
in [75], [77], [50], [54].

Morrison [60] proposed a different approach to promote diversity based on the
placement of sentinels in different regions of the search space. Sentinels were
a sub-set of the population and were uniformly distributed through the search
space. They consisted of normal individuals of the population, that could be
selected and recombined, but were fixed, since they could not be replaced or
mutated. Through the use of sentinels, different regions of the landscape were
tracked. When a change happened, if the population had converged to a peak
that was no longer the optimum, sentinels from other regions were used to cre-
ate new individuals that increased the diversity of the population allowing the
readaptation of the EA.

The use of the immune system (IS) ideas in the EA is another method for
promoting the diversity through the run. The IS is a complex, distributed and
multi-layered system, which includes cells, molecules and organs that consti-
tute an identification mechanism capable of recognizing and eliminating foreign
molecules called antigens. The human body maintains a large number of im-
mune cells. Some belong to the innate IS, e.g. the macrophages, while others
are part of the acquired, or adaptive IS and are called lymphocytes. There are
mainly two types of lymphocytes, the B-cells and the T-cells, which cooperate
but play different roles in the immune response. The main functions of the
B-cells are the production and secretion of antibodies as a response to exoge-
nous organisms. Each B-cell produces a specific antibody, which can recognize
and attach to a specific pathogen. In order to do their job correctly the B-
cells replicate by a process called clonal selection. This process is similar to the
evolution of a population using a genetic algorithm with mutation and without
recombination. The B-cells that have antibodies, which bind to the pathogen,
are selected and cloned. Nevertheless, during cloning some variations may oc-
cur due to a process of somatic hypermutation. This may increase the affinity
between the antibody and the antigen, making the B-cell more adapted to bind
to the antigen. The foregoing discussion of the immune system was applied to
promote diversity in EAs for dynamic environments by Simões and Costa [87],
Yang [118] and Liu et al. [51].

Uyar et al. [103] used a diploid representation of individuals with a dynamic
dominance map mechanism and meiotic cell division that to help preserve di-

4.2. MEMORY 25

versity.

4.2 Memory

In dynamic problems, memory is used to store successful past solutions with
the assumption that the optimum may return to its former value. When certain
aspects of the problem exhibit some kind of periodic behavior, old solutions
might be used to bias the search in their vicinity and reduce computational
time. The use of memory is beneficial on those types of environments. Memory-
based approaches can be divided in two categories: implicit memory and explicit
memory.

4.2.1 Implicit Memory

The use of redundant representations is the main characteristic of the implicit
memory methods. Those approaches use diploid or multiploid chromosomes to
implicitly memorize the best individual of the population. A dominance scheme
controls which genes are expressed in the phenotype. Diploid representations
were first used by Goldberg et al. [32]. They introduced a triallelic dominance
scheme, where the value of each allele could be 0, dominant-1 or recessive-1.
Their method was tested in the dynamic knapsack problem and the results were
significantly better than with the standard GA. A different dominance method
was suggested by Ng and Wong [64]. They used four possible alleles (0-recessive
and dominant and 1-recessive and dominant). The proposed method analyzed
the individuals’ fitness: whenever the individuals’ fitness decreased more than
20%, the dominance mechanism changed from dominant to recessive and vice-
versa, resulting in the inversion of all alleles pairs. Other works using implicit
memory based on diploid representations and dominance mechanisms can be
found in [74], [48], [102], [104], [119].
Implicit memory can also be implemented using dualism mechanisms as sug-
gested in [125]. This mechanism was inspired by the complementarity and
dominance mechanisms present in natural systems. A pair of chromosomes was
called primal-dual to each other, if their Hamming distance was the maximum in
the search space. In every generation, after selection, recombination and muta-
tion being performed on the population’s individuals, a set of those individuals
were selected and used to evaluate their duals. If the dual chromosome was fit-
ter, the primal was replaced, otherwise the primal survived and was preserved
in the next generation. Other works using dualism mechanisms were described
in [107], [67] and [108].

4.2.2 Explicit Memory

The memory-based approaches using explicit memory need an extra space to
explicitly store information about the individuals or the environments. In these
methods, one population performs the search for the optimum and the other

26 4. STATE OF THE ART

population, called memory, stores useful information that is reused later. Con-
cerning which information is stored in memory, Yang [121] divided explicit mem-
ory approaches into two main groups:

• Direct memory schemes: store the best individuals and reuse them
when a change in the environment is detected.

• Associative memory schemes: store the best individuals and the envi-
ronmental information associated with these individuals. When a change
is detected, both information is used to create new individuals which are
introduced into the population.

A third group can be added to this classification - immigrant memory schemes
- which store the best individuals of the population and use them to create im-
migrants that are introduced into the population.

Direct memory schemes

Ramsey and Grefenstette [68] introduced an EA model that stored good can-
didate solutions for a robot controller in a permanent memory together with
information about the environment. The idea was that if the robot environ-
ment became similar to a stored environment instance, the corresponding stored
solution was reactivated. The authors claimed that their technique prevented
premature convergence by a higher level of diversity and yielded significant im-
provements.

Louis and Xu [53] applied the same idea to the open shop scheduling problem.
Whenever a change occurred, the EA was restarted and the population was
initialized with a seed from the old run and the rest randomly. The authors
concluded from the experiments that a seed of 5-10 % from the old run pro-
duced better and faster results than running the EA with a totally randomly
initialized population after a change occurred.

Mori et al. introduced a memory-based EA called memory-based thermodynam-
ical GA (MBTDGA) proposed in [58]. The algorithm was an extension of the
thermodynamical GA explained before. The MBTDGA used a search and a
memory population, both controlled by a measure called “free energy” (F). The
best individual of the population was memorized at every generation replacing
an existing individual. The individual to be replaced was selected based on its
age and its energy F. The new population was created by selecting from the
old parents and the offspring the individuals that minimized the factor F. The
algorithm was tested on the dynamic knapsack problem.

Branke proposed a memory/search EA [13] which used two populations, named
memory and search populations. The memory stored good solutions, while the
search population searched for the optimum. The seracg population was re-
initialized with the memory individuals whenever a change was detected. A
variant of this algorithm was also analyzed by Branke. This variant used two

4.2. MEMORY 27

independent search populations, plus the memory population. Later [14], a
multi-population method was combined with the memory.

Bendtsen et al. [8] used a dynamic memory EA. The memory was used to keep
track of the dynamic changes, instead of storing old solutions. A fixed num-
ber of solutions were kept in the memory but were not replaced by others.
The memory solutions were adjusted to the changes in the search environment.
When a change was detected, the memory individuals were adjusted as follows:
the best individual in the population was selected and the closest (most similar)
stored candidate solution was found. The closest stored individual was gradually
moved towards the currently best individual in the population. This direction
of the movement was decided by calculating the direction from the genotypes
of the individual to the best individual. The distance of the movement corre-
sponded to the distance between the two locations multiplied with the absolute
value of a Gaussian random number with a mean of zero and a variance of 0.5.
Afterwards, the memory individual was introduced into the search population
by replacing the worst individual.

A memory scheme inspired on the B-cells of the natural immune system was
introduced by [87]. In order to mimic the natural immune system, the al-
gorithm used gene libraries, clonal selection with somatic hypermutation and
memory B-cells. The environment was saw as the antigen and the changes in
the environment as the appearance of different antigens. This algorithm used
two populations of individuals. The first one consisted of plasma B-cells indi-
viduals which stored the best individuals of the population. When a change
occurred, the individual with best match to the optimum (antigen) was selected
and cloned. During the cloning phase every individual was modified by a mech-
anism similar to the somatic hypermutation of B-cells. Other approaches of this
algorithm to solve dynamic problems were investigated by [118] and [51].

Yang proposed a direct memory scheme, called memory-enhanced genetic algo-
rithm (MEGA) [114]. This algorithm used a search and a memory population
with fixed sizes. The search population evolved by using selection, crossover and
mutation. From time to time, the memory was updated storing the current best
of the population. Whenever a change was detected, the two populations were
merged and the best p individuals (p was the population size) were selected to
the next population, while the memory remained unchanged.

Associative memory schemes

Associative memory schemes use the memory to store the best individuals from
the population and additional information about the environment. This infor-
mation is used to create new individuals every time a change occurs.
Trojanowski et al. [100] introduced an evolutionary algorithm extended by two
different mechanisms: a memory and a diversity maintenance technique. The
memory was used to store individuals, and additional information associated
to the individual’s ancestors. The memory started empty, and each time after

28 4. STATE OF THE ART

a new individual was created, if it was included in the next generation of the
population, the active chromosome of its parent (or a better parent - in case
there are two parents) was added to the memory. In addition, the memorized
solution inherited the chromosomes in the memory of its parent or better par-
ent. When the memory buffer was full the oldest chromosome was deleted to
make room for a new one. When a changed was detected, the best individual in
the memory and the associated information, was used to update the population.
Additionally, this algorithm used random immigrants that were introduced into
the population, every time a change was detected.

Yang [126] proposed the population based incremental learning (PBIL) algo-
rithms used for dynamic optimization problems. This algorithm used a prob-
ability vector to store the allele distribution of the individuals of the current
population. This vector represented the environmental information associated
with that population. When the memory was updated, the distribution vector
was stored and associated with the best memorized individual. When an en-
vironmental change was detected, the best individual in the memory and the
associated probability vector were retrieved and used for creating new individu-
als to replace the worst of the population. Different applications of this method
was used in [126], [117] and [127].

An analogous memory indexing algorithm was proposed in [43]. The authors
proposed a memory indexing algorithm (MIA) which also used a vector with the
alleles distribution. The memory stored a distribution vector for each different
environment (or group of similar environments) encountered during the run.
When change occurred, the distribution alleles of the population was calculated
and was stored in memory, associated to a group of similar environments. If
a similar environment was found before, a percentage of the population was
re-initialized using the corresponding distribution alleles, otherwise a standard
hyper-mutation method was applied.

A different memory scheme based on abstraction was proposed in [70]. This
abstraction based memory mechanism stored the good solutions as an abstrac-
tion. An abstraction of a good solution was defined by its approximate location
in the search space. Memory corresponded to a n-dimensional matrix whose
elements represented search sub-spaces. During the memorizing process, the
selected individuals were sorted according to their partition in the search space
which they represent. When a change was detected, the memorized individuals
were selected according to their corresponding partition, mutated and inserted
into the population. Further investigations of this algorithm were performed
in [71].

Barlow [7] investigated a memory-enhanced evolutionary algorithm to the dy-
namic job shop scheduling problem. This memory-based EA used a classifier-
based memory for abstracting and storing information about schedules, that was
used to build similar schedules at future times. The authors compared their ap-
proach with a standard EA and several common EA diversity techniques both

4.2. MEMORY 29

with and without memory.

Immigrant memory schemes

Other memory-based EAs use immigrants in order to increase the population’s
diversity.
The approach proposed by Trojanowski et al. [100], previously described, used
random immigrants combined with memory. The random immigrants were cre-
ated every time a change occurred, replacing a percentage of the individuals of
the population.

A similar algorithm, called Memory Random Immigrants Genetic Algorithm
(MRIGA) was studied in [123]. MRIGA combined memory and random im-
migrants. The memory was updated with the current best individual of the
population and was used whenever a change occurred. At this time, the popu-
lation and the memory were merged and the the best p individuals (p was the
population size) were selected to form the next population. Before applying se-
lection, crossover and mutation, a number of random immigrants was generated
and inserted into the population, replacing the worst solutions.

Yang introduced a different immigrant memory scheme called Memory Immi-
grant Genetic Algorithm (MIGA) [114]. In this algorithm the memory, besides
storing the best individuals of the population, was used to create immigrants.
In every generation, the best individual from memory was selected to create
immigrants by mutation. Those immigrants replaced the worst individuals of
the population. This algorithm was compared with other approaches in [93]
and [123].

4.2.3 Replacing strategies

For explicit memory schemes, since the memory space is limited, it is important
to decide how the memory must be updated when its capacity is full. A general
strategy is to select one individual from the memory and to replace it with the
best individual from the population. Determining which individual must be
replaced is made according to a chosen replacing strategy.
The previously described memory approaches used different replacing methods.
For instance, Mori [58] decided which individual to replace based on its free
energy and age. Trojanowski [100] replaced the oldest individual in memory. In
general, the remaining approaches used the method called similar proposed by
Branke [14]. Branke investigated and compared the following replacing schemes:

• mindist: this strategy analyzed the two individuals in memory with the
minimum distance between them and replaced the worst with the best
individual in the population. For example, suppose that individuals i and
j were chosen:

- if fiti < fitj , replaced the individual j by the current best

30 4. STATE OF THE ART

- if fiti > fitj , replaced the individual i by the current best

• midinst2: this method was analogous to the midist scheme, but the
individual from the memory selected to be replaced was compared with
the new individual to store. Again, suppose that individuals i and j were
chosen:

- if fitj ∗ dij

dmax
≤ fitnewind, replaced the individual j by the current best

- otherwise, replaced the individual i by the current best

where dij was the distance between the individuals i and j and dmax

was the maximal possible distance between the individuals i and j.

• variance: replaced the individual i that, when deleted, preserved the
maximum variance V (i) in memory. The variance was calculated using
the equation:

V (i) =
m∑

j=1

∑

k∈M\{i}
(xjk − x̄j)2

where m was the chromosome length; M was the memory; xjk was the
allele j of individual k and x̄j was the average allele value at position j of
all memory individuals.

• similar: in this method, the current best individual of the population
replaced the most similar individual stored in memory as long as it was
a better solution. The similarity measure depended on the used represen-
tation. For binary encodings, the similarity between to individuals was
measured using the Hamming distance.

Branke studied these replacing strategies and concluded that the similar method
was the most efficient.

No further investigations concerning this issue have been proposed and the most
similar strategy introduced by Branke became the most popular method used
in memory-based EAs.

4.3 Multi-populations

In this type of EAs, the main population is divided into several sub-populations
that track different peaks of the landscape. The different sub-populations are
placed in different regions of the search space, preserving diversity and allowing
the EA to readapt when a change occurs.

The Shifting Balance Genetic Algorithm, suggested in [65, 111], used a core
population and a number of smaller colony populations. The core population
was dedicated to track the current optimum and the smaller populations were
responsible for searching in different areas of the search space. If a colony pop-
ulation became too close to the core population, the parents used to build the

4.3. MULTI-POPULATIONS 31

next population were selected based on their distance to the core population.
The colony was then forced to move towards a distant area. From time to time,
individuals from the colonies were sent to the core population maintaining its
diversity.

The Multinational Genetic Algorithm (MGA), introduced by Ursem [101], used
multiple sub-populations called nations. Nations were used to group individuals
using a method called hill-valley detection procedure. This method, given two
points in the search space, computed the fitness of a number of random sample
points on the line between these two points. A valley was found if the fitness in
a sample point was lower than the fitness of both end points. The creation of a
nation and the migration of individuals between nations followed a set of rules:
in every generation the algorithm compared each individual with the policy of
its nation. A policy corresponded to a single point representing the peak of
the nation is approaching. If a valley was detected, the individual migrated
to a different nation, since it was moving away from the peak where the other
individuals of these nations were located. The destination nation was selected
comparing the individual to the policy of each of the other nations. If no nation
fitted the individual’s characteristics, then that individual found a new peak
and a new nation was created. Two nations were merged if they were close to
the same peak.

The Self-Organizing Scouts (SOS), proposed by Branke [14,15], used the concept
of Forking Genetic Algorithms (FGAs) within the context of dynamic optimiza-
tion problems. The FGA was based on the idea of dividing the search space
into several parts, each exclusively explored by one of several sub-populations.
A parent population continuously searched for new peaks, while a number of
child populations exploited previously detected promising areas. Whenever the
parent population had converged to one region, the FGA separated this region
from the parent population’s search space and assigned a child population to it
for further exploitation. If the maximum allowed number of forking populations
was reached, the oldest forking population was deleted. The use of the FGA
in the context of dynamic problems was called Self-Organizing Scouts, because
the individuals operated as scouts that explored different regions of the search
space. The algorithm started a single population searching through the entire
search space. At regular intervals, this population (parent population) was ana-
lyzed and, depending on the distance of the individuals, a child population may
be formed by splitting off from the parent population. The parent population
continued to search in the remaining search space and other sub-populations
could be created by forking.

The Adaptive Island Model (AIM), proposed by Younes et al. [128], used an
EA with a certain number of sub-populations (islands) of the same size. The
number of islands was decided by two measures: the island diversity and the
population diversity. Both measures of diversity were based on the genotypic
distance between individuals. Each island was a small population that evolved
under the control of its own diversity independent from other islands. In this

32 4. STATE OF THE ART

way, an island played the role of a niche, as it consisted of individuals that
were close to each other. After a pre-determined number of generations, the
best individual from one island migrated to another, transferring new genetic
material to the destination island.

4.4 Anticipation and Prediction

Recently, several studies concerning anticipation in changing environments us-
ing EAs have been proposed. The main goal of these approaches was to estimate
the likelihood of particular future situations and to decide what the algorithm
should do in the present situation. Since information about the future typically
was not available, it was attained through learning from past situations.

Branke et al. [16] tried to understand how the decisions made at one stage influ-
enced the problems encountered in the future. Future changes were anticipated
by searching not only for good solutions but also for solutions that influenced
the state of the problem in a positive way. These so-called flexible solutions
were easily adjustable to changes in the environment. Studies on the tardiness
job-shop problem, with jobs arriving non-deterministically over time, showed
that avoiding early idle times increases flexibility, and thus the inclusion of an
early idle time penalty as secondary objective into the scheduling algorithm,
could significantly enhance the system’s performance.

Stroud [96] used a Kalman-Extended Genetic Algorithm (KGA) in which a
Kalman filter was applied to the fitness values associated with the population
individuals. The goal of this Kalman filter was used to determine when to gener-
ate a new individual, when to re-evaluate an existing individual, and which one
to re-evaluate. This KGA was applied to the problem of maintaining a network
configuration with minimized message loss in which the nodes were mobile and
the transmission over a link was stochastic. As the nodes moved, the optimal
network changed, but the information contained within the population of solu-
tions allowed efficient discovery of better-adapted solutions.

Van Hemert et al. [105] introduced an EA with a meta-learner to estimate, at
time t, how the environment would be at time t+δ. This approach used two
populations, one that searched the current optimum and another that used the
best individuals in the past to predict the future best value. The prediction
was made based on observations from the past, using two types of predictors:
a perfect predictor and a noisy predictor. In fact, they should not be called
predictors. Concerning the former, the correct optimal value at the future time
step was given to the solver, and the latter just provided the system noisy
values as the optimal solution for the next step. The idea was tested with two
benchmark problems: the knapsack problem and the Ǒsmera’s function.

An integrated system combining prediction, optimization and adaptation tech-
niques was proposed in [76] and applied to a real world application used to
find the best distribution of cars of a particular model across the nation. The

4.4. ANTICIPATION AND PREDICTION 33

problem was complex and the implemented model addressed the issues of trans-
portation, volume sensitivity effect, price depreciation, recent history, current
inventory, risk factors and dynamic market changes. The system had three
main modules: optimization, prediction and adaptation. The prediction mod-
ule used information from the past to give prediction about the sale prices.
In this paper, no information was given about which techniques were used to
provide the predictions. The other two modules used the information provided
by the prediction module and provided an answer to the actual problem. The
optimization module used an EA to make the optimization task. Finally, the
adaptation module received new information about the problem and adapted
the parameters of the prediction module in order to decrease the prediction er-
ror. Later, in [120], this model was used in three different case studies.

Bosman [11], [12] proposed several approaches focused on the importance of
using learning and anticipation in online dynamic optimization. In his works,
he analyzed the influence of time-linkage present in problems such as scheduling
and vehicle routing. The presence of time-linkage in this kind of problem can
influence the overall performance of the system: if a decision is made just to
optimize the score at a specific moment, it can negatively influence the results
obtained in the future. Bosman’s works proposed an algorithmic framework in-
tegrating evolutionary computation with machine learning and statistical learn-
ing techniques to estimate future situations. Predictions were made based on
information collected from the past. The used predictor was a learning algo-
rithm that approximated either the optimization function or several parameters.

Hatzakis et al. [38] used prediction techniques to forecast the location of the
Pareto front in multi objective problems. This approach stored the location of
previous solutions and used autoregressive models to predict the position of the
new optimal solution in the next time step. The changes on the environment
were known à priori in order to decide when to make the next prediction.
A similar technique for multiobjective optimization was investigated by Zhou et
al. [129]. This approach explored prediction technics to re-initialize the popula-
tion of an EA. The proposed method used information from the past to guide
future search. Each individual in the population was tracked and its history
was modeled through a time series model. Predictions about each individual’s
position at the next time step were made using a linear model. These predic-
tions were used to re-initialize the population after a change was detected. Two
strategies for population re-initialization were investigated. The first, predicted
the new location of individuals from the location changes that had occurred in
the past. Then, the current population was updated using new individuals gen-
erated based on that prediction. The second strategy consisted of perturbing
the current population with a Gaussian noise, whose variance was estimated
according to the previous changes.

Rossi et al. [72] compared different techniques to improve the search for tracking
a moving optimum using the information provided by a predictor mechanism
based on Kalman filters. The used predictor assumed that the changes in the

34 4. STATE OF THE ART

environment were not random and could be learned, helping the EA to keep
track of the current optimum.

4.5 Hybrid methods

Although some of the referenced work have been included in one of the pre-
vious sections, some of them used a combination of more than one method.
Branke [14] stated that memory should always be used in combination with
some mechanism to preserve the population’s diversity. The combination of
memory, either implicit or explicit, and diversity was used in [68], [53], [57,58],
[59], [103], [87], [118], [51].
The multi-populations approach described before also combined memory and
methods for promoting the diversity.

Chapter 5

Improving Memory

When using memory-based EAs some questions can be asked concerning mem-
ory:

1. When and which individuals should be stored in memory?

2. Which individuals should be selected from the memory and introduced
into the population when a change happens?

3. Which individuals should be replaced when the memory is full?

4. What is the best size for the memory?

In this chapter we focus in providing answers to the last two questions.

5.1 Memory-based Evolutionary Algorithms

Memory-based EAs work by storing explicitly or implicitly good solutions of the
current population. In explicit memory approaches, besides the search popula-
tion, an extra space - called memory - is used. The stored information can be
reused later in new environments. When the environment changes, old solutions
in the memory that are fit for the new environment are reactivated allowing the
EA to readapt to the new environment. These approaches are suitable when the
environments change cyclically: if good solutions from the past are memorized,
they can be reused in similar future situations. After the retrieval of memory
individuals, the EA readapts easier to the new environment.
To see if our methods for improving memory could be efficiently used in differ-
ent types of memory-based EAs, we implemented three different algorithms: a
direct-memory approach, the Memory-Enhanced Genetic Algorithm (MEGA),
an immigrant memory algorithm, the Memory-Immigrants Genetic Algorithm
(MIGA) and an associative memory method, the Associative-Memory Genetic
Algorithm (AMGA).

In MEGA [114], the population and the memory were initialized at random.
The memory was updated as follows: after being updated, the algorithm decided
the next time the memory should be updated using a random integer between 5

35

36 5. IMPROVING MEMORY

and 10: if the memory was updated at generation t, the next update would occur
at generation t + rand(5, 10). In order to store the most relevant information
to an environment in the memory, each time an environmental change was
detected, the memory was also updated. When the memory was updated, the
current best individual of the population (if the memory update was due to
t = tm) or the elite from the previous population (if the memory update was
because a change detection) was stored replacing a random individual, if any
was still present. If not, the best individual or the elite replaced the closest
memory point if it was a better solution, according to the current environment or
the previous environment. The memory was also used to detect environmental
changes: a change was detected when at least one individual of the memory
changed its fitness. At this moment, a new set of individuals was formed by
merging the memory and the search population. Then, these individuals were
evaluated in the context of the new environment, and the best p (population size)
individuals were selected to become the new search population, which evolved
through selection, crossover and mutation. Through this process, the memory
remained unchanged. The best individual from the previous population was
preserved and transferred to the next population replacing the worst individual
(elitism of size 1). The pseudo code for MEGA is shown in Figure 5.1.

5.1. MEMORY-BASED EVOLUTIONARY ALGORITHMS 37

Function MEGA

n : g l oba l number o f i n d i v i d u a l s

m : memory s i z e , p : popu lat ion s i z e

t : cu r r ent gene ra t i on

tm : time to update memory

t = 0

tm = rand(5, 10)

P (0) = i n i t i a l i z e populat ion randomly

M(0) = i n i t i a l i z e memory randomly

repeat

eva luate memory M(t) and populat ion P (t)

r ep l a c e the worst in P (t) by the best i nd i v i dua l

from P (t− 1)

i f change i s detec ted

merge P (t) and M(t)

s e l e c t the p best i n d i v i d u a l s to form P ′(t)
else P ′(t) = P (t)

i f t = tm or change detec ted

i f t = tm

Bp(t) i s the bes t i nd i v i dua l from P ′(t)
i f change detec ted

Bp(t) i s the bes t i nd i v i dua l from P (t− 1)

i f s t i l l any random point s to r ed in M(t)

r ep l a c e random ind i v i dua l with Bp(t)

else

i f t = tm

s e l e c t memory i nd i v i dua l Sm(t)

i f fitness(Sm(t)) < fitness(Bp(t))

Sm(t) i s r ep l aced by Bp(t)

i f change detec ted

s e l e c t memory i nd i v i dua l Sm(t− 1)

i f fitness(Sm(t− 1)) < fitness(Bp(t))

Sm(t− 1) i s r ep l aced by Bp(t)

tm = t + rand(5, 10)

P ′′(t) = Selection(P ′(t))
Crossover(P ′′(t))
Mutation(P ′′(t))
P (t + 1) = P ′′(t)
t = t + 1

un t i l s t op cond i t i on

Figure 5.1: Pseudo code for the MEGA algorithm

38 5. IMPROVING MEMORY

MIGA [114] used the same memory updating mechanism as MEGA. How-
ever, the memory retrieval did not depend on the detection of environmental
changes. This algorithm used the memory individuals to create immigrants.
The memory was reevaluated every generation and the best individual from the
memory was used to create immigrants that were introduced into the main pop-
ulation. The number of immigrants was a percentage (ri) of the total number
of individuals (n). The immigrants were created by mutating the best memory
individual using an established mutation probability (pi). Those immigrants
were introduced into the population replacing the worst ri ∗n ones. The pseudo
code for MIGA is shown in Figure 5.2.

AMGA was first introduced in [116] and was inspired in the Population-
Based Incremental Learning (PBIL) algorithm proposed by Baluja [6]. The
AMGA was a PBIL-like algorithm using an explicit memory scheme which
stored the current best individual of the population as well as the environmen-
tal information given by a real-value probability vector. Each memory point
consisted of a pair < S, V > where S was the stored individual and V was the
associated allele distribution vector. This vector gave the frequency of ones over
the population at each gene locus. As in MEGA, the AMGA reevaluated the
memory every generation and if a change was detected, the best individual in
the memory < Bm, Vm > was extracted and used to create a set of α ∗ n new
individuals using the vector Vm. Those new individuals were inserted into the
population replacing the worst ones. The parameter α ∈ [0, 1] - called asso-
ciative factor - determined the number of individuals created from the memory
when a change occurred. Each new individual I = {g1, g2, ...gl} was created
from Vm = {d1, d2, ..., dl} (l was the chromosome length) as follows:

gi =
{

1 if rand(0.0, 1.0) < di

0 otherwise

The memory updating mechanism was analogous to the one used in MEGA.
Every time the memory was updated, the pair < Bp, Vp > was created and
stored in the memory. Bp was the current best individual of the population
and Vp was the allele distribution vector of the actual population. This pair
replaced a random point in the memory if one still existed, or the closest point,
otherwise. When a change was detected, a set of new individuals was created,
replacing the worst ones of the population. The pseudo code for AMGA is
shown in Figure 5.3.

5.1. MEMORY-BASED EVOLUTIONARY ALGORITHMS 39

Function MIGA

n : g l oba l number o f i n d i v i d u a l s

m : memory s i z e , p : popu lat ion s i z e

t : cu r r ent gene ra t i on

tm : time to update memory

t = 0

tm = rand(5, 10)

P (0) = i n i t i a l i z e populat ion randomly

M(0) = i n i t i a l i z e memory randomly

repeat

eva luate memory M(t) and populat ion P (t)

r ep l a c e the worst in P (t) by the best from P (t− 1)

i f t = tm or change detec ted

i f t = tm : Bp(t) i s the bes t from P (t)

i f change detec ted : Bp(t) i s the best from P (t− 1)

i f s t i l l any random point s to r ed in M(t)

r ep l a c e random ind i v i dua l with Bp(t)

else

i f t = tm

s e l e c t memory i nd i v i dua l Sm(t)

i f fitness(Sm(t)) < fitness(Bp(t))

Sm(t) i s r ep l aced by Bp(t)

i f change detec ted

s e l e c t memory i nd i v i dua l Sm(t− 1)

i f fitness(Sm(t− 1)) < fitness(Bp(t))

Sm(t− 1) i s r ep l aced by Bp(t)

tm = t + rand(5, 10)

// c r e a t e immigrants

Bm i s the bes t i nd i v i dua l o f the M(t)

PI(t) = c r ea t e ri ∗ n immigrants from Bm (pi)

eva luate memory−based immigrants

r ep l a c e worst ri ∗ n i n d i v i d u a l s in P (t) with PI(t)

P ′(t) = Selection(P (t))

Crossover(P ′(t))
Mutation (P’ (t))

P (t + 1) = P ′(t)
t = t + 1

un t i l s t op cond i t i on

Figure 5.2: Pseudo code for the MIGA algorithm

40 5. IMPROVING MEMORY

Function AMGA

n : g l oba l number o f i n d i v i d u a l s

m : memory s i z e , p : populat ion s i z e

t : cu r r ent gene ra t i on

tm : time to update memory

t = 0

tm = rand(5, 10)

P(0) = i n i t i a l i z e populat ion randomly

M(0) = i n i t i a l i z e memory randomly

(V s t a r t s with 0 .5 at every l o c i)

r epeat

eva luate memory M(t) and populat ion P (t)

r ep l a c e the worst in P (t) by the best i nd i v i dua l

from P (t− 1)

i f change i s detec ted

< Bm(t), Vm(t) > i s the bes t i nd i v i dua l in M(t)

PI(t) = c r ea t e α ∗ n i n d i v i d u a l s from Vm(t)

P ′(t) = r ep l a c e worst α ∗ n i n d i v i d u a l s

in P (t) with PI(t)

else

P ′(t) = P (t)

i f t = tm

tm = t + rand(5, 10)

Bp(t) i s the best i nd i v i dua l o f the P ′(t)
Vp(t) i s the a l l e l e d i s t r i b u t i o n vec to r o f P (t)

i f s t i l l any random point s to r ed in M(t)

r ep l a c e random ind i v i dua l with < Bp(t), Vp(t) >

else

s e l e c t memory po int <Sm(t), Vm(t) >

i f fitnessSm(t) < fitnessBp(t)

< Sm(t), Vm(t) > i s r ep l aced by < Bp(t), Vp(t) >

P ′′(t) = Selection(P ′(t))
Crossover(P ′′(t))
Mutation(P ′′(t))
P (t + 1) = P ′′(t)
t = t + 1

un t i l s t op cond i t i on

Figure 5.3: Pseudo code for the AMGA algorithm

5.2. REPLACING STRATEGIES 41

5.2 Replacing Strategies

Since memory has limited size, it is necessary to maximize its capacity and
carefully select the individuals to be replaced when it is full. In chapter 4 we
saw that this issue was already explored and different replacing schemes have
been proposed [13], [8]. In this thesis we introduced three new mechanisms for
replacing memory individuals when the maximum capacity has been reached.

5.2.1 Aging

The first replacing strategy based on age was called age1. Every individual in
the memory had an attribute that indicated its age. When the memory was ini-
tialized, all individuals started with an age equal to zero. In every generation,
the age of all the memory individuals increased one unit. Also, if a memory
individual was selected to be inserted into the population when a change was
detected, its age was increased by a specific value. Finally, there was a maximum
value for the individual’s age. If a memory individual reached this maximum,
its age was reset to zero. When the memory was full and it was necessary to
start replacing the memory individuals, the youngest individual was selected to
be deleted and replaced by a new member (if this individual was better). The
underlying idea was to replace an individual with less contribution to the EA’s
performance: one that was never selected to the population or that was in the
memory for a long time and its age was set to zero. Figure 5.4 describes the
pseudo code for this replacing strategy.

The second replacing strategy based on age was called age2. Every individual
in memory had an attribute that indicated its age. When the memory was
started, all individuals had age equal to zero. In every generation, the age of all
the memory individuals was computed using a linear combination of its actual
age and a contribution of its fitness. This contribution was set using a parameter
called fit rate. More formally, the age of an individual was calculated using
equation 5.1.

agei = agei + 1 + fit rate ∗ fitnessi , with i = 1, 2, ..., m (5.1)

where m was the memory size.

In this strategy, the individuals’ age was not set to zero, so the older individuals
were not penalized. When the memory was full and it was necessary to start
replacing memory individuals, again the youngest was selected to be deleted
and replaced by a new member if this individual was better.
Figure 5.5 describes the pseudo code for this replacing strategy.

42 5. IMPROVING MEMORY

Function Age1 Replacing Strategy

m : memory s i z e

C : age ’ s increment

MAX AGE : maximum al lowed age

i = 1, .., m

i n i t i a l i z e memory randomly

agei = 0

every gene ra t i on : agei = agei + 1

i f change detec ted

Mk i s the s e l e c t e d memory i nd i v i dua l

I n s e r t Mk i n t o populat ion (r e p l a c e s worst)

ageMk = ageMk + C

i f agei ≥ MAX AGE

agei = 0

i f i t i s time to update memory

Bp i s the bes t i nd i v i dua l o f the populat ion

i f the re are random ind i v i d u a l s in memory

s e l e c t a random memory i nd i v i dua l Mrnd

memory i nd i v i dua l Mrnd i s r ep l aced by Bp

else

s e l e c t memory i nd i v i dua l Msel with the lowest age

i f fitness(Msel) < f i t n e s s (Bp)

memory i nd i v i dua l Msel i s r ep laced by Bp

Figure 5.4: Pseudo code of the age1 replacing strategy

Function Age2 Replacing Strategy

m : memory s i z e

fit rate : f i t n e s s c on t r i bu t i on . fit rate ∈ (0, 1)

i = 1, .., m

i n i t i a l i z e memory randomly

agei = 0

every gene ra t i on : agei = agei + 1 + fit rate× fitnessi

i f i t i s time to update memory

Bp i s the bes t i nd i v i dua l o f the populat ion

i f the re are random ind i v i d u a l s in memory

s e l e c t a random memory i nd i v i dua l Mrnd

memory i nd i v i dua l Mrnd i s r ep laced by Bp

else

s e l e c t i nd i v i dua l Msel with the lowest age

i f fitness(Msel) < fitness(Bp)

i nd i v i dua l Msel i s r ep laced by Bp

Figure 5.5: Pseudo code of the age2 replacing strategy

5.2. REPLACING STRATEGIES 43

5.2.2 Generational

This replacing strategy, denominated by generational, aimed to maximize the
number of different individuals present in the memory by storing, if possible,
an individual for each different environment already known. In order to have
a different individual per environment, this strategy, when updating the mem-
ory, checked if any random individual still existed or if a solution was stored
since the last change. In those cases, the best individual of the population was
memorized: a random individual was always replaced; an individual from the
same environment was replaced if it was worst than the current best. Finally, if
no individual had been stored since the last change and there were no random
individuals to replace, we selected the individual that was genetically similar to
the current best and replaced it, if it was worse than the current best.
Figure 5.6 describes the pseudo code for this replacing strategy.

Function Generational Replacing Strategy

m : memory s i z e

t : cu r r ent gene ra t i on

i = 1, .., m

t = 0

i n i t i a l i z e memory randomly

i f i t i s time to update memory

Bp i s the bes t i nd i v i dua l o f the populat ion

i f the re i s a memory i nd i v i dua l Mi

o f the same environment s to r ed in memory

i f fitness(Mi) < fitness(Bp)

memory i nd i v i dua l Mi i s r ep laced by Bp

else

i f the re are random ind i v i d u a l s in memory

s e l e c t a random memory i nd i v i dua l Mrnd

memory i nd i v i dua l Mrnd i s r ep l aced by Bp

else

s e l e c t memory i nd i v i dua l Msel

(the most s im i l a r with Bp)

i f fitness(Msel) < fitness(Bp)

memory i nd i v i dua l Msel i s r ep l aced by Bp

Figure 5.6: Pseudo code of the generational replacing strategy

Example

In the following example, the memory individuals were randomly generated at
the beginning and the environment changed every 20 generations, but this in-
formation was unknown to the algorithm. The time to update memory was
decided at random.

44 5. IMPROVING MEMORY

Some considerations about the notation found in the next tables: the value
’1’ in the rnd column indicates that the individual is one of the initial ran-
dom solutions; a ’0’ in this column indicates that the memory individual is not
random. Initially, the attribute gen was set to ’-1’ and afterwards this value
changed to the generation number where the solution was memorized. In the
column fitness, a ’-1’ value indicates that the memory individual has not yet
been evaluated. Table 5.1 represents the initial configuration of the memory.

Initial memory
genotype is rnd? gen fitness

0011000000 1 -1 -1
1110000000 1 -1 -1
0000000000 1 -1 -1
1111100000 1 -1 -1
0000011111 1 -1 -1
1010101010 1 -1 -1
1100110011 1 -1 -1

Table 5.1: Initial memory

Assume that the first memory update occurred at generation 6. At this point
the best individual of the main population was stored and replaced one of the
random memory individuals. The individual to be replaced was selected ran-
domly (Table 5.2).

Memory at generation 6
genotype is rnd? gen fitness

0011000000 1 -1 2
1110011110 0 6 7
0000000000 1 -1 0
1111100000 1 -1 5
0000011111 1 -1 5
1010101010 1 -1 5
1100110011 1 -1 6

Table 5.2: Memory updated at generation 6

If the next memory update occurred at generation 15, and since the environment
didn’t change yet, we replaced the last memorized individual, if the current
population best had a higher fitness (Table (5.3).
If the next memory update occurred at generation 25, for instance, and since
the environment changed every 20 generations, we were in the presence of a
new environment. In this situation, the current best was stored in the memory
replacing one of the random individuals (see Table 5.4).
When no random individual were present in the memory and a new environment
appeared since the last storage, the Branke’s similar strategy was used to decide
which individual to replace. The memory individual which was the most similar
with the current best individual of the population was replaced (if it was a worse

5.2. REPLACING STRATEGIES 45

Memory at generation 15
genotype is rnd? gen fitness

0011000000 1 -1 2
1111111110 0 15 9
0000000000 1 -1 0
1111100000 1 -1 5
0000011111 1 -1 5
1010101010 1 -1 5
1100110011 1 -1 6

Table 5.3: Memory updated at generation 15

Memory at generation 25
genotype is rnd? gen fitness

0011000000 1 -1 2
1111111110 0 15 9
0001111111 0 25 7
1111100000 1 -1 5
0000011111 1 -1 5
1010101010 1 -1 5
1100110011 1 -1 6

Table 5.4: Memory updated at generation 25

solution). For instance, suppose that at generation 150 the memory was updated
and no random individuals were present in the memory (see Table 5.5).

Memory at generation 150 (before update)
genotype is rnd? gen fitness

1111100010 0 58 6
1111111110 0 15 9
1001111111 0 36 8
1111100111 0 75 8
1100111000 0 116 5
1111111000 0 139 7
1111101111 0 97 9

Table 5.5: Memory at generation 150

Assume that the current best of the population had a fitness equal to 10 and its
genotype was 1111111111. One of the most similar individuals from the memory
was selected and since the current best had better fitness, this individual was
stored replacing the most similar (Table 5.6).
This replacing strategy maximized the memory’s diversity and minimized the
number of redundant individuals, improving the memory’s usage.

46 5. IMPROVING MEMORY

Memory at generation 150 (after update)
genotype is rnd? gen fitness

1111100010 0 58 6
1111111111 0 150 10
1001111111 0 36 8
1111100111 0 75 8
1100111000 0 116 5
1111111000 0 139 7
1111101111 0 97 9

Table 5.6: Memory updated at generation 150

5.3 Population and Memory Sizes

In the standard EA, the parameter settings are usually decided at the begin-
ning and remain constant during the entire process. During the last years, this
approach changed and extensive research in the field of setting the parameters
of the EAs was made. Those investigations focused in two main issues: the run-
time adjustment of probabilities of the genetic operators and of the population
size. The first topic was studied by several authors: [41], [34], [3], [4], [22], [23],
[24]. Concerning the population size, usually it is considered an unchanging
parameter, which value is constant during the run. Choosing this parameter
off-line can be problematic: if it is too small the EA may not be able to find
good solutions; if it is too large, there is a high computational overhead. Al-
though finding an appropriate population size is a difficult task, several adaptive
population sizing methods have been suggested to be used in EAs solving sta-
tionary problems: [2], [5], [30], [52].

When the EAs are used to deal with dynamic environments, as stated be-
fore, some modifications have to be introduced. In spite of these modifications,
the global functioning of the EAs designed to deal with dynamic applications
inherited most of the characteristics of the EAs used for static domains. So,
typically, the EA uses constant values for the crossover and mutation probabil-
ities and a constant population size. In the specific domain of this thesis, when
an explicit memory is used, its size is also set at the beginning and is usually a
small percentage of the global number of individuals. Not much attention has
been devoted to the study of the influence of population and memory size in
the performance of the EA for dynamic environments. It is also a fact that,
in approaches using memory, no reasons are referred to support the choice of a
certain value for the population/memory sizes. However, if we look to natural
systems that inspire EAs, the number of individuals of a certain species changes
over time and tends to become stable around appropriate values, according to
environmental characteristics or natural resources [33].
Little research has been made about this issue: Schönemann [78], [79] studied
the impact of population size in the context of Evolutionary Strategies for dy-
namic environments, and concluded that the choice of the population size could
be a determinant factor in certain classes of problems. Recently, Richter et

5.3. POPULATION AND MEMORY SIZES 47

al. [70] proposed a memory-based abstraction method using a grid to memorize
useful information and the results obtained suggested that an optimal grid size
depended on the type of dynamics. The authors claimed that the use of an
adaptive grid size would increase the performance of the abstraction memory,
indicating this issue as future research. As far as we know, no more research
has been done concerning this subject.
Looking to the different approaches using explicit memory schemes for EAs cop-
ing with dynamic environments it is evident that the memory size (m) is always
set as a small percentage of the global number of individuals (n). Next, we
present the choices for population and memory sizes made in the most relevant
works using explicit memory-based EAs for dynamic environments:

• Mori et al. [58] presented a memory-based thermodynamical GA (TBGA)
which used a population of 46 individuals and a memory of size 8;

• The enhanced memory EA proposed by Branke [13] used a population of
90 individuals and a memory with size 10;

• Bendtsen’s approach [8] used a population with 100 individuals and a
memory of 10;

• Karaman et al. [43] studies used population of 50 individuals, while the
memory size was 10;

• Simões et al. [87] proposed a GA inspired in the natural immune system.
The algorithm used a search population of size 100 and a memory of size
20;

• Other memory-based approaches proposed by Simões et al. used popula-
tion with 110 chromosomes and memory of size 10 [89].

• The approach suggested by Trojanowski et al. [100] used a population
with 100 individuals and a memory size equal to 20;

• EAs using associative memory schemes studied in [126], [116] used popu-
lation of 110 individuals and memory of size 10;

• Different memory approaches proposed by Yang used population of size 90
and memory of 10 individuals [114], [115], [117], [118], [121], [123], [127];

• The memory/search EAs proposed in [123] used two populations of vari-
able size and a memory with constant size. The sum of the two populations
was always 108 and the memory used 12 individuals.

• Liu’s approach [51] used a global number of individuals equal to 110 and
memory of size 10.

Table 5.7 gives a synthesis of the relation between the global number of indi-
viduals (n) and memory sizes (m) and the corresponding percentage of memory
size relative to n. On average, the dimension of memory was chosen to be 10.5%
of the global number of individuals. This corresponds to memory proportions

48 5. IMPROVING MEMORY

Algorithm Ref. n m m
n

TBGA [58] n = 54 m = 8 15%

Mem/Search EA [13] n = 100 m = 10 10%

Mem/Search2 EA [13] n = 100 m = 10 10%

AMIGA [100] n = 120 m = 20 17%

DMEA [8] n = 110 m = 10 9%

ISGA [87] n = 120 m = 20 17%

MIEA [43] n = 60 m = 10 17%

MPBIL1 [116] n = 120 m = 10 8%

MPBIL2 [116] n = 120 m = 10 8%

MEGA

MIGA [114] n = 100 m = 10 10%

MRIGA

MUMDA

MUMDAi [115] n = 100 m = 10 10%

MEGAi

AMGA [117] n = 100 m = 10 10%

DAMGA [117] n = 100 m = 10 10%

ISGAs [118] n = 100 m = 10 10%

MIGA [89] n = 120 m = 10 8%

MEGA [89] n = 120 m = 10 8%

DMGA

AMGA [121] n = 100 m = 10 10%

HMGA

MIGA

MRIGA [123] n = 100 m = 10 10%

MPBIL

MEGA [123] n = 120 m = 12 10%

MSGA

MPBILi [127] n = 110 m = 10 9%

ISGA

PISGA [51] n = 110 m = 10 9%

Average 10.5%

Table 5.7: Summary of population and memory sizes

between 9% and 20% of n, with 10% being the most selected. As we can see,
choosing a constant value for population and memory sizes was widely used in
memory-based EAs. Memory was always used with a smaller dimension, but
no justification was given for that choice.

In this thesis we are concerned in obtaining more insight about this topic. Does
size really matter? Is it correct to choose a smaller memory size and keep this
value constant during the entire evolutionary process? Can the EA evolve the
best memory/population size according to the characteristics of the environ-
ment or the specifications of the problem? To find answers to those questions
we divided the study in two parts. First, we used different memory-based EAs
and made an exhaustive empirical study, keeping constant the population and
memory size, but changing it in different intervals. The next section explains

5.3. POPULATION AND MEMORY SIZES 49

this experimentation. Second, we proposed a new EA that dynamically changed
the population and memory sizes. The global number of individuals could not
surpass a given maximum, but the algorithm changed the size of population
and memory in order to obtain higher performances. This algorithm, called
Variable-size Memory Evolutionary Algorithm (VMEA), is explained in sec-
tion 5.3.2.

5.3.1 Size matters?

The first part of our investigation consisted of using the three memory-based
EAs, described earlier, to solve the same set of problems using population and
memory with different sizes. The global number of individuals was chosen to
ensure the same number of function evaluations. The distribution of those in-
dividuals in memory and population was made with different proportions.

The three memory-based algorithms were run using the same parameter settings
except for the population and memory sizes. The global number of individuals
was always n = 100, the memory size m was used as a different percentage of n

as follows:
m = K%× n , with K = 10, 20, 30, ..., 90

All the variations of the algorithms were run solving four different dynamic
optimization problems with different characteristics.
All the details about the parameters and problems used is given in chapter 8
and the results obtained are reported in chapter 9.

5.3.2 Variable-size Memory Evolutionary Algorithm

The second step in understanding the importance of population and memory
sizes was dedicated to the development of an algorithm that could find the best
choice for the memory and the population sizes during the run. This new algo-
rithm used a memory to store good solutions and a main population that was
responsible for finding the current optimum. The innovation introduced in that
algorithm was that the population and the memory sizes could change during
the run. The sizes were set to initial values, those values could change during
the run, but the global number of individuals was always the same. This algo-
rithm used a population that searched for the optimum and evolved, as usual,
through selection, crossover and mutation. A memory population was responsi-
ble for storing good individuals of the evolved population at several moments of
the search process. The basic idea of VMEA was to use the limited resources
(total number of individuals) in a flexible way.
In order to get room to add new individuals into memory or into population two
cleaning processes were performed when the global number of individuals was
attained. These mechanisms looked for individuals of equal genotype and if they
were found they were removed from the population (CleanPopulation) or from
the memory (CleanMemory). These mechanisms were executed, if necessary,
when a change was detected or when the memory was updated.
The memory was evaluated every generation and a change was detected if at

50 5. IMPROVING MEMORY

least one individual in the memory changed its fitness. If an environmental
modification was detected, the best memory individual for the new environ-
ment was introduced into the population. If there was no room for adding this
individual into the population, after the cleaning of repeated chromosomes, the
best individual in memory replaced the worst one of the population.
The memory was updated from time to time and if the established limit was
not reached, the best individual of the current population was stored in the
memory, increasing its size. If there was no room to keep this new solution,
then the best individual of the current population was introduced replacing a
memory individual chosen accordingly to the replacing scheme. The moment
chosen to update memory (tm) was calculated using a random pattern. The first
update time was computed by tm = rand(5, 10) and the next updating times
used the same pattern: tm = t + rand(5, 10), where t was the actual genera-
tion and rand(5, 10) was a random generator of numbers between 5 and 10. The
memory was also updated when a change was detected in the environment. The
individual to be stored in memory, in the first situation, was the best individual
of the current population; in the second case, the memorized solution was the
best individual from the population before the change had occurred.
When the memory was updated, first, the randomly initialized individuals were
replaced and the memory size was kept constant. If there were no more random
individuals, and if after adding this new individual, the global number of individ-
uals was beyond the maximum, the best individual was introduced into memory
and its size was increased accordingly. If the maximum value was reached, then
the cleaning process was executed to remove repeated chromosomes from the
population. If this cleaning was successful, the best individual of the population
was added to the memory, the population size was decreased by one and the
memory size was increased by one. If the clean of redundant solutions in the
population failed, the cleaning process was executed to the memory. If a re-
peated individual was removed from the memory, the best individual was added
to the memory and the sizes were kept constant. If all this failed, i.e., if there
was no space for a new individual, the individual was stored replacing one of the
existing. The replacement occurred if the selected individual had lower fitness
than the current best. The individual to be replaced was selected using the
replacing strategy that was being used.
The first VMEA was proposed in [91] and the process of cleaning the individu-
als with equal genotype was executed only in the memory. In [80] the cleaning of
the population was incorporated. The cleaning processes removed a maximum
of one memory individual or two individuals from the population.
This final version [93] was used in the experiments carried out in this thesis.
The pseudo code for VMEA is in Figure 5.7. This algorithm was compared
with other memory-based schemes using the standard dimensions for population
and memory and the results are reported in chapter 9.

5.3. POPULATION AND MEMORY SIZES 51

Function V ariable− size Memory Evolutionary Algorithm

p : populat ion s i z e , m : memory s i z e

n = p + m , n i s updated during the run

tm : memory update time

s e t i n i t i a l va lue s for p and m

t = 0 , tm = rand(5, 10)

random i n i t i a l i z e M(0) and P (0)

repeat

eva luate memory M(t)and populat ion P (t)

r ep l a c e the worst o f P (t) by the best o f P (t− 1)

i f change i s detec ted

Bm i s the bes t i nd i v i dua l from M(t)

i f n + 1 ≤ n then

Add Bm to P (t) , p = p + 1

else i f CleanPopulat ion i s s u c c e s s f u l

Add Bm to P (t)

else i f CleanMemory i s s u c c e s s f u l

Add Bm to P (t)

p = p + 1 , m = m− 1

else

Bm r e p l a c e s the worst o f P (t)

i f t = tm or change detec ted

i f t = tm : Bp i s the best o f P (t)

i f change detec ted : Bp i s the bes t o f P (t− 1)

i f s t i l l any random point s to r ed in M(t)

r ep l a c e random memory i nd i v i dua l by Bp

else

i f any memory po int o f same cy c l e

r ep l a c e i t

else

i f (n + 1) ≤ n

Add Bp to M(t) , m = m + 1

else i f CleanPopulat ion i s s u c c e s s f u l

Add Bp to M(t)

p = p− 1 , m = m + 1

else i f CleanMemory i s s u c c e s s f u l

Add Bp to M(t)

else

s e l e c t Msel from M(t)

i f fitness(Msel) < fitness(Bp)

Replace Msel by Bp

tm = t + rand(5, 10)

P ′(t) = Selection(P (t)) , Crossover(P ′(t)) , Mutation(P ′(t))
P (t + 1) = P ′(t)
t = t + 1

un t i l stop condition

Figure 5.7: Pseudo code of the Variable-size Memory Evolutionary Algorithm

Chapter 6

Promoting Diversity

The use of mechanisms to promote diversity is widely used in EAs dealing with
dynamic environments. We know that the premature convergence is an impor-
tant drawback in traditional EAs used in non-stationary problems, so it makes
sense to hypothesize that the use of mechanisms to promote the population’s
diversity can help the EAs in this type of optimization problems. As we saw
in Chapter 4, different approaches can be used to reach this goal. The most
used are (1) the increasing of the mutation rate after a change is detected or
(2) strategies based on immigrants, which introduce new individuals into the
population before or after the change has occurred.

In our work we looked for inspiration in natural systems and proposed two
different recombination operators that, used as crossover substitutes, allow the
promotion of the population’s diversity at different levels. We investigated two
operators, called transformation and conjugation, and proposed the correspond-
ing computational approaches of mechanisms for rearranging the genetic mate-
rial present in living organisms such as viruses and bacteria.

6.1 New genetic operators

The genetic operators are essential to the EA’s performance. Much work has
been done in this field, concerning the definition and improvement of traditional
genetic operators. Particularly, the crossover operator was assumed as the most
important operator for the effectiveness of the EA. Bio-inspired crossover has
been used in three main variants (one point, two point and uniform), and has
become the standard genetic operator used in the EA to mix the genetic mate-
rial of the individuals of the population. Nevertheless, if we look at nature we
see a wide variety of processes responsible for creating genetic diversity among
the individuals: transposition, transduction, translocation, transformation or
conjugation, to name a few. Computational approaches of some of these opera-
tors were already studied and used with success in EAs solving static problems
(transposition, translocation, conjugation). In this thesis we explored two of
those genetic operators and used them as the main genetic operator (replac-

53

54 6. PROMOTING DIVERSITY

ing the standard crossover) in EA dealing with dynamic optimization problems.
Our goal was to see if they provided more diversity in the population and if
this was always advantageous for the EA dealing with dynamic optimization
problems. The analyzed genetic operators were conjugation and transformation
and will be explained in the next sections.

6.1.1 Transformation

Biological Transformation

Transformation is the transfer of genetic material between organisms by means
of extracellular pieces of DNA. These strains of DNA, or gene segments, are
extracted from the environment and added to recipient cells [33]. Bacterial
transformation was first observed by Frederick Griffith in 1928, an English bac-
teriologist searching for a vaccine against bacterial pneumonia. He discovered
that a non-virulent strain of Streptococcus pneumoniae could be transformed
into a virulent one by exposure to strains of virulent S. pneumoniae Strepto-
coccus pneumoniae that were killed with heat. Later, in 1944 Oswald Avery,
Colin MacLeod, and Maclyn McCarty showed that the transforming factor was
genetic, because of the gene transfer in Streptococcus pneumoniae. This process
of uptake and incorporation of DNA by bacteria was called transformation.
After the transfer of small pieces of extra cellular DNA between organisms,
there are two possibilities, failure or success, known technically as restriction
and recombination. Restriction is the destruction of the incoming foreign DNA,
since those bacteria assume that foreign DNA is more likely to come from an
enemy, such as a virus. In this case, transformation fails. Recombination is the
physical incorporation of some of the incoming DNA into the bacterial chromo-
some. If this happens, genes from the assimilated segment replace some of the
host cell’s genetic information and bacteria are permanently transformed. Once
integrated in the chromosome, the DNA segment is able to survive. Organisms
that have the capability of absorbing foreign DNA are called competent.
There are two types of bacterial transformation:

• natural transformation: bacteria naturally have the capacity to take up
foreign DNA and become genetically transformed by it;

• engineered transformation: bacteria are altered through genetic engineer-
ing to make them competent, allowing them to be genetically transformed
by the foreign DNA ;

Bacterial transformation is widely used in genetic engineering, where biologists
manipulate genetic material: fragments of DNA are isolated, cut into discrete
pieces and rejoined to create novel genes and other genetic constructs. This
technology allows scientists to study the activity of genes in order to under-
stand their function. For instance, one of the applications of this technology
is the potential to treat genetic diseases, such as cancers, by gene replacement.
The genetic manipulations described above require large quantities of DNA.
One of the easiest ways to get large amounts of DNA is to use engineered trans-
formation: place the desired DNA into bacteria, grow the bacteria, then harvest
the bacteria, and isolate the DNA [73].

6.1. NEW GENETIC OPERATORS 55

A
B

D
E

C

F

B
C

DNA fragments
from donor cells

Recipient cell

a b

cd
e

Chromosomal DNA

1. Recipient cell takes
up donor DNA

a b

cd
eA

B

2. Recombination occurs between
donor DNA and recipient DNA

a b

cd
B

Degraded
unrecombined DNA

Genetically transformed cell

Figure 6.1: Biological transformation

Computational Transformation

To mimic this biological mechanism, at the beginning of the process, a pool
of segments of different sizes was created. Each segment consisted of a binary
string and could be selected to be incorporated into the individuals. Since this
operator replaced crossover it was used in an analogous manner: first, the in-
dividuals to be transformed were selected using the chosen selection method.
Then, transformation was applied to each one of those individual with a fixed
probability. Besides changing the individuals of the population, the pool of seg-
ments was also updated: every generation a percentage of the existing segments
was selected and randomly modified using the genetic information of the indi-
viduals of the population. This percentage was controlled by the parameter αt.
The pseudo code of a memory-based EA using this mechanism is described in
Figure 6.2.

56 6. PROMOTING DIVERSITY

Function Memory − based EA with Transformation

n : g l oba l number o f i n d i v i d u a l s

p : populat ion s i z e

m : memory s i z e

s : gene segment pool s i z e

t : cu r r ent gene ra t i on

tm : time to update memory

t = 0

tm = rand(5, 10)

P (0) = i n i t i a l i z e populat ion randomly

M(0) = i n i t i a l i z e memory randomly

G(0) = i n i t i a l i z e gene segment pool randomly

repeat

eva luate memory M(t)

eva luate populat ion P (t)

r ep l a c e the worst in P (t) by the best i nd i v i dua l

from P (t− 1)

i f change i s detec ted

P ′(t) = r e t r i e v e in fo rmat ion from M(t)

else P ′(t) = P (t)

i f t = tm or change detec ted

update memory

tm = t + rand(5, 10)

P ′′(t) = Selection(P ′(t))
Transformation(P ′′(t), G(t))

Mutation(P ′′(t))
G(t + 1) = Update gene segment pool (P ′(t))
P (t + 1) = P ′′(t)
t = t + 1

un t i l s t op cond i t i on

Figure 6.2: Pseudo code for the Memory-based EA with Transformation

6.1. NEW GENETIC OPERATORS 57

Each individual of the mating pool was transformed, with a certain probability,
following the steps described in Figure 6.3.

Function Transformation

pt : t rans fo rmat ion p r obab i l i t y

For each i nd i v i dua l o f the mating pool

i f rand() ≤ pt

Se l e c t random segment

S e l e c t random trans fo rmat ion po int

Replace i nd i v i dua l genes with segment genes

Figure 6.3: Computational Transformation

The main aspects to consider in the implementation of transformation were the
origin of the gene segments that transformed each individual, how the process
of transformation occurred, and the updating of the gene segments pool.
The EA started with an initial population of p individuals and an initial pool of
pt gene segments, both created at random. In each generation, the p individuals
were selected to be transformed using the gene segments of the gene segment
pool. After that, the gene segment pool was changed: αt of the current segments
were replaced by new ones created from the individuals of the old population,
the remaining segments were created randomly (see Figure 6.4).

Memory Population
Gene Segment

Pool

Transform Individuals

select individual

select segment
update population

update gene
segment pool

Figure 6.4: Computational transformation

The EA followed the traditional steps and a selection method was used to choose
which individuals to transform. These selected individuals were grouped in a
mating pool and the transformation mechanism was applied to each individual
with a fixed probability. Transformation was seen as a form of asexual repro-
duction, since there was no exchange of genetic material between the individuals
of the population. Each individual generated a new one through the process of
transformation.
The transformation of each selected individual followed these steps:

58 6. PROMOTING DIVERSITY

1. randomly selection of a segment from the segment pool

2. randomly choice of a point of transformation in the selected individual

3. incorporation of the segment in the genome of the individual

The incorporation of the segment into the selected individual was made by re-
placing the genes after the transformation point. The chromosome was seen as
a circle, in order to keep the chromosome length constant. This corresponded
to the biological process where the gene segments, when integrated in the recip-
ient’s cell DNA, replaced some genes in its chromosome. Figure 6.5 illustrates
the process of transforming an individual.

Individual

Mating Pool
Gene Segment

Pool

select individual

transformation point

select gene
segment

gene seg.

New individual

Transform selected individual

transformation point

Figure 6.5: Transforming an individual

The segments used to change the individual proceed, mostly, from the individ-
uals existing in the previous generation. In the used experimental setup, the
segment pool was changed in every generation. The modifications were made
replacing a percentage αt of the segments with new ones, created from the in-
dividuals from the old population. The remaining 1-αt were created randomly.
The size of each gene segment was also chosen at random. The update of the
gene pool was made according to the steps indicated in Figure 6.6 .

6.1. NEW GENETIC OPERATORS 59

Function Update gene segment pool

αt : the percentage o f segments c r ea ted

from prev ious populat ion

p : the populat ion s i z e

l : the chromosome length

sli : the l ength o f segment i

P : p r ev ious populat ion

Gi : the ith segment

i = 0

repeat

s e l e c t a random ind i v i dua l from P

s e l e c t two random po in t s in the i nd i v i dua l −> p1 , p2

Gi = gene t i c mate r i a l conta ined between p1 and p2

i = i + 1

un t i l (i == αt × n)

repeat

sli = random (1 , l)

Gi = randomly generated b i t s o f s i z e sli
i = i + 1

un t i l (i == p)

Figure 6.6: Updating the gene segment pool

6.1.2 Biological Conjugation

Bacterial conjugation was discovered in 1946 by Joshua Lederberg and Edward
Tatum and consists of the transfer of genetic material between bacteria through
cell-to-cell contact. To make conjugation possible, two bacterial cells must come
together and a cytoplasmic bridge called pilus is built. This contact is temporary
and allows to transfer genetic material via the plasmid from the donor cell to
the recipient cell. The plasmid consists of a linear or circular double-stranded
DNA that is capable of replicating independently of the chromosomal DNA.
As the donor replicates its chromosome, the copy is injected into the recipient.
At any time that the donor and recipient become separated, the transfer of
genes stops. The genes that successfully make the trip replace their equivalents
in the recipient’s chromosome. This mechanism only occurs between cells of
opposite mating types. The donor (or “male”) carries a fertility factor (F+),
which doesn’t exist in the recipient cell, the “female” (F−). The factor F

is a set of genes originally acquired from a plasmid and integrated into the
bacterial chromosome. A donor cell can become later a recipient one. The
cells produced by conjugation are always F+. Nevertheless, the population of
bacteria never become 100% F+ because conjugation is very time-consuming.
Thus, an F− cell can undergo one or more fissions while an F+ cell engages in
one conjugation. Hence, the population of F+ cells can actually decline with
conjugation. Another factor that limits the F+ cells is the pilus that only F+

60 6. PROMOTING DIVERSITY

cells can build. This bridge provides an attachment point for certain viruses,
which thus kill only the F+ cells. Figure 6.7 illustrates biological conjugation.
In biology, bacterial conjugation is a beneficial process to bacteria since it allows
them to acquire a gene that confers survival or a novel characteristic which
enables them to thrive in harmful conditions or to utilize a new metabolite.
It is through this process that resistance to antibiotics can be transferred from
one bacterial cell to another. Sometimes bacterial conjugation is regarded as the
bacterial equivalent of sexual reproduction or mating, but in fact, it is merely
the transfer of genetic information from a donor to a recipient cell [33].

Mobile plasmid Pilus

Bacterium

Chromosome

1

2

Donor Recipient

3

New donor

4

New donor

Figure 6.7: Biological conjugation

6.1.3 Computational Conjugation

Computational conjugation tried to mimic the biological mechanism and was
introduced independently by Smith [94], [95] and Harvey [37].
Smith proposed an implementation of this operator, called simple conjugation:
the donor and the recipient were chosen randomly, transferring the genetic ma-
terial between two random points.
Harvey [37] investigated a tournament-based conjugation: two parents were se-
lected at random, and the winner of the tournament (fittest individual) became
the donor and the loser the recipient of the genetic material. That way, the

6.1. NEW GENETIC OPERATORS 61

conjugation operator could be applied repeatedly by different donors to a sin-
gle recipient. Both authors used this operator as a substitute for the crossover
operator in a GA to solve different stationary problems.
In this thesis we proposed a different version of computational conjugation where
the donor and the recipient cells were not chosen at random but selected ac-
cording to their fitness. This operator was integrated in the memory-based EA,
replacing crossover and was used to create the offspring from the selected par-
ents.
The mating pool was created using the appropriate selection method. The in-
dividuals were selected to be donors or recipients according to their current
fitness: the p

2 best individuals became the ’donors’ while the remaining became
the ’recipients’ (p was the current size of the population). Then, using a fixed
probability, the ith donor transferred part of its genetic material to the ith re-
cipient (i=1, ..., p

2). Following that, all offspring created by this process was
mutated and joined with the donor individuals becoming the next population
of size p.
The pseudo code of an EA using this mechanism is described in Figure 6.8.

62 6. PROMOTING DIVERSITY

Function Memory − based EA with Conjugation

n : g l oba l number o f i n d i v i d u a l s

p : populat ion s i z e

m : memory s i z e

t : cu r r ent gene ra t i on

tm : time to update memory

t = 0

tm = rand(5, 10)

P (0) = i n i t i a l i z e populat ion randomly

M(0) = i n i t i a l i z e memory randomly

repeat

eva luate memory M(t)

eva luate populat ion P (t)

r ep l a c e the worst in P (t) by the best i nd i v i dua l

from P (t− 1)

i f change i s detec ted

P ′(t) = r e t r i e v e in fo rmat ion from M(t)

else P ′(t) = P (t)

i f t = tm or change detec ted

update memory

tm = t + rand(5, 10)

P ′′(t) = Selection(P ′(t))
Conjugation(P ′′(t))
Mutation(P ′′(t))
P (t + 1) = P ′′(t)
t = t + 1

un t i l s t op cond i t i on

Figure 6.8: Pseudo code for the Memory-based EA with Conjugation

Conjugation was applied to p
2 pairs of individuals following these steps (see

Figure 6.9):

1. select ith donor

2. select ith recipient

3. select two random points

4. select the donor’s genes contained between the two points

5. replace the corresponding recipient’s genes

6. the donor remains unchanged

i = 1, 2, ..., p
2

6.1. NEW GENETIC OPERATORS 63

Function Conjugation

p : the populat ion s i z e

pc : con jugat ion p r obab i l i t y

P : cu r r ent populat ion

S e l e c t p parents from P

Se l e c t the p
2

best i n d i v i d u a l s (donors)

S e l e c t the p
2

worst i n d i v i d u a l s (r e c i p i e n t s)

for i = 1 to p
2

i f rand() ≤ pc

s e l e c t ith donor

s e l e c t ith r e c i p i e n t

s e l e c t two d i f f e r e n t random po in t s p1 and p2

i n s e r t donor ’ s genes in to r e c i p i e n t

Figure 6.9: Pseudo code for conjugation

Figure 6.10 shows how conjugation was applied to one pair of individuals of the
mating pool.

one new

Mating Pool

1110001110 F=6
0000110011 F=4
1111100111 F=7
0000000000 F=0
1111111110 F=9
1000000000 F=1

Recipients

0000110011 F=4
0000000000 F=0
1000000000 F=1

Donors

1110001110 F=6
1111100111 F=7
1111111110 F=9

Selected pair:

Donor: 1111100111

Recipient: 0000000000

Random Points: 4,8

Offspring: 0001100100

Figure 6.10: Computational conjugation

Transformation and conjugation were used in different memory-based EAs re-
placing crossover. The EA’s performance and its adaptability in different types
of dynamic problems was analyzed and compared with the EA using crossover.
The population’s diversity was also measured, in order to investigate its in-
fluence on the algorithms’ performance. The results obtained and the main
conclusions are reported in Chapter 10.

Chapter 7

Prediction

This chapter describes the prediction mechanisms incorporated in the memory-
based EA. The proposed mechanisms provide predictions for two situations:
when the next change will occur and how the environment will change. For the
first predictor, to estimate when the next change will take place, we propose two
different approaches, one using linear regression, another using nonlinear regres-
sion. The second predictor is based on Markov chains and is used to estimate
how the next environments will look like. The combined application of these
two predictors can significantly increase the EA’s performance. Knowing the
time when the next change will happen and how the environment will change,
it is possible to retrieve useful information from the memory and introduce it
into the population before the alterations in the environment happen.

7.1 Predicting when

Usually, the memory-based EAs for dynamic environments detect the changes
when they occur. After the change is detected the information is retrieved
from the memory and inserted into the population. In certain types of dy-
namic environments some repeated behavior can be observed and it is possible
to make predictions about when the next change will happen. For instance, if
the environment changes periodically after a fixed number of generations, the
generation when the next change will occur can be correctly predicted. Even
in non periodic environments, if some repeated pattern is present, prediction
methods can be successfully applied. The next sections describe the contribu-
tions given in this thesis that allow the EA to accurately predict the generation
when the next change will be observed in the environment.

7.1.1 Linear Regression Predictor

Basics of Linear Regression

Simple linear regression studies the relationship between a response variable y

and a single explanatory variable x. This statistical method assumes that for
each value of x, the observed values of y are normally distributed around a

65

66 7. PREDICTION

mean that depends on x. These means are usually denoted by µy. In general
the means µy can change according to any sort of pattern as x changes. In
simple linear regression it is assumed that they all lie on a line when plotted
against x. The equation of that line is:

µy = β0 + β1 × x (7.1)

with intercept β0 and slope β1. This is the linear regression line and describes
how the mean response changes with x. The observed y values will vary around
the mean and it’s assumed that this variation, measured by the standard devi-
ation, is the same for all the values of x [21]. Linear regression allows inferences
not only for samples for which the data is known, but also for those correspond-
ing to x’s not present in the data. Three types of inferences are possible:

1. estimate the slope β1 and the intercept β0 of the regression line;

2. estimate the mean response µy, for a given value of x;

3. predict a future response y for a given value of x.

In general, the goal of linear regression is to find the line that best predicts y

from x. Linear regression does this by finding the line that minimizes the sum of
the squares of the vertical distances of the points from the line. The estimated
values for β0 and β1 called b0 and b1 are obtained using previous observations
as stated by equations 7.2 and 7.3. The intercept b0 is given by:

b0 = y − b1 × x (7.2)

The slope b1 is given by:
b1 = cr ∗ sy

sx
(7.3)

where y is the mean of the observed values of y, x is the mean of the observed val-
ues of x, cr the correlation between x and y given by equation 7.4, sx and sy the
standard deviations of the observed x and y, respectively, given by equation 7.5.

cr =
1

n− 1

n∑

i=1

(
xi − x

sx

) (
yi − y

sy

)
(7.4)

sx =

√√√√ 1
n− 1

n∑

i=1

(xi − x)2 and sy =

√√√√ 1
n− 1

n∑

i=1

(yi − y)2 (7.5)

with n, the number of previous observations from x and y.
After the slope and the intercept of the regression line are estimated, it is pos-
sible to predict the value of y (called ŷ) from a given x using the regression line
equation:

ŷ = b0 + b1 × x (7.6)

7.1. PREDICTING WHEN 67

Note that linear regression does not test if the data are linear. It assumes that
the data are linear, and finds the slope and the intercept values for a straight
line that best fits the known data. If the error in measuring x is large, other
inference methods are needed.

Linear Regression Prediction in the EA

If the environment changed periodically at fixed time steps, the generation when
the next change would occur could be successfully predicted by linear regression.
The prediction of the moment of the next change was calculated as follows:

• the first two changes of the environment were memorized after they happen
(no prediction could be made yet);

• change k, k > 2, could be predicted using the equation 7.6.

As we saw, the linear regression needs at least two previous observations to
construct the regression line that will be used to make predictions. This is the
reason why the first two changes in the environment could not be predicted.
After the first two changes, and using the values where those changes occurred,
an approximation of the regression line was built and predictions about the next
possible moment of change were provided. Then, each time a change occurred,
new values of b0 and b1 were computed and, using equation 7.3, the regression
line was updated.

Example

For example, suppose that three observations were already made (n = 3):

Observation x y

1 1 50
2 2 100
3 3 150

The first change occurred at generation 50, the second change at generation 100
and the third change at generation 150. Could we predict when will occur the
fourth change?
Using equations 7.3 and 7.2, the estimated values for the slope and intercept of
the regression line were:

b1 = 1 ∗ 50
1

= 50

b0 = 100− b1 ∗ 2 = 100− 50 ∗ 2 = 0

Using equation 7.6 the predicted value for the fourth change (x = 4) would be:

ŷ4 = b0 + b1 ∗ x = 0 + 50 ∗ 4 = 200

68 7. PREDICTION

In this example, the changes in the environment were determined with a fixed
change period of size r = 50, so the predictions were exact and there were no
related errors.

7.1.2 Nonlinear Regression Predictor

Usually, linear regression is used to model relationships between variables that
follow a linear correlation. Curved patterns can be modeled using linear regres-
sion (e.g. polynomial regression) but nonlinear regression is often used for these
patterns because it allows for modeling a wide range of functions.

Basics of Nonlinear Regression

The basic idea of nonlinear regression is the same as that of linear regression,
namely to relate a response y to a vector of predictor variables x [21]. Nonlinear
regression is characterized by the fact that the prediction equation depends
nonlinearly on one or more unknown parameters. The basic form for a nonlinear
model between the response y and a predictor x is given as:

yi = f(x, θ) + εi (7.7)

where yi and xi are the data, f is a nonlinear function involving the predictor
and the parameter vector θ and εi is a random error.
For instance, let’s assume the asymptotic regression model:

f(x) = θ1 − θ2 ∗ θx
3 where 0 < θ3 < 1 (7.8)

if we change the values for θ1, θ2 and θ3 we can model different types of non-
linear curves. Figure 7.1 shows two examples of curves using different values
for the parameters θi. Although nonlinear regression is less intuitive and more
complicated to use, it is more powerful because it allows predictions in both
linear and nonlinear data. Thus, this technic is more suitable to model informa-
tion of real world which is almost all nonlinear. The difficult task in nonlinear
regression is to estimate the correct values for the parameter vector θi. Once
the estimation of the parameters is done, predictions can be performed using
the nonlinear function. The different techniques for estimating the nonlinear
parameters are briefly described in the next section.

Parameter Estimation in Nonlinear regression

The task of parameter estimation for nonlinear regression is not straightforward.
Usually, statistical software using numerical algorithms is used to analyze the
data and produce the best parameter’s choice for that data [21]. A nonlin-
ear parameter estimation problem is an optimization problem whose goal is to
minimize the sum of squared errors given by equation 7.9.

7.1. PREDICTING WHEN 69

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 5 10 15 20 25

f(
x

)

x

Asymptotic Regression Model

θ1 = 15, θ2 = 30, θ3 = 0.5

θ1 = 10, θ2 = 20, θ3 = 0.5

Figure 7.1: The asymptotic regression model

Sumei =
n∑

i=1

(yi − f(xi, θi))
2 (7.9)

Rather than minimizing the sum of squared errors, other techniques minimize
the sum of absolute deviations. Several function minimization methods are
used in parameter estimation, for instance, weighted least squares, maximum
likelihood, Quasi-Newton method, Simplex procedure or Hooke-Jeeves pattern
moves [21], [63]. In general, these methods are not easily controllable and require
much auxiliary information to work correctly.
Another option, more general and easy to apply, is to use a genetic algorithm
to evolve a population of individuals that minimize an objective function. This
approach was introduced and successfully tested by Pan et. al [66] and was used
in this thesis to estimate the parameter vector θi. This GA is described in the
section 7.1.2.

Nonlinear Regression Prediction in the EA

In this thesis four different functions were used in the nonlinear predictor. The
four functions are defined by the equations 7.10 through 7.13.

y = θ1 + θ2 × x + θ3 × x2 (7.10)

y =
θ1 × x

θ2 + θ3 × x
(7.11)

y =
θ1

1 + e(θ2−θ3×x)
(7.12)

y =
(θ1 × x)θ4 + θ2 × θ3

θ3 + xθ4
(7.13)

70 7. PREDICTION

Each one of these functions, using different values for the vector θ can model a
wide set of data. Figure 7.2 shows how the different functions can be used to
define the change period, using a specific set for the vector θ:

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 10 20 30 40 50 60 70 80 90 100

G
en

er
at

io
n

s

Change number

Nonlinear change periods

eq. 7.10
eq. 7.11
eq. 7.12
eq. 7.13

Figure 7.2: Different types of nonlinear change periods

As we can see, different types of change periods are created with the nonlinear
functions: function 7.10 creates a rapid change period, i.e, with few generations
between two changes. With function 7.12 we have a change period that initially
changes very quickly but slows down as time proceeds.
The main limitation of nonlinear regression is that the function that is used to
model the information must be known. The parameter vector θ is unknown and
is estimated during the run. Different values for θ allow to model different types
of curves.

The nonlinear regression module was used in the EA with a set of n func-
tions f1, f2, ..., fn, that could be used to give the predictions 1. At time t, only
one function was active. The choice of that function was made measuring the
prediction errors of all functions. The function with lower error was the selected
one. As we said, the vector parameter θ was estimated using a standard GA.
Every time a change occurred in the environment and additional information
was available, the GA was executed to find a vector θ that better fitted the data.
Thus, the vector θ was estimated using only the known data. Using these esti-
mated parameters and the selected function, the predictor estimated when the
next change would occur. After the real change had occurred, the prediction er-
ror was computed. If the error was superior to an established threshold αp, the
module analyzed all the available functions to see if this error could be reduced.
If so, a different function was used for future predictions. Figure 7.3 shows how
the proposed module works. At the beginning, all functions were evaluated and
the function with least prediction error was used to make the next prediction.
If all the functions had equal errors, this choice was made at random.

1Currently, as we said, we are only using four.

7.1. PREDICTING WHEN 71

THE NONLINEAR REGRESSION PREDICTOR

f1(x,!)

f2(x,!)

...

fn(x,!)

choose fi with lower

prediction error

GA uses

available

data to

estimate

the vector !

Predict

next

change

Compute

prediction error

if error < αp

when a
change
happens

TRUE

FALSE

Figure 7.3: The nonlinear regression predictor

Genetic Algorithm for Estimating the Parameters

A standard GA, as suggested by [66], was used to estimate the vector parameter
θ used in the nonlinear functions.
The GA used a population of binary strings which corresponded to different
values of θi. The required number of genes was determined using the desired
precision and the domain size for each parameter. If the used precision was s,
and the lower an upper limits for the parameter k were bk

L and bk
U , respectively,

the number of genes to encode the parameter k was the minimum mk, satisfying
the following condition:

2mk
−1

< bk
U − bk

L ≤ 2mk

Before evaluating the individuals, a decode of the binary string into a real value
was performed. The real value for the parameter θk was found using equation
7.14.

θk = bk
L + dk(

bk
U − bk

L

2mk − 1
) (7.14)

where dk corresponded to the integer value represented by the corresponding
mk genes.
After the decoding operation, the individuals were evaluated using the fitness
function. This function aimed to minimize the sum of the least squares errors
(equation 7.9). Because individuals with a higher fitness were selected more of-
ten, after some generations the best individual represented the optimal solution
for θ. The initial population was generated at random and was evolved using
tournament selection, uniform crossover and flip mutation. The best individual
of the previous population was transferred to next population to guarantee that
the best solution found so far wasn’t lost. The parameters used in this GA were
the following: population of size 50, crossover rate of 75% and mutation rate
of 1%. The GA was run for 1000 generations, or until the fitness function had
no alterations for 10 generations - this usually meant that the optimum values

72 7. PREDICTION

were found. The domain of the parameters, and consequently the chromosome
size, depended on the nonlinear function as shown in Table 7.1. The precision
used for each parameter θ was six places after the decimal point. The initial

f θi bk
L bk

U mk mtotal

θ1 -10 65 27
f1 θ2 0 200 28 80

θ3 0 5 25
θ1 0 65 26

f2 θ2 0 1 20 65
θ3 0 0.5 19
θ1 14000 15000 34

f3 θ2 0 5 23 76
θ3 0 0.5 19
θ1 9000 10000 30

f4 θ2 50 100 26 103
θ3 50 100 26
θ4 0 2 21

Table 7.1: Upper and lower limits for the parameters’ domain

parameters’ domains, presented in Table 7.1 were chosen to enclose a wide set of
nonlinear curves. When the GA was run, in order to provide faster and correct
estimations, using the known data, an alteration could be made on these initial
domains. This task was controlled by a parameter sd (sd ∈ [0.0, 1.0]) that was
changed during the run, and applied to some of the chromosomes. If the indi-
viduals using the new domain size had the same or better fitness than the best
solution found so far, the domains size were adjusted for all the individuals of
the next generation.

Example for the nonlinear predictor

For example, suppose that twenty observations were already made (n = 20) and
the change period followed a nonlinear behavior given by function 7.11. Using
this function, changes followed a nonlinear curve. For instance, the first change
occurred at generation 100, the second change at generation 150, the third at
generation 180, and so on, as illustrated in table 7.2 and figure 7.4. Could we
predict when the 21st change would occur?

The first step to predict when the next change would occur was to estimate the
values for the vector θ that better fitted the known data. The GA was run and,
for the 20 known observations, it estimated the following values:

θ1 = 15
θ2 = 0.1
θ3 = 0.05

7.1. PREDICTING WHEN 73

Observation x y

1 1 100
2 2 150
3 3 180
4 4 200
5 5 214
6 6 225
7 7 233
8 8 240
...
17 17 268
18 18 270
19 19 271
20 20 273

Table 7.2: Nonlinear change period

 100

 150

 200

 250

 300

 5 10 15 20

G
en

er
at

io
n
s

Change number

Nonlinear change period

Figure 7.4: Nonlinear change period

If function f2 was being used, these values were introduced in equation 7.11 and
the predicted value for the 21st change was generation 274:

y =
15× 21

0.1 + 0.05× 21
= 274

Then, the prediction error was calculated after the change occurred. If this error
was small, f2 continued to be used for future predictions, otherwise, a different
function was selected.

74 7. PREDICTION

7.2 Predicting how

The prediction of how the environment will be modified in the next change,
combined with the prediction about the generation where that change will hap-
pen, makes possible the preparation of the population before the change. If
we know how the next environment will look we can introduce the appropriate
individuals into the population. This way, when the change effectively happens,
the EA will be prepared to face the new environmental conditions.
To gather information about the characteristics of the known environments we
used a Markov chain. The information stored in the Markov chain was also used
to estimate which environment(s) could appear in the next change.

7.2.1 Markov Chain Predictor

Basics of Markov Chains

A Markov chain can be defined as a sequence of random variables X1, X2, X3,
... (countable set of states) that do not keep memory of the whole past. In
fact, Markov chains are memoryless, meaning that the present state is enough
to predict future states, i.e.:
Pr(Xn+1 = x|Xn = xn, ..., X1 = x1) = Pr(Xn+1 = x|Xn = xn)

A discrete Markov chain model can be defined by the tuple S, P, λ:

• S is the state space, a finite or countable infinite set of possible values for
a sequence of random variables X1, X2, X3, ...

• P is a matrix representing transition probabilities between states. In the
matrix P , the element pij is the probability of going from state Xi to state
Xj ;

• λ is the initial probability distribution for all the states in S. λ =
p0, p1, p2, ... with pi, the probability of starting at state Xi.

Markov chains are often described by a directed graph, where the edges are
labeled by the probabilities of going from one state to another state. Figure
7.5 shows a graphical representation of a Markov chain with 5 states and the
following matrix probability:

P =




0.00 1.00 0.00 0.00 0.00
0.00 0.00 0.00 0.25 0.75
1.00 0.00 0.00 0.00 0.00
0.25 0.00 0.25 0.00 0.50
0.00 0.00 1.00 0.00 0.00




Markov Chain Prediction in the EA

In our approach, we used two markov chains:

• System Markov chain (SMC): was created off-line and used to define the
dynamics of the environment during the entire run.

7.2. PREDICTING HOW 75

Figure 7.5: Markov chain with 5 states

• Algorithm Markov chain (AMC): was empty at the beginning, and was
created on-line as new information was gathered from the evolutionary
process.

Each state of the Markov chain corresponded to an environment. The SMC
was created at the beginning with all the possible states and probabilities tran-
sitions. In this model, the initial probabilities vector λ was also created. This
component was used to decide how the environment changed, but all the in-
formation contained in it was unknown to the evolutionary algorithm. The
AMC was built on-line by the algorithm and was used to make predictions.
Initially, this component was empty, and if a new environment appeared, a new
state was added to the AMC and the corresponding matrix P was updated.
In a perfect scenario, at the end of the run, the AMC was equal to the SMC.
Section 7.4 gives more detail about this topic.

Example

In this example we assume that the maximum number of states is 5 and thee
SMC defined a priori is:

• λ = 1.0, 0.0, 0.0, 0.0, 0.0

• transition matrix:

P =




0.00 0.50 0.00 0.50 0.00
0.00 0.00 0.50 0.25 0.75
0.00 0.00 0.00 1.00 0.00
0.00 0.00 0.25 0.00 0.75
1.00 0.00 0.00 0.00 0.00




• each state corresponds to a different environment:

All this information is unknown to the EA and is used to decide how the envi-
ronment will change.

76 7. PREDICTION

The AMC starts without any information:

PAMC =




0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00




Let’s see step by step how the AMC is built and how the Markov predictor
works:

Step 1:

• Initial state: 1

• Next states: 2 or 4

Step 2:

• Randomly chooses state 2

• The AMC transition matrix is updated:

PAMC =




0.00 1.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00




7.2. PREDICTING HOW 77

• Next states (predicted): none

• Next states (real): 3, 4 or 5

Step 3:

• Randomly chooses state 5

• The AMC transition matrix is updated:

PAMC =




0.00 1.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 1.00
0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00




• Next states (predicted): none

• Next states (real): 1

Step 5:

• Go to state 1

• The AMC transition matrix is updated:

PAMC =




0.00 1.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 1.00
0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00
1.00 0.00 0.00 0.00 0.00




• Next states (predicted): 2

78 7. PREDICTION

• Next states (real): 2 or 4

Step 6:

• Randomly chooses state 4

• The AMC transition matrix is updated:

PAMC =




0.00 0.50 0.00 0.50 0.00
0.00 0.00 0.00 0.00 1.00
0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00
1.00 0.00 0.00 0.00 0.00




• Next states (predicted): none

• Next states (real): 3 or 5

Step 7:

• Randomly chooses state 5

• The AMC transition matrix is updated:

PAMC =




0.00 0.50 0.00 0.50 0.00
0.00 0.00 0.00 0.00 1.00
0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 1.00
1.00 0.00 0.00 0.00 0.00




• Next states (predicted): 1

7.3. ANTICIPATION 79

• Next states (real): 1

Step 8:

• Go to state 1

• The AMC transition matrix is updated (no modifications are made this
time):

PAMC =




0.00 0.50 0.00 0.50 0.00
0.00 0.00 0.00 0.00 1.00
0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 1.00
1.00 0.00 0.00 0.00 0.00




• Next states (predicted): 2 or 4

• Next states (real): 2 or 4

On the last two steps, predictions were 100% precise. Continuing this process,
the matrix PAMC would evolve towards the values of matrix P defined off-line
at the beginning.

7.3 Anticipation

The efficacy of the two predictors described before was only achieved if they
were used at the right moment. In order to prepare the population before the
changes happen, the anticipation mechanism must be robust and capable of
dealing with erroneous predictions. The prediction errors should be used to
improve the next predictions’ values.
The “right moment” to start preparing the population was decided using the val-
ues predicted either by the linear predictor or by the nonlinear predictor. Both
estimated the generation when the next change would be observed. Knowing
this value, the system started the preparation for the change some generations
before. If the prediction mechanisms were accurate and the correct information
was introduced in the main population before the change, the EA’s perfor-
mance was not affected by the changes in the environment and it continued
evolving quickly readapting to the new conditions. When the prediction mech-
anisms failed and no anticipation was made, when a change occurred, the EA’s
performance suffered from a sudden decrease and the EA took some time to
readapt to the new environment.

80 7. PREDICTION

A parameter, called ∆, was used to decide how many generations before the
predicted moment of change the anticipation started. The value of this param-
eter was also used to cover minor prediction errors. The value of ∆ should be
correctly chosen in order to assure that the population was prepared before the
change.
Different approaches to assign a value to ∆ were tested:

• ∆ constant

• ∆ adjustable

– using the maximum prediction error

– using the average of the positive prediction errors

– using the average of all the prediction errors (absolute value)

– using the maximum and the average of the positive prediction errors

Prediction error at time t (et) was given by equation 7.15:

et = g − g′ (7.15)

where g was the predicted generation for the occurrence of next change and g′

was the generation where the change actually happened. Those prediction errors
could be positive or negative. A negative error indicated that the predicted value
for the next change (g) was smaller than the real value (g′), i.e, g < g′ and thus
the anticipation of the change was successfully made. A positive error meant
the opposite. In this situation, if the value of ∆ was greater than this error, the
anticipation was made before the change; otherwise, the change was detected
only when it occurs and no effective anticipation was executed.
The value of ∆ should be chosen in order to cover the prediction error and to
guarantee that the preparation for the next change was made before it happens.
More explicitly, if the next change was estimated to happen at generation g,
at generation g - ∆, the Markov model was used to predict the set of possible
future environments. At that time, individuals from the memory were retrieved
and introduced into the population, replacing the worst ones. In order to be
effective, the Markov model should act before the change. Therefore, if the
change was observed at generation g’, the value of ∆ should assure that the
condition ∆ > |g−g′| was observed. In addition, the value of ∆ should minimize
the computational costs guaranteeing that the anticipation was as close to the
change as possible. Thus, the choice of the best value of ∆ assumed soaring
importance.
The use of a constant value for ∆ was a weakness of the system: on one hand,
it required preliminary experimentation to decide what value to choose, on
another, if the conditions of the change period were altered, a new value should
be chosen [92]. To overcome this limitation we proposed several mechanisms
that used the previously observed prediction errors to continuously change the
value of ∆. In all studied approaches the parameter ∆ was initialized with the
value 5 and this value was used for the first two changes when no predictions
could be made. After that, the value of ∆ was updated according to the studied

7.3. ANTICIPATION 81

methods, but it could not be lower than a minimum value of 2. This restriction
assured that the preparation for next change was made at least two generations
before it has occurred.
All the proposed approaches used, in different ways, the previously observed
errors to learn how to adapt the value of ∆. The methods described next
adjusted the value of ∆ during the run aiming to make the system more efficient
and robust.

7.3.1 Using the maximum prediction error

This method was called Max Err and updated the value of ∆ in the following
way: ∆ was initialized with the value 5 and this value was used for the first two
changes when no predictions could be made. Thereafter, the value of ∆ was
changed using the maximum observed prediction error. In a more formal way,
at the kth change, ∆ was updated as follows:

∆1(k) =
{

5 if k = 1, 2
max{2, e0, e1, ..., ek} if k > 2

(7.16)

where ek was the observed error at the kth change.

7.3.2 Using the average of the positive prediction errors

This method was called Av Err (+) and updated the value of ∆ in the following
way: ∆ started with the value 5 and this value was used for the first two
changes when no predictions could be made. Thereafter, the value of ∆ was
changed using the average of the positive errors given by the linear predictor. As
previously stated, a positive error meant that the predicted change generation
was after the real change. In a more formal way, at the kth change, ∆ was
updated as follows:

∆2(k) =

{
5 if k = 1, 2

max{2,
∑k

i=1 ei

k } if k > 2 and ei > 0
(7.17)

where ei was the observed error at the ith change.

7.3.3 Using the average of all the prediction errors (abso-
lute value)

This method, called Av Err(all) updated the value of ∆ in the following way: ∆
started with the value 5 and this value was used for the first two changes when
no predictions could be made. Afterward, the value of ∆ was changed using the
average of the absolute values of all measured errors. In a more formal way, at
the kth change, ∆ was updated as follows:

∆3(k) =

{
5 if k = 1, 2

max{2,
∑k

i=1|ei|
k } if k > 2

(7.18)

where ei was the observed error at the ith change.

82 7. PREDICTION

7.3.4 Using the maximum and the average of the positive
prediction errors

This method, called Max Av Err combined the first two described techniques.
The value of ∆ was updated in the following way: ∆ was initialized with the
value 5 and this value was used for the first two changes when no predictions
could be made. Thereafter, the value of ∆ was computed using the average of
the sum of the maximum observed error and the average of all positive errors.

∆4(k) =
{

5 if k = 1, 2
max{2, ∆1(k)+∆2(k)

2 } if k > 2
(7.19)

7.4 Putting it all together: prediction in the EA

The proposed computational model was called PredEA and used a traditional
EA that evolved a population of individuals aiming to optimize the current fit-
ness function. A memory was used to store useful information from the past that
was used in future changes. This traditional memory-based EA was extended
with the two above mentioned prediction modules described in sections 7.1 and
7.2. The first module used information about when the previous changes oc-
curred to estimate the generation when the next change would be observed.
This module was tested using a linear regression predictor and a nonlinear re-
gression predictor. The second module used a Markov chain to keep track of
previous environments and provided predictions on how the environment would
look like in the next change step. The two predictor modules were managed by
a third component, the anticipation module, that used the information provided
by the previous two modules and prepared the EA for the next change. Figure
7.6 illustrates the proposed architecture.

Evolutionary
Algorithm

Memory

Predictor 1

Predictor 2

Anticipation
Module

store best
individuals

HowRetrieve

Insert When (g)

Figure 7.6: Prediction modules in the memory-based Evolutionary Algorithm

Here is a brief description about each one of the components of Figure 7.6:

• Evolutionary Algorithm : standard evolutionary algorithm which evolved

7.4. PUTTING IT ALL TOGETHER: PREDICTION IN THE EA 83

a population of individuals through the application of selection, crossover
and mutation;

• Memory : stored the best individual of the population in a certain mo-
ment;

• Predictor 1 (P1): stored the generations where different changes oc-
curred and used this information to foresee when the next change would
take place. Two approaches were tested, based on linear and nonlinear
regression techniques;

• Predictor 2 (P2): every time a different environment appeared, this
module stored the environmental information. It consisted of a set of
states, a matrix of state transition probabilities and the initial proba-
bility vector. Each state corresponded to a different environment. The
initial probability vector was initialized by choosing the initial state ran-
domly. The state transition probability matrix started filled with zeros
and was updated on-the-fly when different environments appeared. When
this module was called, it used all the available information to estimate
to which environment(s) the system would change;

• Anticipation module (A): this module managed all the information
provided by the two predictors, and computed the value of ∆ which was
used to decide when to activate the mechanisms to prepare the EA to the
next change. At that time, information from the memory was retrieved
and inserted into the population. This information corresponded to those
individuals that could be useful to the next predicted environments.

Next sections detail each one of these modules.

7.4.1 Evolutionary Algorithm

Consisted of a standard memory-based EA. A main population of individuals
evolved by means of selection, crossover and mutation and was used to find
the best solution for the current environment. Another population was used as
memory to store the best current individual from time to time. When a change
happened or was predicted, the information stored in memory was retrieved
and used to help the EA readapt to the new environment. This algorithm
was similar to MEGA, described in a previous chapter, empowered with the
prediction modules.

7.4.2 Memory

Memory was used to store the best individuals of the current population. It
started empty and had a limited size (20 individuals). The update time, tm(t)
was computed using the following equation:

tm(0) = rand(5, 10)

tm(t) = tm(t− 1) + rand(5, 10)

84 7. PREDICTION

An individual was stored using the generational replacing strategy, described
in chapter 5.
Memory was also used to detect changes in the environment: a change oc-
curred when at least one individual in the memory had its fitness changed. The
memorized individuals were associated with the environments where they were
the best solution.

7.4.3 Predictor 1 module (P1)

This predictor used information about when previous changes were observed to
estimate when the next change would occur. If the change period was periodic
or follows a linear behavior, this module could be used with a simpler predic-
tor based on linear regression techniques. If the changes in the environment
occurred in generations following a nonlinear function, this predictor should be
based on nonlinear regression methods. If the type of change period was un-
known to the EA, the second predictor, based on nonlinear regression, should
be used since it can accurately predict both situations.

7.4.4 Predictor 2 module (P2)

This module consisted of two parts. One was hidden from the system (unknown
to the algorithm) and was built off-line with the following information: the
maximum number of different states that may appear and a probability matrix
of transitions that was used to model how the environments changed. The
second part was built on-line by the algorithm and was used to make predictions.
It kept track of the different environments and estimated which environments
should appear in the next change. Those predictions were made using only the
information known so far about the previous environmental changes. Each state
of the Markov chain corresponded to a different environment. If two states were
linked, it meant that a change happened from one state to the other. Associated
to each transition was a probability value which was updated every time a change
was detected. The initial state was randomly chosen among the existing states.
Again we stress that this information was unknown to the algorithm and the
model was updated throughout time. The information that was stored about
each environment was problem dependent. For instance, in the dynamic bit-
matching problem, each state corresponded to a different template.

7.4.5 Anticipation module (A)

This module received the information provided by the two predictors and de-
cided when to start the preparation of the EA for the next change. This activa-
tion should be done at the correct time in order to prepare the population to the
next environment(s) predicted by the P2 module. The P1 module estimated the
generation when the next change would be observed and the A module started
the anticipation some generations before. If the prediction mechanisms were
accurate and the correct information was introduced in the main population
before the change, the EA’s performance wa not affected by the changes in the
environment. When the prediction mechanisms failed and no anticipation was

7.4. PUTTING IT ALL TOGETHER: PREDICTION IN THE EA 85

made, when a change occurred, the EA’s performance was affected and the EA
took some time to readapt to the new environment. The ∆ parameter described
previously was used by this module to decide how many generations before the
predicted moment of change (g) the A module should be activated. The value of
this parameter was also used to cover minor prediction errors associated with the
P1’s estimations. The anticipation process consisted of retrieving from memory
individuals that were good solutions in the environments that the P2 module
indicated as the next to appear. These individuals were inserted into the main
population at the generation g −∆, replacing the worst individuals. If the P2
module didn’t provide any prediction, five random individuals from memory
were inserted into the population, replacing five randomly selected individuals.
Figure 7.7 shows the pseudo code of the PredEA algorithm.

86 7. PREDICTION

Function PredEA

tm : time to update memory

max : maximum number o f s t a t e s o f the Markov chain

markov : Markov model de f in ed o f f−l i n e (SMC)

initial state : i n i t i a l s t a t e

t = 0

tm = rand(5, 10)

P (0) = i n i t i a l i z e populat ion randomly

M(0) = i n i t i a l i z e memory randomly

∆(0) = 5

I n i t i a l i z e the AMC i n fo rmat ion

repeat

eva luate memory M(t) and populat ion P (t)

r ep l a c e the worst in P (t) by the best i nd i v i dua l

from P (t− 1)

i f a change i s detec ted

Store performance measures

Act ivate the P1 module

Update P1 in fo rmat ion

Pred i c t when next change w i l l occur (g)

Update the value o f ∆(t)

Update the AMC i n fo rmat ion

i f p r ed i c t i o n was un su c c e s s f u l

P ′(t) = r e t r i e v e in fo rmat ion from M(t)

else P ′(t) = P (t)

i f g (next change) i s c l o s e (as de f i ned by g −∆(t))

Act ivate the P2 module

Pred i c t next s t a t e (s)

Act ivate the A module

P ′(t) = r e t r i e v e in fo rmat ion from M(t)

else P ′(t) = P (t)

i f t = tm or change detec ted

update memory

tm = t + rand(0, 5)

P ′′(t) = Selection(P ′(t))
Crossover(P ′′(t)) , Mutation(P ′′(t))
P (t + 1) = P ′′(t)
t = t + 1

un t i l stop condition i s t rue

Figure 7.7: Pseudo code of the PredEA

Chapter 8

Experiments

This chapter introduces the experiments that were completed in order to study
the performance of all the contributions given in this thesis. It provides a de-
scription of the problems used, the general parameter settings common to all
the techniques, and the statistical validation applied to the results.

8.1 Benchmark problems

Our study relied on the use of well-known benchmark problems. The decision
about which ones to use, and how to use them, was made having in mind the two
classes of improvements analyzed in this thesis: prediction, diversity and mem-
ory. As far as we know, there are no studies proposing solutions that can predict
how and when the environment changed. Thus, for this topic, we analyzed the
results obtained with our approaches an no comparisons with other studies were
made. For the second class of questions that we addressed (diversity ad mem-
ory), in order to compare our results with other analogous studies, we used the
Yang’s Dynamic Optimization Problem (DOP) generator [126]. This DOP gen-
erator allows parameterizing of different aspects of the environment, such as the
change period, the severity of the change and the predicability of the environ-
ment. The DOP generator can construct different dynamic environments from
any binary-encoded stationary function using the bitwise exclusive-or (XOR)
operator. We used four problems under the DOP generator: the knapsack
problem, the onemax problem and the royal road functions F1 and F2.
To test the performance of the prediction module we needed to have control over
the number of different environments. We also needed to make different types
of transitions between different states. As a result, we used a slightly modi-
fied version of the dynamic knapsack problem and of the dynamic bit matching
problem. The next sections describe the DOP generator and all the problems
used.

87

88 8. EXPERIMENTS

8.1.1 Knapsack Problem

The knapsack problem is a NP-complete combinatorial optimization problem
often used as benchmark. It consists of selecting a number of items to a knapsack
with limited capacity. Each item has a value (vi) and a weight (wi) and the
objective is to choose the items that maximize the total value, without exceeding
the capacity of the bag (C), i.e.,:

max profit(x) =
m∑

i=1

vixi (8.1)

subject to the following constrain:
m∑

i=1

wixi ≤ C (8.2)

The initial values (vi), weights (wi) and capacity (C) were created using strongly
correlated sets of randomly generated data [55]:

wi = rand(1, 50) (8.3)

vi = wi + rand(1, 5) (8.4)

C = 0.6×
m∑

i=1

wi (8.5)

rand(min, max) uniformly generates a random number between min and max,
and m is the number of items.
The fitness of an individual x using binary representation is equal to the sum of
the values of the selected items, if the weight limit is not reached. If too many
items are selected, then the fitness is penalized in order to ensure that invalid
individuals are distinguished from the valid ones. The fitness function is defined
as follows ([126]):

f(x) =





∑m
i=1 vixi if

∑m
i=1 wixi ≤ C

10−10 × (
∑m

i=1 wi −
∑m

i=1 wixi) otherwise

(8.6)

The time-varying knapsack was created by using the DOP generator (described
next) or by changing the value of the knapsack capacity. The number of items
used in our experimentations was m = 100.

8.1.2 Bit-matching Problem

The bit-matching problem is an unimodal problem whose goal is to find a so-
lution that matches a given template. Using a binary template, the fitness
function of an individual x is:

max match(x) =
l∑

i=1

xi is equal to ti (8.7)

8.1. BENCHMARK PROBLEMS 89

where l is the chromosome length and ti is the bit of the actual template at
gene i.
Changing the template from time to time turns this problem dynamic. The
number of bits that change in the template defines the severity of the change.
The difficulty of the problem can be increased using templates with larger di-
mensions.
The onemax problem, where the EA has to find a solution that maximizes the
number of ones, is a particular case of the bit-matching problem.
Both bit-matching template and onemax problems were transformed from static
to dynamic using the DOP generator, described next.
We used chromosomes of 300 bits for the onemax problem and binary templates
of length 100 for the dynamic bit-matching problem.

8.1.3 Royal road functions

The royal road functions were introduced by Mitchell et al. [56] and are suitable
for testing the EA’s performance concerning recombination and schema pro-
cessing. They consist of a list of partially specified bit strings (schemas) si, in
which ’*’ denotes a wild card (i.e., allowed to be either 0 or 1). A bit string x

is said to be an instance of a schema s, i.e., x ∈ s, if x matches s in all non-’*’
positions.
Each schema si contributes with a coefficient ci which is equal to the schema’s
order, i.e. ci = o(si). The order of a schema si, is the number of defined bits in
si.
For the royal road F1 (RR1), ci = 8 for all si, with i = 1..8. For the royal road
F2 (RR2), ci = 8 for si (i = 1..8), ci = 16 for si (i = 9..12) and ci = 32 for si

(i = 13, 14).

Equations 8.8 and 8.9 define the fitness of a binary string for the royal road
functions RR1 and RR2:

RR1(x) =
8∑

i=1

ciδi(x) (8.8)

RR2(x) =
14∑

i=1

ciδi(x) (8.9)

where δi(x) = 1, if x ∈ si and δi(x) = 0, otherwise.

Figures 8.1 and 8.2 provide examples for the two royal road functions. In prac-
tice, this means that the fitness of a binary string x is calculated by summing
the coefficients ci corresponding to each of the given schema si of which x is an
instance.

90 8. EXPERIMENTS

s1 =11111111**

s2 =********11111111**

s3 =****************11111111**

s4 =************************11111111********************************

s5 =********************************11111111************************

s6 =**11111111****************

s7 =**11111111********

s8 =**11111111

sopt =11

Figure 8.1: Royal Road Function 1

s1 =11111111**

s2 =********11111111**

s3 =****************11111111**

s4 =************************11111111********************************

s5 =********************************11111111************************

s6 =**11111111****************

s7 =**11111111********

s8 =**11111111

s9 =1111111111111111**

s10 =****************1111111111111111********************************

s11 =********************************1111111111111111****************

s12 =**1111111111111111

s13 =11111111111111111111111111111111********************************

s14 =********************************11111111111111111111111111111111

sopt =11

Figure 8.2: Royal Road Function 2

Both royal road functions used binary representations with chromosomes of size
64. They were transformed from static to dynamic using the DOP generator,
described next.

8.1.4 Dynamic Optimization Problem Generator

The dynamic optimization problem (DOP) generator, proposed in [112, 126],
is used to construct different types of dynamic environments from any binary-
encoded stationary function using the exclusive-or operator. The full description
of the generator is given bellow according to the explanation provided in [121].

Two parameters are used to define the characteristics of the environment: r

and ρ. The speed of the change is controlled by r, which defines the number
of generations between changes. The severity of the change is controlled by
the parameter ρ ∈ [0.0, 1.0]. At ρ = 0.0 the environment is static; the highest
severity occurs when ρ = 1.0.
The DOP generator can construct three types of dynamic environments: cyclic,
cyclic with noise and random dynamic environments.
For cyclic dynamic environments, 2K XOR masks are created:

8.1. BENCHMARK PROBLEMS 91

M(0),M(1), ...,M(2K−1) and the environment will cycle among those masks in
a fixed logical loop. K is the number of different templates. The evaluation of an
individual x at generation t in cyclic dynamic environments is made according
to the following equation:

f(x, t) = f(x⊗M(It)) = f(x⊗M(k%(2K))) (8.10)

k = t/r gives the index of the current environmental period: 1, 2, 3, ... and ⊗
is the exclusive-or (xor) operation.
It = k%(2K) is the index of the mask M that encodes the environmental char-
acteristics for generation t.

The 2K XORing masks are generated using K binary templates T previously
created: T (0), ...T (K − 1). Each template T contains a number of ones equal
to ρ = 1/K, with ρ ∈ [1/l, 1.0] and l the length of the chromosome. This means
that, using a higher severity, the number of different environments is smaller.
Besides that, the number of templates and the value of ρ also depend on the
chromosome length. For instance, for a chromosome of length equal to 100, a
ρ = 0.8 can not be used, because the result is not an integer value.
The initial mask is M(0) = {0} and the remaining masks are created as follows:

M(i + 1) = M(i)⊗ T (i%K) (8.11)

with i = 0, 1, ..., 2K − 1.

The templates T are first used to create K masks until M(K) = {1} and then
are used again in the same order until M(2K) = {0}.

Cyclic dynamic environments with noise are created as described before, but
the mask M(i) is created by mutating the previous mask with a small probabil-
ity per gene. For random dynamic environments, the XOR mask M(i) applied
to the individuals is always randomly generated every time the environment is
changed.

Example
In the next example we show how the DOP generator can construct different
cyclic dynamic environments using chromosomes of size l = 10, ρ = 0.1. These
two parameters are used to determine the number of templates (K) to create.
So, 2K = 2/ρ = 20 (K = 10).

The first step consists in creating the K = 10 templates T , each one containing
a number of ones equal to the product ρ× l = 1:

T (0) = 1000000000
T (1) = 0100000000
T (2) = 0010000000
T (3) = 0001000000
...
T (9) = 0000000001

92 8. EXPERIMENTS

The 2K M masks are created in the second step. The first mask M(0) is
set to zero and the remaining are generated using the previous templates and
the ⊗ operator:

M(0) = 0000000000

M(1) = M(0)⊗ T (0) = 1000000000
M(2) = M(1)⊗ T (1) = 1100000000
M(3) = M(2)⊗ T (2) = 1110000000
...
M(10) = M(9)⊗ T (9) = 1111111111

M(11) = M(10)⊗ T (0) = 0111111111
M(12) = M(11)⊗ T (1) = 0011111111
M(13) = M(12)⊗ T (2) = 0001111111
...
M(20) = M(19)⊗ T (9) = 0000000000

When r = 10, the environment changes every 10 generations at which time the
mask M(k/2K) - where k is the index of the environmental cycle - is selected
to change the environment.

8.2 Experimentation plan

The experimentation plan was divided in two groups: one for testing the ap-
proaches concerning diversity, replacing strategies and population/memory sizes,
(Plan I) and another for evaluating the performance of the prediction modules
(Plan II). Because we were interested in testing different aspects in each ap-
proach, the experimentation plan was different for each one.
In the experimentation Plan I, we used the DOP generator problem on four
different problems: the knapsack problem, the onemax problem, and the royal
road functions 1 and 2.
We used linear change periods, with changes observed at every r generations,
with r = 10, r = 50, r = 100 and r = 200. We studied cyclic environments
where four different values of ρ were applied to the severity of change: ρ = 0.1,
ρ = 0.2, ρ = 0.5 and ρ = 1.0.
Table 8.1 summarizes the experimentation Plan I, which included, for each
tested algorithm, 16 different types of environments. Each environment was run
for 56 different algorithms, resulting in a total of 896 different tested situations.

The 56 different algorithms tested on Plan I are listed on table 8.2.

8.2. EXPERIMENTATION PLAN 93

Benchmarks Change period Change period Environmental Severity of
type size changes change

DOP-KP r = 10 ρ = 0.1
Plan I DOP-OM linear r = 50 cyclic ρ = 0.2

DOP-RR1 (periodic) r = 100 ρ = 0.5
DOP-RR2 r = 200 ρ = 1.0

Table 8.1: Experimentation Plan I

Methods Algorithms

Diversity

MEGA MIGA AMGA VMEA
Cx MEGA-Cx MIGA-Cx AMGA-Cx VMEA-Cx
Cj MEGA-Cj MIGA-Cj AMGA-Cj VMEA-Cj
Tf MEGA-Tf MIGA-Tf AMGA-Tf VMEA-Tf

Replacing
strategies

sim MEGA-sim MIGA-sim AMGA-sim VMEA-sim
age1 MEGA-age1 MIGA-age1 AMGA-age1 VMEA-age1
age2 MEGA-age2 MIGA-age2 AMGA-age2 VMEA-age2
gen MEGA-gen MIGA-gen AMGA-gen VMEA-gen

Mem/Pop
sizes

m = K%× n MEGA-m MIGA-m AMGA-m variable
p = n−m m is the memory size; p is the population size;

n is the total number of individuals; K = 10, 20, 30, ..., 90

Table 8.2: Algorithms tested on experimentation Plan I

In the experimentation Plan II, besides the periodic change period allowed by
DOP, we were also interested in creating other types of dynamics. Therefore,
we used the knapsack and the dynamic bit-matching problem, independently
from the DOP generator.
We set a maximum number of different environments: max = 3, 5, 10, 20 or
50 and, depending on the problem, we created max different capacities (for
the dynamic knapsack problem) or max different templates (for the dynamic
bit-matching problem). The different capacities were generated from the initial
capacity of the knapsack (created using equation 8.5) and making variations of
20%, following the next equation:

C(t) =





0.6×∑m
i=1 wi, if t = 0

C(t− 1)− 0.2× C(t− 1), if t is odd
C(t− 1) + 0.2× C(t− 1), if t is even

The different templates were created using an initial template T (0) = 0.
The following templates were created by changing l

max% of the bits from the
previous template (l was the chromosome length).
According to the classification provided in chapter 3, three different types of
change period were used:

• linear (periodic): every r generations, with r = 10, r = 50, r = 100 and
r = 200

• patterned: the moments of change were decide by repeating an estab-
lished pattern. We used four different patterns: 5-10-5, 10-20-10, 50-60-70

94 8. EXPERIMENTS

and 100-150-100. The generations when the environment changed were
calculated as follows:

change(i) = change(i− 1) + pattern(k)

where k was the pattern index, 0, 1 or 2, since all the patterns had
size equal to three and i was the change index. For the first change,
change(0) = 0 + pattern(0).

For example, for the pattern 5-10-5, the generations when the environ-
ment changed were:

change(0) = 0 + pattern(0) = 5

change(1) = 5 + pattern(1) = 15

change(2) = 15 + pattern(2) = 20

change(3) = 20 + pattern(0) = 25

change(4) = 25 + pattern(1) = 35

change(5) = 35 + pattern(2) = 40

• nonlinear: the change period was defined by a nonlinear function. We used

four different types of nonlinear functions, as explained in chapter 7.

For each one of the change period types, two different types of environmen-
tal changes were defined: cyclic and probabilistic. The environments changed
between max different states.
For the probabilistic type, the probabilities associated to each different state
were set at the beginning of the run and corresponded to the system Markov
model (SMC) transition matrix (see chapter 7). The severity of the change
was not tested with different values, since the Markov model stored informa-
tion about the fitness function, which was the same, independently of the used
severity. So, different severities would not influence the model’s performance.
The PredEA algorithm was compared with its counterpart used without predic-
tion (noPredEA). No further algorithms were compared in this experimental
plan, since we didn’t find in the literature any memory-based EA providing pre-
diction for the moment of the next change and for the trend of that change. The
prediction methods described in Chapter 4 were used in different domains or
after the occurrence of the change. In our work, we used a similar technique as
proposed by [38] and [129], but its application was made differently: linear and
nonlinear methods were used to predict when next change would occur, instead
of assuming that the moment of next change was known, as in [38] and [129].
Besides, an additional predictor (the Markov model) was used to analyze and
predict the trend of the change.

Table 8.3 summarizes the experimentation Plan II, which included, for each
tested algorithm, 252 different types of environments. Each environment was
run for 10 different algorithms, resulting in a total of 2520 different tested situ-
ations.

The 10 different algorithms tested on Plan II are listed on table 8.4.
In all the experiments, the information concerning the type of change period,

8.3. SETTINGS 95

Bench. Change period Change period Env. no of
type size changes states
linear 10, 50,

100, 200

Plan II dyn KP patterned 5-10-5 cyclic 3
dyn BM 10-20-10 probabilistic 5

50-60-70 20
100-150-100 50

nonlinear (variable, using 4
functions)

Table 8.3: Experimentation Plan II

Methods Algorithms

Prediction

PredEA-lr PredEA-nlr
∆ const PredEA-lr-const PredEA-nlr-const

∆ MaxErr PredEA-lr-MaxErr PredEA-nlr-MaxErr
∆ AvErr PredEA-lr-AvErr PredEA-nlr-AvErr
∆ AvErr2 PredEA-lr-AvErr2 PredEA-nlr-AvErr2

∆ AvMaxErr PredEA-lr-AvMaxErr PredEA-nlr-AvMaxErr

Table 8.4: Algorithms tested on experimentation Plan II

the type of environmental change, the change period size, and the number of
different states were unknown to the EA.

8.3 Settings

Table 8.5 lists the general parameters used in all the algorithms involved in the
experiments. A total of 30 runs were performed with each technique for each
problem. Binary representation was used for all the studied problems. In order
to have the same number of function evaluations per generation, n was set as
follows: MEGA, AMGA and VMEA used n = 100. For VMEA, since the sizes
of the memory and population change during the run, the value of n can be less
than 100 in some situations. MIGA used a value of n computed using equation
8.12, since that the ri×n immigrants were also evaluated every generation. The
memory size for MEGA, MIGA and AMGA was m = 20%× n.

n =
100

1 + ri
(8.12)

The EA was allowed to evolve for as many generations as necessary so as to
result in 200 environmental changes. The different recombination operators
were applied with a probability of 70% and flip mutation was used with 1%
rate.

96 8. EXPERIMENTS

Individual’s representation binary
Initialization uniform randomly created
Chromosome length 64, 100 or 300
Runs 30
Generations based on 200 environmental changes (r × 200)
Global number of individuals (n) 100, 84 for MIGA
Memory size (m) 20%× n, variable for VMEA
Population size (p) n−m

Memory replacing strategy similar, age1, age2, generational
Selection method tournament, size 2
Survivors selection generational with elitism of size one
Recombination uniform crossover, transformation or conjugation
Recombination probability 70%
Mutation flip
Mutation probability 1%

Table 8.5: General settings used in the experiments

Table 8.6 lists the specific parameters to certain algorithms involved in the
experiments.

MAX AGE (used in age1 replacing strategy) 100
C (age’s increment used in age1 replacing strategy) 5
fit rate (used in age2 replacing strategy) 0.1
ri (used in MIGA) 20%
pi (used in MIGA) 1%
α (used in AMGA) 0.5
αt (used in transformation) 0.75
pt (gene segment pool size used in transformation) 50
αp (used in prediction, module P2) 10

Table 8.6: Specific parameters used in the experiments

The initial populations and memories were randomly created and the selection
of parents was made using the tournament selection method. We used tourna-
ment of size two and the winner of the tournament was selected to the mating
pool. The next population was formed using the generated offspring, through
recombination and mutation, and the best individual (the elite) of previous
population was preserved.

8.4 Measures, plots and tables

Two different measures were used to evaluate the different algorithms:

• The overall performance measure gives the global score achieved by
each algorithm.

overall =
1
G

G∑
t=1

bestt

8.5. STATISTICAL VALIDATION 97

G is the number of generations and bestt is the fitness of the best individual
at generation t.

• The off-line performance measure is used to evaluate how the algo-
rithms evolved during the entire run. At generation t the off-line perfor-
mance is:

off-line(t) =
1
t

t∑

i=1

best′t

where t is the actual generation and best′t is the maximum observed fitness
since the last time step at which a change in the environment occurred.

The diversity of the population was measured using the formula:

Diversity =
1

l × p× (p− 1)

p∑

i=1

p∑

j=1

HD(pi, pj)

where l is the length of the chromosome, p, the population size, pi and pj , the
ith and the jth individuals of the population, and HD the hamming distance.
The diversity measure presented in next chapters was the averaged diversity
over the 30 runs.

8.5 Statistical validation

All the results obtained were statistically validated. The normality of data was
verified using the Shapiro-Wilk test with α set to 0.01. In almost all situations,
data followed a normal distribution, so the paired two-tailed t-test, at a 0.01
level of significance, was used for assessing the statistical difference of the means
over 30 runs of each pair of algorithms. In a few cases, were the normality test
failed, the nonparametric Friedman test, also at a 0.01 level of significance, was
applied. After this test, the multiple pair wised comparisons were performed
using the Nemenyi procedure.
For multiple comparisons, the p-value (0.01) used either in the t-test or in the
Nemenyi test was adjusted using the Bonferroni correction method. The cor-
rection was performed using the following equation:

pB =
p

nc

where nc corresponded to the number of comparisons.

The hypotheses for comparing two independent algorithms were:

- Ho : u1 = u2 (means of the two algorithms were equal), this was the null
hypothesis.

- Ha : u1 6= u2 (means of the two group were not equal), this was the alternative
hypothesis.

98 8. EXPERIMENTS

The statistical tests yield the following results: if the p-value provided by the
statistical test was smaller than the critical value (pB), there was evidence to
reject the null hypothesis in favor of the alternative. In other words, there was
evidence that the means were significantly different at the significance level re-
ported by the corrected p-value. Otherwise, there was not enough evidence to
reject the null hypothesis, and we concluded that there was evidence that the
means were not significantly different.

In the statistical tables presented in the next chapters, each line compares a
pair of algorithms using the notation “++” or “−−”, when the first algorithm
is significantly better than, or significantly worse than the second one, respec-
tively. The use of “-” or “+” indicates that the first algorithm is better than,
or worse than the second, respectively, but without statistical evidence.

Chapter 9

Memory: Experimental

Results

This chapter sets forth the results concerning the solutions for memory man-
agement problems, i.e., the memory (and population) size and the replacing
methods. First, we analyze the influence that different settings of population
and memory sizes have in different types of dynamic environments. Different
scenarios, using constant population and memory sizes, are analyzed for the
three algorithms described in chapter 5. The three algorithms with constant
populations are compared with VMEA that uses the same global number of
individuals, but with variable proportions.
Second, we study the performance of the different memory-based EAs, using
different replacing schemes for updating the memory.

9.1 Population and memory sizes

In this section we analyze the results concerning the influence that different
population and memory sizes can have in memory-based EAs for cyclic dynamic
environments. No comparisons, between the algorithms that use population and
memory of constant sizes, were made. These memory-based EAs were already
studied and compared in many different works [90, 114, 117, 121, 123]. Our goal
was to see if, for each one of the studied algorithms, different population and
memory sizes lead to different performances. Each algorithm, using constant
values for the population and memory sizes, was compared with the VMEA,
which used variable sizes for population and memory. In all the situations, the
global number of individuals (n) was kept constant.

9.1.1 Analysis of the results for MEGA

The results obtained with MEGA for the four studied benchmarks, using differ-
ent sets for the population and memory sizes, are shown on Figure 9.1 through
Figure 9.4. Each figure corresponds to a different problem (Knapsack, Onemax,
Royal Road F1 and Royal Road F2).

99

100 9. MEMORY: EXPERIMENTAL RESULTS

The statistical results are in Table 9.1; they compare the best and worst choices
for population and memory sizes for the MEGA (MEGAb and MEGAw, re-
spectively), and the best results obtained with MEGA compared with VMEA.
MEGAb and MEGAw corresponded to the best and the worst overall averages,
respectively, chosen from all the studied cases.
The results obtained show that different choices for the population and memory
sizes had a great impact on MEGA’s performance. For the Knapsack problem,
memory sizes of m = 60% × n or m = 70% × n achieved the best results; the
worst results were observed using smaller memories (10% or 20% of n). In gen-
eral, larger memory size improved MEGA’s performance. The worst results
were observed using populations with 90 or 10 individuals. For larger change
periods, the influence of the population/memory sizes on the algorithm’s per-
formance became smaller, since the algorithm had more time to evolve and to
find the best solution.
For the Onemax problem, the conclusions were similar: the best results were
achieved using memory proportions of 50% to 70% of n. The worst performance
was obtained with smaller memory (10% of n). The results were also more sta-
ble for larger change periods where the influence of the number of individuals
was not so evident. Analyzing the results obtained in the Royal Road functions
F1 and F2, we conclude that the best choices for the proportion of memory size
ranged between 30% to 60% of n. The worst results were obtained using larger
memory size. When the change period increased, the variations on the popu-
lation/memory sizes had less impact on the algorithm’s performance. VMEA
significantly outperformed MEGA in most situations as the statistical tests
confirmed. This was a consistent observation for all the problems and all situ-
ations. Only a few exceptions were observed on the Royal Road functions: for
larger change periods, the VMEA was better than MEGA, but the difference
was not statistically significant.

Knapsack Onemax Royal Road F1 Royal Road F2
ρ

T-test results r 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0
MEGAb −MEGAw 10 ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++
V MEA−MEGAb ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++
MEGAb −MEGAw 50 ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++
V MEA−MEGAb ++ ++ ++ ++ ++ ++ ++ ++ + ++ ++ ++ ++ ++ ++ ++
MEGAb −MEGAw 100 ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++
V MEA−MEGAb ++ ++ ++ ++ ++ ++ ++ ++ + + + + + + + +
MEGAb −MEGAw 200 ++ ++ ++ ++ ++ ++ ++ + ++ ++ ++ ++ ++ ++ ++ ++
V MEA−MEGAb ++ ++ ++ ++ ++ ++ ++ ++ + + + + + + + +

Table 9.1: Statistical results of comparing MEGA and VMEA

9.1. POPULATION AND MEMORY SIZES 101

 1750

 1760

 1770

 1780

 1790

 1800

 1810

10 20 30 40 50 60 70 80 90 VMEA

O
ff

li
n
e

p
er

fo
rm

an
ce

Memory size (% of n)

Knapsack - MEGA (r = 10)

 1770

 1780

 1790

 1800

 1810

 1820

 1830

10 20 30 40 50 60 70 80 90 VMEA

O
ff

li
n
e

p
er

fo
rm

an
ce

Memory size (% of n)

Knapsack - MEGA (r = 50)

 1770

 1780

 1790

 1800

 1810

 1820

 1830

10 20 30 40 50 60 70 80 90 VMEA

O
ff

li
n
e

p
er

fo
rm

an
ce

Memory size (% of n)

Knapsack - MEGA (r = 100)

 1770

 1780

 1790

 1800

 1810

 1820

 1830

10 20 30 40 50 60 70 80 90 VMEA

O
ff

li
n
e

p
er

fo
rm

an
ce

Memory size (% of n)

Knapsack - MEGA (r = 200)

ρ = 0.1
ρ = 0.2
ρ = 0.5
ρ = 1.0

Figure 9.1: Global results obtained in the dynamic Knapsack problem using
MEGA with different population and memory sizes

 210

 220

 230

 240

 250

 260

 270

 280

10 20 30 40 50 60 70 80 90 VMEA

O
ff

li
n
e

p
er

fo
rm

an
ce

Memory size (% of n)

Onemax - MEGA (r = 10)

 250

 260

 270

 280

 290

 300

 310

10 20 30 40 50 60 70 80 90 VMEA

O
ff

li
n
e

p
er

fo
rm

an
ce

Memory size (% of n)

Onemax - MEGA (r = 50)

 250

 260

 270

 280

 290

 300

 310

10 20 30 40 50 60 70 80 90 VMEA

O
ff

li
n
e

p
er

fo
rm

an
ce

Memory size (% of n)

Onemax - MEGA (r = 100)

 250

 260

 270

 280

 290

 300

 310

10 20 30 40 50 60 70 80 90 VMEA

O
ff

li
n
e

p
er

fo
rm

an
ce

Memory size (% of n)

Onemax - MEGA (r = 200)

ρ = 0.1
ρ = 0.2
ρ = 0.5
ρ = 1.0

Figure 9.2: Global results obtained in the dynamic Onemax problem using
MEGA with different population and memory sizes

102 9. MEMORY: EXPERIMENTAL RESULTS

 10

 20

 30

 40

 50

10 20 30 40 50 60 70 80 90 VMEA

O
ff

li
n
e

p
er

fo
rm

an
ce

Memory size (% of n)

Royal Road F1 - MEGA (r = 10)

 20

 30

 40

 50

 60

 70

10 20 30 40 50 60 70 80 90 VMEA

O
ff

li
n
e

p
er

fo
rm

an
ce

Memory size (% of n)

Royal Road F1 - MEGA (r = 50)

 20

 30

 40

 50

 60

 70

10 20 30 40 50 60 70 80 90 VMEA

O
ff

li
n
e

p
er

fo
rm

an
ce

Memory size (% of n)

Royal Road F1 - MEGA (r = 100)

 20

 30

 40

 50

 60

 70

10 20 30 40 50 60 70 80 90 VMEA
O

ff
li

n
e

p
er

fo
rm

an
ce

Memory size (% of n)

Royal Road F1 - MEGA (r = 200)

ρ = 0.1
ρ = 0.2
ρ = 0.5
ρ = 1.0

Figure 9.3: Global results obtained in the dynamic Royal Road F1 problem
using MEGA with different population and memory sizes

 0

 20

 40

 60

 80

 100

 120

10 20 30 40 50 60 70 80 90 VMEA

O
ff

li
n
e

p
er

fo
rm

an
ce

Memory size (% of n)

Royal Road F2 - MEGA (r = 10)

 40

 60

 80

 100

 120

 140

 160

 180

10 20 30 40 50 60 70 80 90 VMEA

O
ff

li
n
e

p
er

fo
rm

an
ce

Memory size (% of n)

Royal Road F2 - MEGA (r = 50)

 40

 60

 80

 100

 120

 140

 160

 180

10 20 30 40 50 60 70 80 90 VMEA

O
ff

li
n
e

p
er

fo
rm

an
ce

Memory size (% of n)

Royal Road F2 - MEGA (r = 100)

 40

 60

 80

 100

 120

 140

 160

 180

10 20 30 40 50 60 70 80 90 VMEA

O
ff

li
n
e

p
er

fo
rm

an
ce

Memory size (% of n)

Royal Road F2 - MEGA (r = 200)

ρ = 0.1
ρ = 0.2
ρ = 0.5
ρ = 1.0

Figure 9.4: Global results obtained in the dynamic Royal Road F2 problem
using MEGA with different population and memory sizes

9.1. POPULATION AND MEMORY SIZES 103

9.1.2 Analysis of the results for MIGA

Figures 9.5 through 9.8 set forth the results for the four studied problems using
MIGA (with different population and memory sizes) and VMEA.
The first plot refers to the Knapsack problem and reveals that, when the envi-
ronment changed more rapidly (r = 10), the best results were obtained using a
memory size equal to m = 30%× n to m = 60%× n, depending on the severity
of the change. When the severity was higher (ρ = 0.5 and ρ = 1.0), the best
choice corresponded to m = 50% × n or m = 60% × n. For the remaining
cases, smaller memories (30% or 40% of n) allowed the algorithm to get the
best solutions. For r = 50, r = 100 and r = 200 the best results were achieved
using m = 20% × n or m = 30% × n. The worst choices for the population
and memory sizes, in general, were those corresponding to the extremes: large
memory (90%) or small memory (10%).
Analyzing the results for the Onemax problem, similar conclusions are drawn:
rapid environments (r = 10) required smaller populations (and larger memory
size) than slower changing environments (r = 50, r = 100 and r = 200). In
fact, for the first situation the best results corresponded to a memory size of
m = 60%× n. For the remaining cases, the highest marks were obtained using
smaller memory sizes (20% or 30% of n). Once more, the use of m = 90%× n

was the worst option for MIGA.
Analyzing the results of the Royal Road functions F1 and F2, we discern the
same behavior observed on the previously discussed problems. In fact, Figures
9.7 and 9.8 show that MIGA obtained the best results using a memory equal
to 20% × n and the performance of the algorithm decreased as the population
became smaller. The worst marks were obtained with memory with 90% × n

individuals.
Analyzing the results and the statistical information presented on Table 9.2,
we conclude that VMEA performed significantly better than MIGA. Few ex-
ceptions were found for the Onemax problem: VMEA performed better than
MIGA, but the difference was not statistically significant.

Knapsack Onemax Royal Road F1 Royal Road F2
ρ

T-test results r 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0
MIGAb −MIGAw 10 ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++
V MEA−MIGAb ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++
MIGAb −MIGAw 50 ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++
V MEA−MIGAb ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++
MIGAb −MIGAw 100 ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++
V MEA−MIGAb ++ ++ ++ ++ ++ ++ + + ++ ++ ++ ++ ++ ++ ++ ++
MIGAb −MIGAw 200 ++ ++ ++ ++ ++ ++ ++ + ++ ++ ++ ++ ++ ++ ++ ++
V MEA−MIGAb ++ ++ ++ ++ + + + + ++ ++ ++ ++ ++ ++ ++ ++

Table 9.2: Statistical results of comparing MIGA and VMEA

104 9. MEMORY: EXPERIMENTAL RESULTS

 1750

 1760

 1770

 1780

 1790

 1800

 1810

10 20 30 40 50 60 70 80 90 VMEA

O
ff

li
n
e

p
er

fo
rm

an
ce

Memory size (% of n)

Knapsack - MIGA (r = 10)

 1770

 1780

 1790

 1800

 1810

 1820

 1830

10 20 30 40 50 60 70 80 90 VMEA

O
ff

li
n
e

p
er

fo
rm

an
ce

Memory size (% of n)

Knapsack - MIGA (r = 50)

 1770

 1780

 1790

 1800

 1810

 1820

 1830

10 20 30 40 50 60 70 80 90 VMEA

O
ff

li
n
e

p
er

fo
rm

an
ce

Memory size (% of n)

Knapsack - MIGA (r = 100)

 1770

 1780

 1790

 1800

 1810

 1820

 1830

10 20 30 40 50 60 70 80 90 VMEA
O

ff
li

n
e

p
er

fo
rm

an
ce

Memory size (% of n)

Knapsack - MIGA (r = 200)

ρ = 0.1
ρ = 0.2
ρ = 0.5
ρ = 1.0

Figure 9.5: Global results obtained in the dynamic Knapsack problem using
MIGA with different population and memory sizes

 210

 220

 230

 240

 250

 260

 270

 280

10 20 30 40 50 60 70 80 90 VMEA

O
ff

li
n
e

p
er

fo
rm

an
ce

Memory size (% of n)

Onemax - MIGA (r = 10)

 250

 260

 270

 280

 290

 300

 310

10 20 30 40 50 60 70 80 90 VMEA

O
ff

li
n
e

p
er

fo
rm

an
ce

Memory size (% of n)

Onemax - MIGA (r = 50)

 250

 260

 270

 280

 290

 300

 310

10 20 30 40 50 60 70 80 90 VMEA

O
ff

li
n
e

p
er

fo
rm

an
ce

Memory size (% of n)

Onemax - MIGA (r = 100)

 250

 260

 270

 280

 290

 300

 310

10 20 30 40 50 60 70 80 90 VMEA

O
ff

li
n
e

p
er

fo
rm

an
ce

Memory size (% of n)

Onemax - MIGA (r = 200)

ρ = 0.1
ρ = 0.2
ρ = 0.5
ρ = 1.0

Figure 9.6: Global results obtained in the dynamic Onemax problem using
MIGA with different population and memory sizes

9.1. POPULATION AND MEMORY SIZES 105

 0

 10

 20

 30

 40

 50

10 20 30 40 50 60 70 80 90 VMEA

O
ff

li
n
e

p
er

fo
rm

an
ce

Memory size (% of n)

Royal Road F1 - MIGA (r = 10)

 0

 10

 20

 30

 40

 50

 60

 70

10 20 30 40 50 60 70 80 90 VMEA

O
ff

li
n
e

p
er

fo
rm

an
ce

Memory size (% of n)

Royal Road F1 - MIGA (r = 50)

 0

 10

 20

 30

 40

 50

 60

 70

10 20 30 40 50 60 70 80 90 VMEA

O
ff

li
n
e

p
er

fo
rm

an
ce

Memory size (% of n)

Royal Road F1 - MIGA (r = 100)

 0

 10

 20

 30

 40

 50

 60

 70

10 20 30 40 50 60 70 80 90 VMEA

O
ff

li
n
e

p
er

fo
rm

an
ce

Memory size (% of n)

Royal Road F1 - MIGA (r = 200)

ρ = 0.1
ρ = 0.2
ρ = 0.5
ρ = 1.0

Figure 9.7: Global results obtained in the dynamic Royal Road F1 problem
using MIGA with different population and memory sizes

 0

 20

 40

 60

 80

 100

 120

10 20 30 40 50 60 70 80 90 VMEA

O
ff

li
n
e

p
er

fo
rm

an
ce

Memory size (% of n)

Royal Road F2 - MIGA (r = 10)

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180

10 20 30 40 50 60 70 80 90 VMEA

O
ff

li
n
e

p
er

fo
rm

an
ce

Memory size (% of n)

Royal Road F2 - MIGA (r = 50)

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180

10 20 30 40 50 60 70 80 90 VMEA

O
ff

li
n
e

p
er

fo
rm

an
ce

Memory size (% of n)

Royal Road F2 - MIGA (r = 100)

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180

10 20 30 40 50 60 70 80 90 VMEA

O
ff

li
n
e

p
er

fo
rm

an
ce

Memory size (% of n)

Royal Road F2 - MIGA (r = 200)

ρ = 0.1
ρ = 0.2
ρ = 0.5
ρ = 1.0

Figure 9.8: Global results obtained in the dynamic Royal Road F2 problem
using MIGA with different population and memory sizes

106 9. MEMORY: EXPERIMENTAL RESULTS

9.1.3 Analysis of the results for AMGA

The global results obtained for the AMGA, using different proportions for the
memory size, are displayed in Figure 9.9 through Figure 9.12.
The statistical results shown on Table 9.3 compare the best and worst choices
using different memory sizes for the AMGA (AMGAb and AMGAw, respec-
tively); the best results of the AMGA are compared with VMEA.
As observed, depending on the change period and the change ratio, the choice
of population and memory sizes affected the algorithm’s performance.
For the Knapsack problem, in environments with slower changes (r = 50, r =
100, r = 200), the chosen proportion for the memory size had a larger impact in
the algorithm’s performance. On those situations, the best results were achieved
using m = 70% × n and m = 60% × n. This observation was consistent for all
the values of ρ. The worst results were observed using larger memory sizes
(m = 80% × n and m = 90% × n). When r = 10 AMGA obtained similar
results using memory sizes from 10% to 70% of n. As before, the use of smaller
populations (m = 90% × n) lead to a significant decrease in the algorithm’s
performance.

For the Onemax problem, AMGA, for r = 10 and r = 50, obtained better
results using a memory size of 50% or 60% of n. On those situations, either
smaller or larger populations lead to a decrease of the EAs’ performance. For
r = 100 and r = 200, AMGA achieved the best results using larger memory
(90%) and smaller populations. In general, for those situations, the algorithm’s
performance increased using larger memory sizes.

The performance of the AMGA in the Royal Road F1 and F2 problems was
similar in environments with slower changes: using r = 50, r = 100 and r = 200.
In these cases, the best results obtained with the AMGA were reported with
memory of 10% or 80% of the global number of individuals. On those situations,
smaller memory sizes were enough to obtain the best results. In addition, as the
change period increased, the impact of the population size on the algorithm’s
performance was smaller, and only with smaller populations was the algorithm’s
performance seriously affected.
When r = 10, the AMGA for the Royal Road F1 obtained the best results
using m = 20% × n or m = 30% × n, in environments with lower severity of
change (ρ = 0.1, ρ = 0.2 and ρ = 0.5), or larger memory (m = 70% × n) in
environments with higher severity (ρ = 1.0). In all the cases, either larger (90%)
or smaller (10%) memory size presented the worst results.
When r = 10, the results for AMGA for the Royal Road F2 were similar to
Royal Road F1. The algorithm obtained the best results using m = 30%×n or
m = 40% × n in environments with lower severity of change (ρ = 0.1, ρ = 0.2
and ρ = 0.5), or smaller populations (m = 60% × n) in environments with
higher severity (ρ = 1.0). In all the cases, either larger or smaller populations
presented the worst results.

Analyzing all the situations studied for the AMGA, no general behavior was
found. The impact of the population and memory sizes was significant but de-

9.1. POPULATION AND MEMORY SIZES 107

pended on the problem and on the environmental characteristics.
Table 9.3 indicates that a good or a bad choice for the population and mem-
ory sizes had a significant impact on the AMGA’s performance. Comparing
the VMEA’s and the AMGA’s performance in all situations, VMEA always
outperformed AMGA. Table 9.3 corroborates this observation. In general, as
the change period increased, the global performance of VMEA became more
robust and was similar for all values of ρ.

 1720

 1740

 1760

 1780

 1800

10 20 30 40 50 60 70 80 90 VMEA

O
ff

li
n
e

p
er

fo
rm

an
ce

Memory size (% of n)

Knapsack - AMGA (r = 10)

 1780

 1800

 1820

10 20 30 40 50 60 70 80 90 VMEA

O
ff

li
n
e

p
er

fo
rm

an
ce

Memory size (% of n)

Knapsack - AMGA (r = 50)

 1780

 1800

 1820

10 20 30 40 50 60 70 80 90 VMEA

O
ff

li
n
e

p
er

fo
rm

an
ce

Memory size (% of n)

Knapsack - AMGA (r = 100)

 1780

 1800

 1820

10 20 30 40 50 60 70 80 90 VMEA

O
ff

li
n
e

p
er

fo
rm

an
ce

Memory size (% of n)

Knapsack - AMGA (r = 200)

ρ = 0.1
ρ = 0.2
ρ = 0.5
ρ = 1.0

Figure 9.9: Global results obtained in the dynamic Knapsack problem using
AMGA with different population and memory sizes

Knapsack Onemax Royal Road F1 Royal Road F2
ρ

T-test results r 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0
AMGAb −AMGAw 10 ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++
V MEA−AMGAb ++ ++ ++ ++ ++ ++ ++ ++ + + + ++ ++ + + +
AMGAb −AMGAw 50 ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++
V MEA−AMGAb ++ ++ ++ ++ ++ ++ ++ ++ + ++ ++ ++ ++ ++ + +
AMGAb −AMGAw 100 ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++
V MEA−AMGAb ++ ++ ++ ++ ++ ++ ++ ++ + ++ ++ ++ ++ ++ ++ ++
AMGAb −AMGAw 200 ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++
V MEA−AMGAb ++ ++ ++ ++ ++ ++ ++ ++ + + + + ++ ++ ++ ++

Table 9.3: Statistical results of comparing AMGA and VMEA

108 9. MEMORY: EXPERIMENTAL RESULTS

 220

 230

 240

 250

 260

 270

 280

10 20 30 40 50 60 70 80 90 VMEA

O
ff

li
n
e

p
er

fo
rm

an
ce

Memory size (% of n)

Onemax - AMGA (r = 10)

 250

 260

 270

 280

 290

 300

 310

10 20 30 40 50 60 70 80 90 VMEA

O
ff

li
n
e

p
er

fo
rm

an
ce

Memory size (% of n)

Onemax - AMGA (r = 50)

 250

 260

 270

 280

 290

 300

 310

10 20 30 40 50 60 70 80 90 VMEA

O
ff

li
n
e

p
er

fo
rm

an
ce

Memory size (% of n)

Onemax - AMGA (r = 100)

 250

 260

 270

 280

 290

 300

 310

10 20 30 40 50 60 70 80 90 VMEA
O

ff
li

n
e

p
er

fo
rm

an
ce

Memory size (% of n)

Onemax - AMGA (r = 200)

ρ = 0.1
ρ = 0.2
ρ = 0.5
ρ = 1.0

Figure 9.10: Global results obtained in the dynamic Onemax problem using
AMGA with different population and memory sizes

 0

 10

 20

 30

 40

 50

10 20 30 40 50 60 70 80 90 VMEA

O
ff

li
n
e

p
er

fo
rm

an
ce

Memory size (% of n)

Royal Road F1 - AMGA (r = 10)

 30

 40

 50

 60

 70

10 20 30 40 50 60 70 80 90 VMEA

O
ff

li
n
e

p
er

fo
rm

an
ce

Memory size (% of n)

Royal Road F1 - AMGA (r = 50)

 30

 40

 50

 60

 70

10 20 30 40 50 60 70 80 90 VMEA

O
ff

li
n
e

p
er

fo
rm

an
ce

Memory size (% of n)

Royal Road F1 - AMGA (r = 100)

 30

 40

 50

 60

 70

10 20 30 40 50 60 70 80 90 VMEA

O
ff

li
n
e

p
er

fo
rm

an
ce

Memory size (% of n)

Royal Road F1 - AMGA (r = 200)

ρ = 0.1
ρ = 0.2
ρ = 0.5
ρ = 1.0

Figure 9.11: Global results obtained in the dynamic Royal Road F1 problem
using AMGA with different population and memory sizes

9.1. POPULATION AND MEMORY SIZES 109

 20

 40

 60

 80

 100

 120

10 20 30 40 50 60 70 80 90 VMEA

O
ff

li
n
e

p
er

fo
rm

an
ce

Memory size (% of n)

Royal Road F2 - AMGA (r = 10)

 60

 80

 100

 120

 140

 160

 180

10 20 30 40 50 60 70 80 90 VMEA

O
ff

li
n
e

p
er

fo
rm

an
ce

Memory size (% of n)

Royal Road F2 - AMGA (r = 50)

 60

 80

 100

 120

 140

 160

 180

10 20 30 40 50 60 70 80 90 VMEA

O
ff

li
n
e

p
er

fo
rm

an
ce

Memory size (% of n)

Royal Road F2 - AMGA (r = 100)

 60

 80

 100

 120

 140

 160

 180

10 20 30 40 50 60 70 80 90 VMEA

O
ff

li
n
e

p
er

fo
rm

an
ce

Memory size (% of n)

Royal Road F2 - AMGA (r = 200)

ρ = 0.1
ρ = 0.2
ρ = 0.5
ρ = 1.0

Figure 9.12: Global results obtained in the dynamic Royal Road F2 problem
using AMGA with different population and memory sizes

9.1.4 Analysis of the VMEA sizes

From the analysis of the results, it is evident that VMEA achieved significant
better performances compared to all the other algorithms. Using constant sizes
for MEGA, MIGA or AMGA, different settings yield to different perfor-
mances and no typical values were found as the optimal choices for the popu-
lation/memory sizes. On the other hand, VMEA, using different population
and memory sizes during the run, was able to achieve the best scores. In order
to better understand VMEA’s better performance, we analyzed the variations
of population and memory sizes in this algorithm.
Figure 9.13 shows the population sizes achieved at the end of the run. Note
that the global number of individuals (n) was the same in all the algorithms;
for example, if p was set to 90, the corresponding memory size was 10. Using the
information provided by the plots we can establish some general conclusions:

(a) VMEA evolved larger population sizes (and smaller memory) for environ-
ments using larger change periods. The only observed exception corre-
sponded to the Onemax problem for ρ = 0.1, where the population was
almost the same for every values of r.

(b) when the severity of the change was higher, larger population sizes were
attained.

Comparing the settings that allowed the other peer algorithms to achieve the
best results, it is not possible to say that the same conclusions were observed in

110 9. MEMORY: EXPERIMENTAL RESULTS

all circumstances. Nevertheless, in most situations, the above described pattern
was present. We can see that for the Royal Road Functions F1 and F2, the three
algorithms had results in accordance with the general principles stated above.
As for the remaining problems, similar observations were generally present for
MEGA and MIGA, but the same was not true for AMGA.
It is important to point out that the values presented on Figure 9.13 are the
final sizes for the population reached at the end of the run using VMEA. So, it
is understandable that the results cannot be exactly the same obtained by the
other algorithms. In fact, VMEA changed the population and memory sizes
during the run in different ways, depending on the change period. Figure 9.14
represents a typical example, obtained for the Onemax problem for r = 10 and
r = 200.
We can see that, for both situations, there was a consistent pattern: as time
passed, the population size tended to decrease as the memory size became larger.
Also, in rapid changing periods (r = 10) those variations occurred faster. When
r = 200, the decrease of the population size was slower. This happened because
we used a replacing strategy that replaced the memory individuals belonging to
the same cycle. Consequently, in larger cycles, there was no need to increase the
memory size as often because a previously stored individual, belonging to the
same period, was being replaced. For rapid change periods, this situation was
not so frequent and the memory size increased faster to store a wider variety of
individuals.

 0

 20

 40

 60

 80

 100

r=10 r=50 r=100 r=200

P
o
p
u
la

ti
o
n
 s

iz
e

Knapsack

 0

 20

 40

 60

 80

 100

r=10 r=50 r=100 r=200

P
o
p
u
la

ti
o
n
 s

iz
e

Onemax

 0

 20

 40

 60

 80

 100

r=10 r=50 r=100 r=200

P
o
p
u
la

ti
o
n
 s

iz
e

Royal Road F1

ρ = 0.1
ρ = 0.2

ρ = 0.5
ρ = 1.0

 0

 20

 40

 60

 80

 100

r=10 r=50 r=100 r=200

P
o
p
u
la

ti
o
n
 s

iz
e

Royal Road F2

ρ = 0.1
ρ = 0.2

ρ = 0.5
ρ = 1.0

Figure 9.13: Population sizes at the end of the run obtained using VMEA

9.1. POPULATION AND MEMORY SIZES 111

Figure 9.14: Population sizes during the run obtained using VMEA for the
Onemax problem using r = 10 (figure on the left) and r = 200 (figure on the
right) and ρ = 0.5

9.1.5 Discussion

The results obtained show that the use of different values for the population
and memory sizes can have a significant influence in the efficacy of the EAs.
The values used as standard for population and memory sizes, corresponding to
larger populations and smaller memories (10% of n), rarely achieved the best
results in the cases studied.
The results were not consistent in the three algorithms tested using constant
sizes, but some patterns occurred often.
Looking at the population and memory sizes that allowed MEGA, MIGA and
AMGA to achieve the best scores, the following was generally observed:

(a) when the changes in the environment (r) occurred faster, it was important
to use a larger memory size than for situations where the changes occurred
at a slower rate.

(b) as the severity of the change (ρ) increased, the best size for the memory
became smaller.

AMGA was the only algorithm where those situations were not so regular.
The first observation can be explained by the memory replacing scheme that
was used. Using the generational scheme, if an individual of the current period
was previously stored in memory, when the memory was updated and the period
was the same, one memory individual of the same cycle was replaced. When
the change period was larger, this situation occurred often and smaller memory
sizes were enough to provide a good performance. The opposite happened when
the change period was smaller and the replacing of an individual of the same
cycle rarely happened. As a result, the memory capacity was attained faster
and larger memory sizes provided better results.
The second conclusion is explained as follows: when the severity of the change
was higher, a small number of different environments appeared. For instance,
when ρ = 1.0 the environment changed between two different states, for ρ = 0.1,
ten or more different environments appeared during the run. So, for higher
values of ρ, less information was needed in the memory to assure a good perfor-
mance.

112 9. MEMORY: EXPERIMENTAL RESULTS

The results obtained don’t allow us to say which population and memory size
is better for a particular problem. The best choice of values depends on the
environmental characteristics, the problem to solve, and the algorithm used.
Therefore, this choice is not simple or easy and trying to tune the population
size before running the algorithm is practically impossible, since the combina-
tions are huge and time consuming.
The proposed VMEA, capable of controlling the population and memory sizes
during the run, obtained superior results, and proved to be effective and robust
in all environments and problems analyzed. This algorithm used the same num-
ber of individuals but managed their distribution among the population and
memory differently. The results show that, at the end of the run, the algorithm
obtained population and memory sizes that were in accordance with the obser-
vations (a) and (b) made before. Moreover, the evolution of the population and
memory sizes during the run was different for different environments. Without
many restrictions, VMEA was able to manage the global number of individ-
uals “intelligently” by using population and for the memory proportions that
allowed it to obtain significantly better results.

9.2 Replacing strategies

This section presents the results about the impact that different replacing strate-
gies had in the performance of the memory-based EAs. We show the results
obtained with Branke’s most used replacing method, called similar, and com-
pare those results with the replacing strategies proposed in this work previ-
ously described in Chapter 5. The four replacing methods - similar, age1, age2
and generational - were tested and compared on the four implemented EAs:
MEGA, MIGA, AMGA, and VMEA.

9.2.1 Analysis of the results for MEGA

The results obtained with MEGA are reported on Figures 9.15 through 9.18.
The statistical results provided by the statistical tests are displayed on Table
9.4.
The results obtained show that, when r = 10, the age2 replacing method allowed
the algorithm to achieve better results. The remaining techniques obtained
comparable performances.
For the remaining values of r, the results obtained by MEGA were as follows:
the best results were obtained using the generational replacing method and age1
achieved the worst results; age2 was better than age1 for r = 50 and r = 100
and had equivalent performances when r = 200.

9.2. REPLACING STRATEGIES 113

 1760

 1770

 1780

 1790

0.1 0.2 0.5 1.0

O
ff

li
n

e
p

er
fo

rm
an

ce

ρ

Knapsack - MEGA (r = 10)

 1770

 1780

 1790

 1800

 1810

 1820

0.1 0.2 0.5 1.0

O
ff

li
n

e
p

er
fo

rm
an

ce

ρ

Knapsack - MEGA (r = 50)

 1770

 1780

 1790

 1800

 1810

 1820

0.1 0.2 0.5 1.0

O
ff

li
n

e
p

er
fo

rm
an

ce

ρ

Knapsack - MEGA (r = 100)

 1770

 1780

 1790

 1800

 1810

 1820

0.1 0.2 0.5 1.0

O
ff

li
n

e
p

er
fo

rm
an

ce

ρ

Knapsack - MEGA (r = 200)

sim
age1
age2
gen

Figure 9.15: Global results obtained in the dynamic Knapsack problem using
MEGA with different replacing strategies

 200

 210

 220

 230

 240

 250

 260

 270

0.1 0.2 0.5 1.0

O
ff

li
n
e

p
er

fo
rm

an
ce

ρ

Onemax - MEGA (r = 10)

 250

 260

 270

 280

 290

 300

0.1 0.2 0.5 1.0

O
ff

li
n
e

p
er

fo
rm

an
ce

ρ

Onemax - MEGA (r = 50)

 250

 260

 270

 280

 290

 300

0.1 0.2 0.5 1.0

O
ff

li
n
e

p
er

fo
rm

an
ce

ρ

Onemax - MEGA (r = 100)

 250

 260

 270

 280

 290

 300

0.1 0.2 0.5 1.0

O
ff

li
n
e

p
er

fo
rm

an
ce

ρ

Onemax - MEGA (r = 200)

sim
age1
age2
gen

Figure 9.16: Global results obtained in the dynamic Onemax problem using
MEGA with different replacing strategies

114 9. MEMORY: EXPERIMENTAL RESULTS

 15

 20

 25

 30

 35

0.1 0.2 0.5 1.0

O
ff

li
n

e
p

er
fo

rm
an

ce

ρ

Royal Road F1 - MEGA (r = 10)

 45

 50

 55

 60

 65

0.1 0.2 0.5 1.0

O
ff

li
n

e
p

er
fo

rm
an

ce

ρ

Royal Road F1 - MEGA (r = 50)

 45

 50

 55

 60

 65

0.1 0.2 0.5 1.0

O
ff

li
n

e
p

er
fo

rm
an

ce

ρ

Royal Road F1 - MEGA (r = 100)

 45

 50

 55

 60

 65

0.1 0.2 0.5 1.0

O
ff

li
n

e
p

er
fo

rm
an

ce

ρ

Royal Road F1 - MEGA (r = 200)

sim
age1
age2
gen

Figure 9.17: Global results obtained in the dynamic Royal Road F1 problem
using MEGA with different replacing strategies

 20

 30

 40

 50

 60

0.1 0.2 0.5 1.0

O
ff

li
n
e

p
er

fo
rm

an
ce

ρ

Royal Road F2 - MEGA (r = 10)

 110

 120

 130

 140

 150

 160

 170

 180

 190

0.1 0.2 0.5 1.0

O
ff

li
n
e

p
er

fo
rm

an
ce

ρ

Royal Road F2 - MEGA (r = 50)

 110

 120

 130

 140

 150

 160

 170

 180

 190

0.1 0.2 0.5 1.0

O
ff

li
n
e

p
er

fo
rm

an
ce

ρ

Royal Road F2 - MEGA (r = 100)

 110

 120

 130

 140

 150

 160

 170

 180

 190

0.1 0.2 0.5 1.0

O
ff

li
n
e

p
er

fo
rm

an
ce

ρ

Royal Road F2 - MEGA (r = 200)

sim
age1
age2
gen

Figure 9.18: Global results obtained in the dynamic Royal Road F2 problem
using MEGA with different replacing strategies

9.2. REPLACING STRATEGIES 115

Knapsack Onemax Royal Road F1 Royal Road F2
ρ

T-test results r 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0
gen – age1 + + − + ++ ++ ++ ++ + ++ + + − − + −
gen – age2 −− −− −− −− −− −− −− −− − − − − − − − −
gen – sim 10 + + + + ++ ++ ++ + + ++ ++ + ++ ++ ++ ++

age1 – age2 −− −− −− −− −− −− −− −− − −− − − + −− −− −−
age1 – sim − − + − + + + − + − + + + + + +
age2 – sim ++ ++ ++ ++ ++ ++ ++ ++ + ++ ++ + + ++ ++ ++
gen – age1 ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++
gen – age2 ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++
gen – sim 50 ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++

age1 – age2 −− −− −− −− −− −− −− −− − − − − −− −− −− −−
age1 – sim −− −− −− −− −− −− −− −− −− −− −− −− −− −− −− −−
age2 – sim −− −− −− −− −− −− −− −− −− −− −− −− −− −− −− −−
gen – age1 ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++
gen – age2 ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++
gen – sim 100 ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ + + ++ ++ ++ ++

age1 – age2 −− −− −− −− −− −− −− −− −− −− −− −− − −− − -
age1 – sim −− −− −− −− −− −− −− −− −− −− −− −− −− −− −− −−
age2 – sim −− −− −− − −− −− −− −− −− −− −− − −− −− −− −−
gen – age1 ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ + ++ ++ ++ ++
gen – age2 ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ + ++ ++ ++ ++
gen – sim 200 ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ + ++ ++ ++ +

age1 – age2 − − − − − − − − − − − − − − − −
age1 – sim −− −− −− −− −− −− −− −− − − − − −− −− −− −−
age2 – sim −− −− −− −− −− −− −− −− − − − − −− −− −− −−

Table 9.4: Statistical results of comparing MEGA using different replacing
strategies

9.2.2 Analysis of the results for MIGA

Figures 9.19 through 9.22 show the comparison results between the different
memory replacing techniques on MIGA. The statistical validation of the re-
sults is reported on Table 9.5.
As happened for MEGA, for r = 10 the best scores were attained using the
age2 technique and the remaining methods performed equivalently. For larger
change periods (r = 50, r = 100 and r = 200), the results were analogous to
the ones obtained by the other algorithms: the best technique was the genera-
tional. The similar method conferred better scores than age1 and age2, with
age2 slightly superior to age1.
Table 9.5 shows that all these comparisons were statistically significant. Sta-
tistical equivalence was observed when r = 10, for all the methods except age2
and, in some comparisons, between age1 and age2, when r = 200.

116 9. MEMORY: EXPERIMENTAL RESULTS

 1770

 1780

 1790

 1800

0.1 0.2 0.5 1.0

O
ff

li
n

e
p

er
fo

rm
an

ce

ρ

Knapsack - MIGA (r = 10)

 1800

 1810

 1820

0.1 0.2 0.5 1.0

O
ff

li
n

e
p

er
fo

rm
an

ce

ρ

Knapsack - MIGA (r = 50)

 1800

 1810

 1820

0.1 0.2 0.5 1.0

O
ff

li
n

e
p

er
fo

rm
an

ce

ρ

Knapsack - MIGA (r = 100)

 1800

 1810

 1820

0.1 0.2 0.5 1.0

O
ff

li
n

e
p

er
fo

rm
an

ce

ρ

Knapsack - MIGA (r = 200)

sim
age1
age2
gen

Figure 9.19: Global results obtained in the dynamic Knapsack problem using
MIGA with different replacing strategies

 220

 230

 240

 250

 260

0.1 0.2 0.5 1.0

O
ff

li
n
e

p
er

fo
rm

an
ce

ρ

Onemax - MIGA (r = 10)

 260

 270

 280

 290

 300

 310

0.1 0.2 0.5 1.0

O
ff

li
n
e

p
er

fo
rm

an
ce

ρ

Onemax - MIGA (r = 50)

 260

 270

 280

 290

 300

 310

0.1 0.2 0.5 1.0

O
ff

li
n
e

p
er

fo
rm

an
ce

ρ

Onemax - MIGA (r = 100)

 260

 270

 280

 290

 300

 310

0.1 0.2 0.5 1.0

O
ff

li
n
e

p
er

fo
rm

an
ce

ρ

Onemax - MIGA (r = 200)

sim
age1
age2
gen

Figure 9.20: Global results obtained in the dynamic Onemax problem using
MIGA with different replacing strategies

9.2. REPLACING STRATEGIES 117

 15

 20

 25

 30

 35

0.1 0.2 0.5 1.0

O
ff

li
n

e
p

er
fo

rm
an

ce

ρ

Royal Road F1 - MIGA (r = 10)

 35

 40

 45

 50

 55

 60

 65

0.1 0.2 0.5 1.0

O
ff

li
n

e
p

er
fo

rm
an

ce

ρ

Royal Road F1 - MIGA (r = 50)

 35

 40

 45

 50

 55

 60

 65

0.1 0.2 0.5 1.0

O
ff

li
n

e
p

er
fo

rm
an

ce

ρ

Royal Road F1 - MIGA (r = 100)

 35

 40

 45

 50

 55

 60

 65

0.1 0.2 0.5 1.0

O
ff

li
n

e
p

er
fo

rm
an

ce

ρ

Royal Road F1 - MIGA (r = 200)

sim
age1
age2
gen

Figure 9.21: Global results obtained in the dynamic Royal Road F1 problem
using MIGA with different replacing strategies

 30

 40

 50

0.1 0.2 0.5 1.0

O
ff

li
n
e

p
er

fo
rm

an
ce

ρ

Royal Road F2 - MIGA (r = 10)

 100

 105

 110

 115

 120

 125

 130

0.1 0.2 0.5 1.0

O
ff

li
n
e

p
er

fo
rm

an
ce

ρ

Royal Road F2 - MIGA (r = 50)

 120

 130

 140

 150

 160

 170

0.1 0.2 0.5 1.0

O
ff

li
n
e

p
er

fo
rm

an
ce

ρ

Royal Road F2 - MIGA (r = 100)

 120

 130

 140

 150

 160

 170

0.1 0.2 0.5 1.0

O
ff

li
n
e

p
er

fo
rm

an
ce

ρ

Royal Road F2 - MIGA (r = 200)

sim
age1
age2
gen

Figure 9.22: Global results obtained in the dynamic Royal Road F2 problem
using MIGA with different replacing strategies

118 9. MEMORY: EXPERIMENTAL RESULTS

Knapsack Onemax Royal Road F1 Royal Road F2
ρ

T-test results r 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0
gen – age1 + + + + + − − − − + − − −− − − -
gen – age2 −− −− −− −− −− −− −− −− −− −− −− −− −− −− −− −−
gen – sim 10 − − + + − − + + − − + + + + + +

age1 – age2 −− −− −− −− −− −− −− −− −− −− −− −− −− −− −− −−
age1 – sim − − − − − + + + − − + + ++ + + +
age2 – sim ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++
gen – age1 ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++
gen – age2 ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++
gen – sim 50 ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++

age1 – age2 −− −− −− −− −− −− −− −− −− −− −− −− − −− −− −−
age1 – sim −− −− −− −− −− −− −− −− −− −− −− −− − −− −− −−
age2 – sim − −− −− −− −− −− −− −− − − −− −− − − −− −−
gen – age1 ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++
gen – age2 ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++
gen – sim 100 ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ + ++ ++ ++ ++ ++

age1 – age2 −− −− −− −− −− −− − −− −− −− −− −− −− −− −− −−
age1 – sim −− −− −− −− −− −− −− −− −− −− −− −− −− −− −− −−
age2 – sim −− −− −− −− − −− −− −− − − −− −− −− −− −− −−
gen – age1 ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++
gen – age2 ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++
gen – sim 200 ++ ++ ++ ++ ++ ++ + + ++ ++ ++ ++ ++ ++ ++ ++

age1 – age2 − − − − −− −− −− −− − − −− − − − −− −−
age1 – sim −− −− −− − −− −− −− −− −− −− −− −− −− −− −− −−
age2 – sim −− −− −− − −− −− −− − −− −− −− −− − − −− −−

Table 9.5: Statistical results of comparing MIGA using different replacing
strategies

9.2.3 Analysis of the results for AMGA

Figures 9.23 through 9.26 show the results of the comparison between the mem-
ory replacing techniques used on the four problems studied. Table 9.6 shows
the statistical validation of those comparisons.
When r = 10, for all the problems, AMGA obtained the best results using
the age2 method. As the plots and the first rows of Table 9.6 indicate, the
remaining methods allowed the algorithm to obtain equivalent performances.
When the change period was larger (r = 50, r = 100 and r = 200), the genera-
tional technique obtained the highest scores and the worst results were achieved
using the age1 technique. For r = 200, age1 and age2, methods presented equiv-
alent performances.

9.2. REPLACING STRATEGIES 119

 1760

 1770

 1780

0.1 0.2 0.5 1.0

O
ff

li
n

e
p

er
fo

rm
an

ce

ρ

Knapsack - AMGA (r = 10)

 1780

 1790

 1800

 1810

0.1 0.2 0.5 1.0

O
ff

li
n

e
p

er
fo

rm
an

ce

ρ

Knapsack - AMGA (r = 50)

 1780

 1790

 1800

 1810

0.1 0.2 0.5 1.0

O
ff

li
n

e
p

er
fo

rm
an

ce

ρ

Knapsack - AMGA (r = 100)

 1780

 1790

 1800

 1810

0.1 0.2 0.5 1.0

O
ff

li
n

e
p

er
fo

rm
an

ce

ρ

Knapsack - AMGA (r = 200)

sim
age1
age2
gen

Figure 9.23: Global results obtained in the dynamic Knapsack problem using
AMGA with different replacing strategies

 240

 250

 260

 270

0.1 0.2 0.5 1.0

O
ff

li
n
e

p
er

fo
rm

an
ce

ρ

Onemax - AMGA (r = 10)

 260

 270

 280

 290

 300

0.1 0.2 0.5 1.0

O
ff

li
n
e

p
er

fo
rm

an
ce

ρ

Onemax - AMGA (r = 50)

 260

 270

 280

 290

 300

0.1 0.2 0.5 1.0

O
ff

li
n
e

p
er

fo
rm

an
ce

ρ

Onemax - AMGA (r = 100)

 260

 270

 280

 290

 300

0.1 0.2 0.5 1.0

O
ff

li
n
e

p
er

fo
rm

an
ce

ρ

Onemax - AMGA (r = 200)

sim
age1
age2
gen

Figure 9.24: Global results obtained in the dynamic Onemax problem using
AMGA with different replacing strategies

120 9. MEMORY: EXPERIMENTAL RESULTS

 20

 25

 30

 35

 40

0.1 0.2 0.5 1.0

O
ff

li
n

e
p

er
fo

rm
an

ce

ρ

Royal Road F1 - AMGA (r = 10)

 45

 50

 55

 60

 65

0.1 0.2 0.5 1.0

O
ff

li
n

e
p

er
fo

rm
an

ce

ρ

Royal Road F1 - AMGA (r = 50)

 45

 50

 55

 60

 65

0.1 0.2 0.5 1.0

O
ff

li
n

e
p

er
fo

rm
an

ce

ρ

Royal Road F1 - AMGA (r = 100)

 45

 50

 55

 60

 65

0.1 0.2 0.5 1.0

O
ff

li
n

e
p

er
fo

rm
an

ce

ρ

Royal Road F1 - AMGA (r = 200)

sim
age1
age2
gen

Figure 9.25: Global results obtained in the dynamic Royal Road F1 problem
using AMGA with different replacing strategies

 40

 50

 60

 70

 80

 90

 100

 110

0.1 0.2 0.5 1.0

O
ff

li
n
e

p
er

fo
rm

an
ce

ρ

Royal Road F2 - AMGA (r = 10)

 120

 130

 140

 150

 160

 170

 180

 190

 200

0.1 0.2 0.5 1.0

O
ff

li
n
e

p
er

fo
rm

an
ce

ρ

Royal Road F2 - AMGA (r = 50)

 120

 130

 140

 150

 160

 170

 180

 190

 200

0.1 0.2 0.5 1.0

O
ff

li
n
e

p
er

fo
rm

an
ce

ρ

Royal Road F2 - AMGA (r = 100)

 120

 130

 140

 150

 160

 170

 180

 190

 200

0.1 0.2 0.5 1.0

O
ff

li
n
e

p
er

fo
rm

an
ce

ρ

Royal Road F2 - AMGA (r = 200)

sim
age1
age2
gen

Figure 9.26: Global results obtained in the dynamic Royal Road F2 problem
using AMGA with different replacing strategies

9.2. REPLACING STRATEGIES 121

Knapsack Onemax Royal Road F1 Royal Road F2
ρ

T-test results r 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0
gen – age1 − − + − + − − − − + + + − + + +
gen – age2 −− −− −− −− −− −− −− −− −− −− −− −− −− −− −− −−
gen – sim 10 + + − − + − − − − + + + + + + −

age1 – age2 −− −− −− −− −− −− −− −− −− −− −− −− −− −− −− −−
age1 – sim + + − + − − + − + + + + + + − −
age2 – sim ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++
gen – age1 ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++
gen – age2 ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++
gen – sim 50 ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++

age1 – age2 − − −− −− −− −− −− −− −− −− − −− −− −− −− −−
age1 – sim −− −− −− −− −− −− −− −− −− −− −− −− −− −− −− −−
age2 – sim −− −− −− − −− −− −− −− −− −− −− −− −− −− −− −−
gen – age1 ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++
gen – age2 ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++
gen – sim 100 ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++

age1 – age2 − −− − − − −− −− − − −− −− −− −− −− −− −−
age1 – sim −− −− −− −− −− −− −− −− −− −− −− −− −− −− −− −−
age2 – sim −− − −− −− −− −− −− −− −− − −− −− −− −− −− −−
gen – age1 ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++
gen – age2 ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++
gen – sim 200 ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++

age1 – age2 − − − −− − − − −− − − −− −− −− −− −− −−
age1 – sim −− −− −− −− − −− −− −− −− −− −− −− −− −− −− −−
age2 – sim −− −− −− −− − −− −− −− −− −− −− − − − −− −−

Table 9.6: Statistical results of comparing AMGA using different replacing
strategies

9.2.4 Analysis of the results for VMEA

The results obtained with the different replacing strategies in VMEA are shown
in Figures 9.27 through 9.30. The statistical validation of the comparison be-
tween the different methods is shown in Table 9.7.
The results obtained by the proposed memory replacing techniques in VMEA
were consistent with the previous algorithms. For rapid changing periods (r =
10) VMEA achieved the best results using the age2 scheme. The remaining
methods attained equivalent performances.
When the change period was larger (r = 50, r = 100 and r = 200) the best
results were reached using the generational method. In general, the similar
method performed better when the severity of the change was higher (ρ = 0.5
and ρ = 1.0).
The methods age1 and age2 achieved the worst results, with age2 slightly better
than age1 - a similar result to the other algorithms studied.

122 9. MEMORY: EXPERIMENTAL RESULTS

 1770

 1780

 1790

 1800

 1810

0.1 0.2 0.5 1.0

O
ff

li
n

e
p

er
fo

rm
an

ce

ρ

Knapsack - VMEA (r = 10)

 1770

 1780

 1790

 1800

 1810

 1820

 1830

0.1 0.2 0.5 1.0

O
ff

li
n

e
p

er
fo

rm
an

ce

ρ

Knapsack - VMEA (r = 50)

 1770

 1780

 1790

 1800

 1810

 1820

 1830

0.1 0.2 0.5 1.0

O
ff

li
n

e
p

er
fo

rm
an

ce

ρ

Knapsack - VMEA (r = 100)

 1770

 1780

 1790

 1800

 1810

 1820

 1830

0.1 0.2 0.5 1.0

O
ff

li
n

e
p

er
fo

rm
an

ce

ρ

Knapsack - VMEA (r = 200)

sim
age1
age2
gen

Figure 9.27: Global results obtained in the dynamic Knapsack problem using
VMEA with different replacing strategies

 240

 250

 260

 270

 280

 290

0.1 0.2 0.5 1.0

O
ff

li
n
e

p
er

fo
rm

an
ce

ρ

Onemax - VMEA (r = 10)

 250

 260

 270

 280

 290

 300

0.1 0.2 0.5 1.0

O
ff

li
n
e

p
er

fo
rm

an
ce

ρ

Onemax - VMEA (r = 50)

 250

 260

 270

 280

 290

 300

0.1 0.2 0.5 1.0

O
ff

li
n
e

p
er

fo
rm

an
ce

ρ

Onemax - VMEA (r = 100)

 250

 260

 270

 280

 290

 300

0.1 0.2 0.5 1.0

O
ff

li
n
e

p
er

fo
rm

an
ce

ρ

Onemax - VMEA (r = 200)

sim
age1
age2
gen

Figure 9.28: Global results obtained in the dynamic Onemax problem using
VMEA with different replacing strategies

9.2. REPLACING STRATEGIES 123

 20

 25

 30

 35

 40

 45

0.1 0.2 0.5 1.0

O
ff

li
n

e
p

er
fo

rm
an

ce

ρ

Royal Road F1 - VMEA (r = 10)

 40

 45

 50

 55

 60

 65

 70

0.1 0.2 0.5 1.0

O
ff

li
n

e
p

er
fo

rm
an

ce

ρ

Royal Road F1 - VMEA (r = 50)

 40

 45

 50

 55

 60

 65

 70

0.1 0.2 0.5 1.0

O
ff

li
n

e
p

er
fo

rm
an

ce

ρ

Royal Road F1 - VMEA (r = 100)

 40

 45

 50

 55

 60

 65

 70

0.1 0.2 0.5 1.0

O
ff

li
n

e
p

er
fo

rm
an

ce

ρ

Royal Road F1 - VMEA (r = 200)

sim
age1
age2
gen

Figure 9.29: Global results obtained in the dynamic Royal Road F1 problem
using VMEA with different replacing strategies

 40

 50

 60

 70

 80

 90

 100

 110

0.1 0.2 0.5 1.0

O
ff

li
n
e

p
er

fo
rm

an
ce

ρ

Royal Road F2 - VMEA (r = 10)

 100

 120

 140

 160

 180

 200

0.1 0.2 0.5 1.0

O
ff

li
n
e

p
er

fo
rm

an
ce

ρ

Royal Road F2 - VMEA (r = 50)

 100

 120

 140

 160

 180

 200

0.1 0.2 0.5 1.0

O
ff

li
n
e

p
er

fo
rm

an
ce

ρ

Royal Road F2 - VMEA (r = 100)

 100

 120

 140

 160

 180

 200

0.1 0.2 0.5 1.0

O
ff

li
n
e

p
er

fo
rm

an
ce

ρ

Royal Road F2 - VMEA (r = 200)

sim
age1
age2
gen

Figure 9.30: Global results obtained in the dynamic Royal Road F2 problem
using VMEA with different replacing strategies

124 9. MEMORY: EXPERIMENTAL RESULTS

Knapsack Onemax Royal Road F1 Royal Road F2
ρ

T-test results r 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0
gen – age1 + + − − − − − − − − − − + − + +
gen – age2 −− −− −− −− −− −− −− −− −− −− −− −− −− −− −− −−
gen – sim 10 + − − − + + + + − − + − + − + +

age1 – age2 −− −− −− −− −− −− −− −− −− −− −− −− −− −− −− −−
age1 – sim + + + + + + + + + + + + + + + +
age2 – sim ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++
gen – age1 ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++
gen – age2 ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++
gen – sim 50 ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++

age1 – age2 −− −− −− −− −− −− −− −− −− −− −− −− −− −− −− −−
age1 – sim −− −− −− −− −− −− −− −− −− −− −− −− −− −− −− −−
age2 – sim −− −− −− −− −− −− −− −− −− −− −− −− − − −− −−
gen – age1 ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++
gen – age2 ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++
gen – sim 100 ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++

age1 – age2 −− −− −− −− − −− −− −− − −− −− −− −− −− −− −−
age1 – sim −− −− −− −− − −− −− −− −− −− −− −− −− −− −− −−
age2 – sim −− −− −− −− − −− −− −− − −− −− −− − −− −− −−
gen – age1 ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++
gen – age2 ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++
gen – sim 200 ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ + ++ ++ ++ ++

age1 – age2 −− −− −− −− − − −− −− − − − − − − −− −−
age1 – sim −− −− −− −− − −− −− −− − − −− −− − −− −− −−
age2 – sim −− −− −− −− − −− −− −− − − − − − − −− −−

Table 9.7: Statistical results of comparing VMEA using different replacing
strategies

9.2.5 Discussion

When the memory has limited capacity and it is full, the replacing scheme
selected to update the memory is crucial to decide which individual must be
replaced. The results obtained in our study show that different types of tech-
niques can be used and the performance of the memory-based EAs depends on
the chosen method.
Branke proposed different replacing schemes and his experimentations showed
that, for the problems studied, the similar technique was the best method.
Since then, this method has been widely used in the community investigating
approaches using memory.
In our work we introduced three different replacing schemes and compared the
performance of different types of memory-based EAs using each one of the pro-
posed methods. The Branke’s similar scheme was also included in our compar-
isons.
The results were coherent for the four algorithms. The proposed generational
replacing scheme always obtained the best results, except when r = 10. This
happened because the change period was small and when a change occurred,
most of the times, no individual of that period had been stored. Consequently,
in such case, when memory was full, the most similar individual was replaced,
conferring equivalent performances to the similar and the generational tech-
niques. In environments that changed rapidly, the best technique was age2 ; an
indication that this method - a method that computed the age of an individual
based on a linear combination of its actual age and its fitness - allowed the
algorithm to decide correctly which individual should be replaced. Since the in-
dividual replaced in this case was the youngest among the memorized solutions,

9.2. REPLACING STRATEGIES 125

it means that its fitness was poor or its age was low.
For larger change periods, the best results were attained by the generational
method that managed the memory capacity with more efficiency. This method
kept track of the last stored individual for the current cycle and if a new in-
dividual of the same cycle had to be stored, the previous one was replaced, if
worse. In this way, the memorized solutions corresponded to a wide number of
different environments, minimizing redundancy efficiently. The age1 and age2
methods performed worse. In fact, age1 was in general the worst method for all
the situations. These results corroborated Branke’s conclusions, which referred
the difficulty of finding a trade-off between the fitness and the age contributions
in age-based replacing schemes [14].

Chapter 10

Diversity: experimental

results

This chapter shows the results obtained using the proposed genetic operators
in four different types of memory-based EAs, which were tested with different
benchmark problems. The results obtained using the standard uniform crossover
operator with the same algorithms area also presented. The proposed genetic
operators were incorporated in the EAs as substitutes for crossover. Our main
goal is to see if the proposed methods are useful to preserve the population’s
diversity and if the performance of the memory-based EAs is related with the
population’s diversity. For each algorithm we present the population’s diver-
sity obtained by each operator and the consequent global performance. The
statistical validation of all the comparisons is also reported.

10.1 Analysis of the results for MEGA

This section presents the results obtained by MEGA. Table 10.1 shows the
average of the population’s diversity using uniform crossover (Cx) and the two
proposed operators, conjugation (Cj) and transformation (Tf). The off-line per-
formances obtained by the different genetic operators are shown in Figures 10.1
through 10.4. The statistical validation of those comparisons are summarized
on Table 10.2.
The highest diversity of the population was promoted using transformation.
The lowest diversity of the population was obtained using conjugation. The di-
versity obtained by crossover was between those two boundaries. As the change
period increased, the diversity obtained using conjugation and crossover de-
creased. This decrease was not so abrupt when using transformation. For the
Royal Road functions F1 and F2, the diversity obtained by crossover and con-
jugation, for larger change periods (r = 100, r = 200), was similar.
For the Knapsack and the Onemax problems, the best performances of MEGA
using the different genetic operators, were achieved using conjugation (lowest
diversity). On the other hand, MEGA with transformation attained the worst
results, corresponding to the highest diversity of the population. The only ex-

127

128 10. DIVERSITY: EXPERIMENTAL RESULTS

ception occurred in the Onemax problem, for ρ = 1.0, where the performances
of transformation and crossover were statistically equivalent.
These observations show that, for those two problems, the retrieval of the mem-
orized information when a change occurred, associated with some exploration
(lower diversity) of the search space ensured the best performance of MEGA.
For the Royal Road functions, when r = 10 and r = 50 - for ρ = 0.1 and ρ = 0.2
- crossover and conjugation achieved the best results (without statistical differ-
ence). For ρ = 1.0, transformation allowed MEGA to obtain the best scores.
As the change period increased, conjugation and crossover continued to obtain
similar performances, including when ρ = 0.5. Transformation was the most
effective operator for harsher changes, indicating that the memorized solutions
were not enough to help the EA when the changes occurred. The low diversity
obtained by crossover and conjugation in larger change periods, indicate that
the memorized solutions were prematurely converged and extra diversity was
beneficial for those situations. For larger change periods, the diversity obtained
by conjugation and crossover was equivalent and the performance of MEGA,
for these cases, was not statistically different.
The results obtained showed that the performance of MEGA was affected by
the population’s diversity. In general, a lower diversity was better, particularly
for gradual severities on the environmental changes. Depending on the problem,
different performances were obtained for higher values of ρ.

 1760

 1770

 1780

 1790

0.1 0.2 0.5 1.0

O
ff

li
n
e

p
er

fo
rm

an
ce

ρ

Knapsack - MEGA (r = 10)

 1760

 1770

 1780

 1790

 1800

 1810

 1820

0.1 0.2 0.5 1.0

O
ff

li
n
e

p
er

fo
rm

an
ce

ρ

Knapsack - MEGA (r = 50)

 1760

 1770

 1780

 1790

 1800

 1810

 1820

0.1 0.2 0.5 1.0

O
ff

li
n

e
p

er
fo

rm
an

ce

ρ

Knapsack - MEGA (r = 100)

 1760

 1770

 1780

 1790

 1800

 1810

 1820

0.1 0.2 0.5 1.0

O
ff

li
n

e
p

er
fo

rm
an

ce

ρ

Knapsack - MEGA (r = 200)

Cx
Cj
Tf

Figure 10.1: Global results obtained in the dynamic Knapsack problem using
MEGA with different genetic operators

10.1. ANALYSIS OF THE RESULTS FOR MEGA 129

Knapsack
r = 10 r = 50 r = 100 r = 200

ρ Cx Cj Tf Cx Cj Tf Cx Cj Tf Cx Cj Tf
0.1 0.32 0.16 0.48 0.30 0.10 0.45 0.22 0.09 0.40 0.18 0.07 0.39
0.2 0.33 0.17 0.48 0.31 0.10 0.45 0.22 0.09 0.41 0.18 0.06 0.37
0.5 0.35 0.17 0.48 0.32 0.09 0.45 0.23 0.09 0.40 0.17 0.06 0.37
1.0 0.33 0.17 0.48 0.32 0.09 0.46 0.24 0.09 0.41 0.17 0.06 0.37

Onemax
r = 10 r = 50 r = 100 r = 200

ρ Cx Cj Tf Cx Cj Tf Cx Cj Tf Cx Cj Tf
0.1 0.28 0.11 0.44 0.25 0.10 0.42 0.18 0.09 0.40 0.15 0.06 0.38
0.2 0.28 0.12 0.42 0.25 0.09 0.42 0.18 0.08 0.39 0.14 0.06 0.38
0.5 0.32 0.15 0.43 0.24 0.09 0.43 0.19 0.08 0.39 0.15 0.06 0.39
1.0 0.31 0.15 0.45 0.24 0.10 0.42 0.19 0.08 0.38 0.15 0.06 0.31

Royal Road F1
r = 10 r = 50 r = 100 r = 200

ρ Cx Cj Tf Cx Cj Tf Cx Cj Tf Cx Cj Tf
0.1 0.22 0.13 0.46 0.07 0.06 0.44 0.06 0.05 0.41 0.05 0.05 0.39
0.2 0.26 0.15 0.47 0.08 0.07 0.43 0.07 0.06 0.42 0.05 0.04 0.38
0.5 0.26 0.16 0.47 0.09 0.08 0.38 0.08 0.06 0.38 0.06 0.04 0.37
1.0 0.15 0.16 0.45 0.10 0.09 0.32 0.07 0.06 0.30 0.06 0.05 0.29

Royal Road F2
r = 10 r = 50 r = 100 r = 200

ρ Cx Cj Tf Cx Cj Tf Cx Cj Tf Cx Cj Tf
0.1 0.22 0.13 0.46 0.07 0.06 0.44 0.05 0.04 0.41 0.05 0.04 0.38
0.2 0.26 0.14 0.46 0.09 0.07 0.43 0.06 0.05 0.42 0.05 0.05 0.38
0.5 0.25 0.15 0.47 0.10 0.07 0.39 0.07 0.05 0.3 0.06 0.04 0.38
1.0 0.15 0.14 0.45 0.13 0.06 0.32 0.08 0.05 0.31 0.06 0.05 0.30

Table 10.1: Population’s Diversity for MEGA

Knapsack Onemax Royal Road F1 Royal Road F2
ρ

T-test results r 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0
Cj – Cx ++ ++ ++ ++ ++ ++ ++ ++ + + + + + + + +
Cj – Tf 10 ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ −− −− ++ ++ −− −−
Tf – Cx −− −− −− − −− −− −− + −− −− ++ ++ −− −− ++ ++
Cj – Cx ++ ++ ++ ++ ++ ++ ++ ++ + + + + + + + +
Cj – Tf 50 ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ −− ++ ++ ++ −−
Tf – Cx −− −− −− −− −− −− −− + −− −− −− ++ −− −− −− ++
Cj – Cx ++ ++ ++ ++ + + + + + + + + + + + +
Cj – Tf 100 ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ − ++ ++ ++ −
Tf – Cx −− −− −− −− −− −− −− − −− −− −− + −− −− −− +
Cj – Cx ++ ++ ++ ++ + + + + + + + + + + + +
Cj – Tf 200 ++ ++ ++ ++ ++ ++ ++ + ++ ++ ++ − ++ ++ ++ −
Tf – Cx −− −− −− −− −− −− −− − −− −− −− + −− −− −− +

Table 10.2: Statistical results of comparing MEGA using different genetic op-
erators

130 10. DIVERSITY: EXPERIMENTAL RESULTS

 200

 210

 220

 230

 240

 250

 260

 270

0.1 0.2 0.5 1.0

O
ff

li
n

e
p

er
fo

rm
an

ce

ρ

Onemax - MEGA (r = 10)

 220

 240

 260

 280

 300

0.1 0.2 0.5 1.0

O
ff

li
n

e
p

er
fo

rm
an

ce

ρ

Onemax - MEGA (r = 50)

 220

 240

 260

 280

 300

0.1 0.2 0.5 1.0

O
ff

li
n
e

p
er

fo
rm

an
ce

ρ

Onemax - MEGA (r = 100)

 220

 240

 260

 280

 300

0.1 0.2 0.5 1.0

O
ff

li
n
e

p
er

fo
rm

an
ce

ρ

Onemax - MEGA (r = 200)

Cx
Cj
Tf

Figure 10.2: Global results obtained in the dynamic Onemax problem using
MEGA with different genetic operators

 20

 30

 40

 50

0.1 0.2 0.5 1.0

O
ff

li
n
e

p
er

fo
rm

an
ce

ρ

Royal Road F1 - MEGA (r = 10)

 40

 50

 60

0.1 0.2 0.5 1.0

O
ff

li
n
e

p
er

fo
rm

an
ce

ρ

Royal Road F1 - MEGA (r = 50)

 40

 50

 60

0.1 0.2 0.5 1.0

O
ff

li
n
e

p
er

fo
rm

an
ce

ρ

Royal Road F1 - MEGA (r = 100)

 40

 50

 60

0.1 0.2 0.5 1.0

O
ff

li
n
e

p
er

fo
rm

an
ce

ρ

Royal Road F1 - MEGA (r = 200)

Cx
Cj
Tf

Figure 10.3: Global results obtained in the dynamic Royal Road F1 problem
using MEGA with different genetic operators

10.1. ANALYSIS OF THE RESULTS FOR MEGA 131

 0

 15

 30

 45

 60

 75

 90

 105

 120

0.1 0.2 0.5 1.0

O
ff

li
n
e

p
er

fo
rm

an
ce

ρ

Royal Road F2 - MEGA (r = 10)

 90

 105

 120

 135

 150

 165

 180

 195

0.1 0.2 0.5 1.0

O
ff

li
n
e

p
er

fo
rm

an
ce

ρ

Royal Road F2 - MEGA (r = 50)

 105

 120

 135

 150

 165

 180

 195

0.1 0.2 0.5 1.0

O
ff

li
n
e

p
er

fo
rm

an
ce

ρ

Royal Road F2 - MEGA (r = 100)

 105

 120

 135

 150

 165

 180

 195

0.1 0.2 0.5 1.0

O
ff

li
n
e

p
er

fo
rm

an
ce

ρ

Royal Road F2 - MEGA (r = 200)

Cx
Cj
Tf

Figure 10.4: Global results obtained in the dynamic Royal Road F2 problem
using MEGA with different genetic operators

132 10. DIVERSITY: EXPERIMENTAL RESULTS

10.2 Analysis of the results for MIGA

The results obtained by MIGA are summarized in this section. The average of
the population’s diversity obtained by the different methods can be consulted
in Table 10.3. The performance of MIGA using different genetic operators is
plotted in Figures 10.5 through 10.8 and the corresponding statistical compar-
isons are in Table 10.3.
The analysis of the results attained by MIGA is comparable to the previously
explained for MEGA. The operator that preserved more diversity in the pop-
ulation was transformation. Conjugation was the method that less contributed
for the diversity. For larger change periods - r = 100 and r = 200 - the diversity
maintained by crossover and conjugation was equivalent. Several results can be
observed analyzing the performance of MIGA, as follows. For the Knapsack
and Onemax problems, in general, the best results results were obtained using
conjugation, corresponding to the lowest diversity in the population. The only
exception occurred for r = 10 and ρ = 1.0, where transformation outperformed
conjugation. As the change period increased, the performances of MIGA using
conjugation or crossover became statistical equivalent, corresponding to similar
values of diversity. The worst results were mainly achieved using transforma-
tion, corresponding to the highest diversity of the population. This operator
performed better when the severity of the change was high (ρ = 1.0).
For the Royal Road functions F1 and F2, the results for MIGA were also sim-
ilar to MEGA’s results. Conjugation was always better than crossover but,
for larger change periods, those differences were not statistically evident. As
before, the statistical equivalence for crossover/conjugation comparisons, corre-
sponded to the situations where the diversity maintained by these two operators
was close. Transformation was better than conjugation for severer changes in
smaller change periods. As the change period increased, the performances ob-
tained using transformation or conjugation were statistical equivalent. Once
more, transformation performed better when ρ = 1.0. These results indicate
that, when the changes were harsher, a higher level of diversity was important
to improve the EA’s performance. This can be justified by the fact that the
memorized information was not enough to guide the immigrants towards the
new optimum.

10.2. ANALYSIS OF THE RESULTS FOR MIGA 133

Knapsack
r = 10 r = 50 r = 100 r = 200

ρ Cx Cj Tf Cx Cj Tf Cx Cj Tf Cx Cj Tf
0.1 0.22 0.10 0.41 0.15 0.09 0.37 0.10 0.09 0.38 0.09 0.08 0.34
0.2 0.21 0.11 0.41 0.16 0.09 0.37 0.10 0.08 0.38 0.09 0.08 0.34
0.5 0.19 0.10 0.41 0.15 0.10 0.37 0.09 0.09 0.38 0.09 0.07 0.33
1.0 0.19 0.10 0.41 0.16 0.10 0.35 0.09 0.09 0.38 0.09 0.08 0.31

Onemax
r = 10 r = 50 r = 100 r = 200

ρ Cx Cj Tf Cx Cj Tf Cx Cj Tf Cx Cj Tf
0.1 0.14 0.10 0.30 0.10 0.09 0.27 0.07 0.05 0.25 0.06 0.06 0.25
0.2 0.15 0.10 0.31 0.10 0.08 0.27 0.07 0.06 0.24 0.06 0.06 0.24
0.5 0.16 0.10 0.30 0.11 0.09 0.28 0.07 0.06 0.24 0.06 0.05 0.20
1.0 0.17 0.19 0.31 0.10 0.09 0.15 0.07 0.07 0.13 0.07 0.06 0.11

Royal Road F1
r = 10 r = 50 r = 100 r = 200

ρ Cx Cj Tf Cx Cj Tf Cx Cj Tf Cx Cj Tf
0.1 0.13 0.11 0.33 0.11 0.09 0.26 0.04 0.05 0.25 0.04 0.05 0.22
0.2 0.13 0.11 0.33 0.11 0.09 0.26 0.05 0.05 0.24 0.04 0.05 0.22
0.5 0.13 0.11 0.28 0.11 0.09 0.26 0.06 0.05 0.25 0.04 0.04 0.22
1.0 0.11 0.10 0.25 0.11 0.09 0.20 0.06 0.05 0.16 0.05 0.04 0.14

Royal Road F2
r = 10 r = 50 r = 100 r = 200

ρ Cx Cj Tf Cx Cj Tf Cx Cj Tf Cx Cj Tf
0.1 0.13 0.11 0.32 0.06 0.07 0.26 0.04 0.05 0.26 0.04 0.05 0.25
0.2 0.13 0.11 0.33 0.07 0.06 0.26 0.05 0.05 0.25 0.04 0.05 0.25
0.5 0.13 0.10 0.30 0.07 0.06 0.21 0.06 0.05 0.20 0.04 0.05 0.19
1.0 0.12 0.11 0.28 0.07 0.07 0.15 0.05 0.05 0.11 0.05 0.05 0.10

Table 10.3: Population’s Diversity for MIGA

Knapsack Onemax Royal Road F1 Royal Road F2
ρ

T-test results r 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0
Cj – Cx ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ + + + +
Cj – Tf 10 ++ ++ ++ −− ++ ++ ++ −− ++ ++ −− −− + + −− −−
Tf – Cx −− −− −− ++ −− −− −− ++ −− −− ++ ++ − − ++ ++
Cj – Cx ++ ++ ++ + + + + + ++ ++ + + + + + ++
Cj – Tf 50 ++ ++ ++ ++ ++ ++ ++ + ++ ++ −− −− ++ ++ − −−
Tf – Cx −− −− −− −− −− −− −− − −− −− ++ ++ −− −− + ++
Cj – Cx + + + + + + + + + ++ ++ ++ + + + +
Cj – Tf 100 ++ ++ ++ ++ ++ ++ ++ + ++ ++ ++ −− ++ ++ ++ +
Tf – Cx −− −− −− −− −− −− −− − −− −− − ++ −− −− −− +
Cj – Cx + + + + + + + + + + + ++ + + ++ ++
Cj – Tf 200 ++ ++ ++ ++ ++ ++ ++ + ++ ++ + − ++ ++ ++ −
Tf – Cx −− −− −− −− −− −− −− − −− −− − ++ −− −− −− +

Table 10.4: Statistical results of comparing MIGA using different genetic op-
erators

134 10. DIVERSITY: EXPERIMENTAL RESULTS

 1760

 1770

 1780

 1790

 1800

 1810

0.1 0.2 0.5 1.0

O
ff

li
n

e
p

er
fo

rm
an

ce

ρ

Knapsack - MIGA (r = 10)

 1790

 1800

 1810

 1820

 1830

0.1 0.2 0.5 1.0

O
ff

li
n

e
p

er
fo

rm
an

ce

ρ

Knapsack - MIGA (r = 50)

 1790

 1800

 1810

 1820

 1830

0.1 0.2 0.5 1.0

O
ff

li
n
e

p
er

fo
rm

an
ce

ρ

Knapsack - MIGA (r = 100)

 1790

 1800

 1810

 1820

 1830

0.1 0.2 0.5 1.0

O
ff

li
n
e

p
er

fo
rm

an
ce

ρ

Knapsack - MIGA (r = 200)

Cx
Cj
Tf

Figure 10.5: Global results obtained in the dynamic Knapsack problem using
MIGA with different genetic operators

 210

 220

 230

 240

 250

 260

0.1 0.2 0.5 1.0

O
ff

li
n
e

p
er

fo
rm

an
ce

ρ

Onemax - MIGA (r = 10)

 250

 260

 270

 280

 290

 300

 310

0.1 0.2 0.5 1.0

O
ff

li
n
e

p
er

fo
rm

an
ce

ρ

Onemax - MIGA (r = 50)

 270

 280

 290

 300

 310

0.1 0.2 0.5 1.0

O
ff

li
n
e

p
er

fo
rm

an
ce

ρ

Onemax - MIGA (r = 100)

 270

 280

 290

 300

 310

0.1 0.2 0.5 1.0

O
ff

li
n
e

p
er

fo
rm

an
ce

ρ

Onemax - MIGA (r = 200)

Cx
Cj
Tf

Figure 10.6: Global results obtained in the dynamic Onemax problem using
MIGA with different genetic operators

10.2. ANALYSIS OF THE RESULTS FOR MIGA 135

 10

 20

 30

 40

 50

0.1 0.2 0.5 1.0

O
ff

li
n

e
p

er
fo

rm
an

ce

ρ

Royal Road F1 - MIGA (r = 10)

 30

 40

 50

 60

0.1 0.2 0.5 1.0

O
ff

li
n

e
p

er
fo

rm
an

ce

ρ

Royal Road F1 - MIGA (r = 50)

 30

 40

 50

 60

0.1 0.2 0.5 1.0

O
ff

li
n
e

p
er

fo
rm

an
ce

ρ

Royal Road F1 - MIGA (r = 100)

 30

 40

 50

 60

0.1 0.2 0.5 1.0

O
ff

li
n
e

p
er

fo
rm

an
ce

ρ

Royal Road F1 - MIGA (r = 200)

Cx
Cj
Tf

Figure 10.7: Global results obtained in the dynamic Royal Road F1 problem
using MIGA with different genetic operators

 20

 40

 60

 80

 100

 120

 140

 160

0.1 0.2 0.5 1.0

O
ff

li
n
e

p
er

fo
rm

an
ce

ρ

Royal Road F2 - MIGA (r = 10)

 80

 100

 120

 140

 160

 180

0.1 0.2 0.5 1.0

O
ff

li
n
e

p
er

fo
rm

an
ce

ρ

Royal Road F2 - MIGA (r = 50)

 80

 100

 120

 140

 160

 180

0.1 0.2 0.5 1.0

O
ff

li
n
e

p
er

fo
rm

an
ce

ρ

Royal Road F2 - MIGA (r = 100)

 80

 100

 120

 140

 160

 180

0.1 0.2 0.5 1.0

O
ff

li
n
e

p
er

fo
rm

an
ce

ρ

Royal Road F2 - MIGA (r = 200)

Cx
Cj
Tf

Figure 10.8: Global results obtained in the dynamic Royal Road F2 problem
using MIGA with different genetic operators

136 10. DIVERSITY: EXPERIMENTAL RESULTS

10.3 Analysis of the results for AMGA

Table 10.5 shows the average of the population’s diversity preserved in the
AMGA using the three genetic operators. Figures 10.9 through 10.12 show
the overall performance obtained by AMGA and the statistical results of the
comparisons using different genetic operators are reported on Table 10.6.
Concerning the diversity level, the results obtained by AMGA were consistent
with the previous results for MEGA and MIGA: for all problems, the operator
that kept the diversity of the population at a higher level was transformation;
crossover came in second place and the lowest value of diversity was obtained
using conjugation. Another similar conclusion was that, because of the con-
vergence of the population, as the change period (r) increased, the diversity
decreased. The diversity had similar values, independently of the severity of the
change (ρ).
The results show that, a higher diversity of the population was responsible for
a better performance of the algorithm only in a minority of the cases. Trans-
formation was helpful for the Knapsack and the Onemax problems in rapid
changing environments (r = 10) with severer changes (ρ = 0.5, ρ = 1.0). For
the Royal Road functions, transformation slightly improved (not statistically
significant) AMGA’s performance for r = 100 and r = 200 and ρ = 1.0. In
the remaining situations, the great majority, conjugation allowed AMGA to
obtain the best scores. Crossover and conjugation had equivalent performances
for larger change periods, especially for the Royal Road functions, where the
diversity levels maintained by those two methods were also very close.
These results show that, for the Onemax and Knapsack problems, when the
changes occurred faster and the memorized solutions corresponded to low fitted
individuals, when a severe change happened, extra diversity helped the EA in the
new environment. The same didn’t occur for the Royal Road functions because
of the inherent characteristics of these problems. In those cases, transformation
was a disruptive method with no positive contribution for the performance of the
EA. Another observation was that, when the diversity maintained by crossover
and conjugation became similar, the performance of this EA using those two
methods was equivalent.

10.3. ANALYSIS OF THE RESULTS FOR AMGA 137

Knapsack
r = 10 r = 50 r = 100 r = 200

ρ Cx Cj Tf Cx Cj Tf Cx Cj Tf Cx Cj Tf
0.1 0.34 0.19 0.38 0.23 0.10 0.33 0.20 0.09 0.30 0.19 0.06 0.28
0.2 0.36 0.18 0.38 0.24 0.11 0.32 0.20 0.08 0.30 0.19 0.06 0.28
0.5 0.36 0.16 0.36 0.23 0.11 0.32 0.20 0.09 0.31 0.18 0.08 0.28
1.0 0.34 0.17 0.35 0.22 0.11 0.31 0.20 0.09 0.30 0.18 0.07 0.27

Onemax
r = 10 r = 50 r = 100 r = 200

ρ Cx Cj Tf Cx Cj Tf Cx Cj Tf Cx Cj Tf
0.1 0.23 0.15 0.36 0.14 0.10 0.33 0.11 0.09 0.30 0.11 0.07 0.31
0.2 0.27 0.14 0.36 0.15 0.09 0.34 0.11 0.09 0.30 0.11 0.06 0.29
0.5 0.25 0.15 0.35 0.15 0.10 0.31 0.11 0.08 0.31 0.11 0.08 0.30
1.0 0.27 0.15 0.37 0.15 0.10 0.30 0.11 0.09 0.29 0.11 0.08 0.24

Royal Road F1
r = 10 r = 50 r = 100 r = 200

ρ Cx Cj Tf Cx Cj Tf Cx Cj Tf Cx Cj Tf
0.1 0.23 0.15 0.38 0.08 0.07 0.37 0.06 0.06 0.35 0.05 0.05 0.33
0.2 0.23 0.17 0.38 0.09 0.08 0.37 0.07 0.06 0.35 0.05 0.05 0.33
0.5 0.25 0.19 0.39 0.14 0.11 0.35 0.09 0.08 0.34 0.06 0.05 0.30
1.0 0.18 0.15 0.36 0.14 0.12 0.31 0.11 0.10 0.30 0.09 0.08 0.27

Royal Road F2
r = 10 r = 50 r = 100 r = 200

ρ Cx Cj Tf Cx Cj Tf Cx Cj Tf Cx Cj Tf
0.1 0.24 0.15 0.37 0.08 0.07 0.35 0.06 0.06 0.32 0.05 0.05 0.30
0.2 0.25 0.19 0.38 0.08 0.08 0.35 0.06 0.06 0.31 0.05 0.05 0.30
0.5 0.29 0.20 0.37 0.12 0.09 0.32 0.08 0.07 0.31 0.05 0.05 0.29
1.0 0.19 0.14 0.36 0.13 0.11 0.31 0.12 0.10 0.28 0.08 0.07 0.24

Table 10.5: Population’s Diversity for AMGA

Knapsack Onemax Royal Road F1 Royal Road F2
ρ

T-test results r 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0
Cj – Cx ++ ++ + + + + ++ ++ ++ ++ ++ ++ + + + ++
Cj – Tf 10 ++ − −− −− ++ ++ ++ −− ++ ++ ++ ++ ++ ++ ++ ++
Tf – Cx −− ++ ++ ++ −− −− −− ++ −− −− −− −− −− −− −− −−
Cj – Cx ++ ++ ++ ++ + + + ++ + + ++ ++ + + + +
Cj – Tf 50 ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++
Tf – Cx −− −− −− −− −− −− −− −− −− −− −− −− −− −− −− −−
Cj – Cx ++ ++ ++ ++ + + + + + + + + + + + +
Cj – Tf 100 ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ + ++ ++ ++ −
Tf – Cx −− −− −− −− −− −− −− −− −− −− −− + −− −− −− +
Cj – Cx ++ ++ ++ ++ ++ ++ ++ ++ + + + + + + + +
Cj – Tf 200 ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ + ++ ++ ++ −
Tf – Cx −− −− −− −− −− −− −− −− −− −− − −− −− −− −− +

Table 10.6: Statistical results of comparing AMGA using different genetic
operators

138 10. DIVERSITY: EXPERIMENTAL RESULTS

 1750

 1760

 1770

 1780

 1790

 1800

0.1 0.2 0.5 1.0

O
ff

li
n

e
p

er
fo

rm
an

ce

ρ

Knapsack - AMGA (r = 10)

 1760

 1770

 1780

 1790

 1800

 1810

 1820

0.1 0.2 0.5 1.0

O
ff

li
n

e
p

er
fo

rm
an

ce

ρ

Knapsack - AMGA (r = 50)

 1760

 1770

 1780

 1790

 1800

 1810

 1820

0.1 0.2 0.5 1.0

O
ff

li
n
e

p
er

fo
rm

an
ce

ρ

Knapsack - AMGA (r = 100)

 1760

 1770

 1780

 1790

 1800

 1810

 1820

0.1 0.2 0.5 1.0

O
ff

li
n
e

p
er

fo
rm

an
ce

ρ

Knapsack - AMGA (r = 200)

Cx
Cj
Tf

Figure 10.9: Global results obtained in the dynamic Knapsack problem using
AMGA with different genetic operators

 200

 210

 220

 230

 240

 250

 260

 270

 280

0.1 0.2 0.5 1.0

O
ff

li
n
e

p
er

fo
rm

an
ce

ρ

Onemax - AMGA (r = 10)

 240

 250

 260

 270

 280

 290

 300

0.1 0.2 0.5 1.0

O
ff

li
n
e

p
er

fo
rm

an
ce

ρ

Onemax - AMGA (r = 50)

 240

 250

 260

 270

 280

 290

 300

0.1 0.2 0.5 1.0

O
ff

li
n
e

p
er

fo
rm

an
ce

ρ

Onemax - AMGA (r = 100)

 240

 250

 260

 270

 280

 290

 300

0.1 0.2 0.5 1.0

O
ff

li
n
e

p
er

fo
rm

an
ce

ρ

Onemax - AMGA (r = 200)

Cx
Cj
Tf

Figure 10.10: Global results obtained in the dynamic Onemax problem using
AMGA with different genetic operators

10.3. ANALYSIS OF THE RESULTS FOR AMGA 139

 10

 20

 30

 40

0.1 0.2 0.5 1.0

O
ff

li
n

e
p

er
fo

rm
an

ce

ρ

Royal Road F1 - AMGA (r = 10)

 30

 40

 50

 60

0.1 0.2 0.5 1.0

O
ff

li
n

e
p

er
fo

rm
an

ce

ρ

Royal Road F1 - AMGA (r = 50)

 30

 40

 50

 60

0.1 0.2 0.5 1.0

O
ff

li
n
e

p
er

fo
rm

an
ce

ρ

Royal Road F1 - AMGA (r = 100)

 30

 40

 50

 60

0.1 0.2 0.5 1.0

O
ff

li
n
e

p
er

fo
rm

an
ce

ρ

Royal Road F1 - AMGA (r = 200)

Cx
Cj
Tf

Figure 10.11: Global results obtained in the dynamic Royal Road F1 problem
using AMGA with different genetic operators

 40

 60

 80

 100

0.1 0.2 0.5 1.0

O
ff

li
n
e

p
er

fo
rm

an
ce

ρ

Royal Road F2 - AMGA (r = 10)

 40

 60

 80

 100

 120

 140

 160

 180

 200

0.1 0.2 0.5 1.0

O
ff

li
n
e

p
er

fo
rm

an
ce

ρ

Royal Road F2 - AMGA (r = 50)

 40

 60

 80

 100

 120

 140

 160

 180

 200

0.1 0.2 0.5 1.0

O
ff

li
n
e

p
er

fo
rm

an
ce

ρ

Royal Road F2 - AMGA (r = 100)

 40

 60

 80

 100

 120

 140

 160

 180

 200

0.1 0.2 0.5 1.0

O
ff

li
n
e

p
er

fo
rm

an
ce

ρ

Royal Road F2 - AMGA (r = 200)

Cx
Cj
Tf

Figure 10.12: Global results obtained in the dynamic Royal Road F2 problem
using AMGA with different genetic operators

140 10. DIVERSITY: EXPERIMENTAL RESULTS

10.4 Analysis of the results for VMEA

Table 10.7 shows the average of the population’s diversity obtained by VMEA
with different genetic operators. The global performances of the algorithm for
the studied problems are shown in Figures 10.13 through 10.16. The statistical
results of comparing among the different operators are summarized in Table
10.8.
The results obtained by VMEA were similar to MEGA’s results, previously
analyzed. This was because both algorithms used the same mechanisms for
retrieving and storing information.
The highest diversity of the population was maintained using transformation
and the lowest diversity was obtained using conjugation. The best performance
of VMEA was generally obtained using conjugation, while the worst scores
were mainly achieved using transformation. As for the previously described
algorithms, in the situations were the diversity promoted by conjugation and
crossover had similar values, the corresponding performance of VMEA was also
equivalent. Transformation was beneficial in very few cases cases: for the Royal
Road functions when r = 10 and the severity of change was higher (ρ = 0.5
and ρ = 1.0). Once more, in general, a higher diversity of the population lead
to worst performances of the EA. The memorized information was responsible
for improving the performance of the algorithms rather than the promotion of
diversity by means of the genetic operators.

 1750

 1760

 1770

 1780

 1790

 1800

 1810

 1820

0.1 0.2 0.5 1.0

O
ff

li
n
e

p
er

fo
rm

an
ce

ρ

Knapsack - VMEA (r = 10)

 1780

 1790

 1800

 1810

 1820

 1830

0.1 0.2 0.5 1.0

O
ff

li
n
e

p
er

fo
rm

an
ce

ρ

Knapsack - VMEA (r = 50)

 1780

 1790

 1800

 1810

 1820

 1830

0.1 0.2 0.5 1.0

O
ff

li
n

e
p

er
fo

rm
an

ce

ρ

Knapsack - VMEA (r = 100)

 1780

 1790

 1800

 1810

 1820

 1830

0.1 0.2 0.5 1.0

O
ff

li
n

e
p

er
fo

rm
an

ce

ρ

Knapsack - VMEA (r = 200)

Cx
Cj
Tf

Figure 10.13: Global results obtained in the dynamic Knapsack problem using
VMEA with different genetic operators

10.4. ANALYSIS OF THE RESULTS FOR VMEA 141

Knapsack
r = 10 r = 50 r = 100 r = 200

ρ Cx Cj Tf Cx Cj Tf Cx Cj Tf Cx Cj Tf
0.1 0.22 0.17 0.39 0.21 0.09 0.39 0.19 0.08 0.32 0.15 0.06 0.30
0.2 0.27 0.17 0.41 0.20 0.10 0.39 0.20 0.07 0.32 0.15 0.06 0.30
0.5 0.30 0.19 0.41 0.22 0.10 0.38 0.19 0.08 0.35 0.17 0.06 0.31
1.0 0.28 0.19 0.42 0.22 0.11 0.38 0.21 0.08 0.35 0.19 0.05 0.32

Onemax
r = 10 r = 50 r = 100 r = 200

ρ Cx Cj Tf Cx Cj Tf Cx Cj Tf Cx Cj Tf
0.1 0.20 0.14 0.46 0.11 0.09 0.41 0.10 0.08 0.36 0.10 0.08 0.30
0.2 0.23 0.14 0.45 0.12 0.09 0.41 0.10 0.08 0.35 0.10 0.08 0.31
0.5 0.25 0.18 0.45 0.14 0.11 0.41 0.11 0.09 0.37 0.10 0.09 0.30
1.0 0.26 0.18 0.46 0.17 0.10 0.38 0.13 0.10 0.32 0.11 0.09 0.27

Royal Road F1
r = 10 r = 50 r = 100 r = 200

ρ Cx Cj Tf Cx Cj Tf Cx Cj Tf Cx Cj Tf
0.1 0.22 0.13 0.42 0.11 0.09 0.40 0.09 0.07 0.38 0.06 0.06 0.32
0.2 0.25 0.13 0.46 0.10 0.09 0.40 0.10 0.07 0.37 0.07 0.06 0.32
0.5 0.27 0.14 0.46 0.15 0.12 0.37 0.10 0.09 0.35 0.08 0.07 0.34
1.0 0.14 0.10 0.46 0.22 0.11 0.35 0.12 0.09 0.34 0.10 0.09 0.31

Royal Road F2
r = 10 r = 50 r = 100 r = 200

ρ Cx Cj Tf Cx Cj Tf Cx Cj Tf Cx Cj Tf
0.1 0.21 0.13 0.45 0.09 0.07 0.42 0.07 0.07 0.37 0.06 0.06 0.31
0.2 0.26 0.14 0.45 0.11 0.10 0.42 0.07 0.07 0.37 0.07 0.06 0.32
0.5 0.25 0.14 0.46 0.15 0.10 0.40 0.08 0.08 0.35 0.08 0.06 0.31
1.0 0.15 0.11 0.46 0.17 0.12 0.38 0.11 0.10 0.32 0.09 0.07 0.26

Table 10.7: Population’s Diversity for VMEA

Knapsack Onemax Royal Road F1 Royal Road F2
ρ

T-test results r 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0
Cj – Cx ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ + + + + + ++
Cj – Tf 10 ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ −− −− ++ ++ −− −−
Cx – Tf ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ −− −− ++ ++ −− −−
Cj – Cx ++ ++ ++ ++ ++ ++ + + + + + + + + + +
Cj – Tf 50 ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ + ++ ++ ++ −−
Cx – Tf ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ − ++ ++ ++ −
Cj – Cx ++ ++ ++ + + + + + + + + + + + + +
Cj – Tf 100 ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ + ++ ++ ++ −
Cx – Tf ++ ++ ++ ++ ++ ++ ++ + ++ ++ ++ + ++ ++ ++ −
Cj – Cx ++ ++ ++ + + + + + + + + + + + + +
Cj – Tf 200 ++ ++ ++ ++ ++ ++ ++ + ++ ++ ++ + ++ ++ ++ +
Cx – Tf ++ ++ ++ ++ ++ ++ + + ++ ++ ++ + ++ ++ ++ −

Table 10.8: Statistical results of comparing VMEA using different genetic op-
erators

142 10. DIVERSITY: EXPERIMENTAL RESULTS

 220

 230

 240

 250

 260

 270

 280

0.1 0.2 0.5 1.0

O
ff

li
n

e
p

er
fo

rm
an

ce

ρ

Onemax - VMEA (r = 10)

 240

 250

 260

 270

 280

 290

 300

 310

0.1 0.2 0.5 1.0

O
ff

li
n

e
p

er
fo

rm
an

ce

ρ

Onemax - VMEA (r = 50)

 240

 250

 260

 270

 280

 290

 300

 310

0.1 0.2 0.5 1.0

O
ff

li
n
e

p
er

fo
rm

an
ce

ρ

Onemax - VMEA (r = 100)

 240

 250

 260

 270

 280

 290

 300

 310

0.1 0.2 0.5 1.0

O
ff

li
n
e

p
er

fo
rm

an
ce

ρ

Onemax - VMEA (r = 200)

Cx
Cj
Tf

Figure 10.14: Global results obtained in the dynamic Onemax problem using
VMEA with different genetic operators

 20

 30

 40

 50

0.1 0.2 0.5 1.0

O
ff

li
n
e

p
er

fo
rm

an
ce

ρ

Royal Road F1 - VMEA (r = 10)

 30

 40

 50

 60

0.1 0.2 0.5 1.0

O
ff

li
n
e

p
er

fo
rm

an
ce

ρ

Royal Road F1 - VMEA (r = 50)

 30

 40

 50

 60

0.1 0.2 0.5 1.0

O
ff

li
n
e

p
er

fo
rm

an
ce

ρ

Royal Road F1 - VMEA (r = 100)

 30

 40

 50

 60

0.1 0.2 0.5 1.0

O
ff

li
n
e

p
er

fo
rm

an
ce

ρ

Royal Road F1 - VMEA (r = 200)

Cx
Cj
Tf

Figure 10.15: Global results obtained in the dynamic Royal Road F1 problem
using VMEA with different genetic operators

10.4. ANALYSIS OF THE RESULTS FOR VMEA 143

 20

 40

 60

 80

 100

 120

0.1 0.2 0.5 1.0

O
ff

li
n
e

p
er

fo
rm

an
ce

ρ

Royal Road F2 - VMEA (r = 10)

 60

 80

 100

 120

 140

 160

 180

 200

0.1 0.2 0.5 1.0

O
ff

li
n
e

p
er

fo
rm

an
ce

ρ

Royal Road F2 - VMEA (r = 50)

 60

 80

 100

 120

 140

 160

 180

 200

0.1 0.2 0.5 1.0

O
ff

li
n
e

p
er

fo
rm

an
ce

ρ

Royal Road F2 - VMEA (r = 100)

 60

 80

 100

 120

 140

 160

 180

 200

0.1 0.2 0.5 1.0

O
ff

li
n
e

p
er

fo
rm

an
ce

ρ

Royal Road F2 - VMEA (r = 200)

Cx
Cj
Tf

Figure 10.16: Global results obtained in the dynamic Royal Road F2 problem
using VMEA with different genetic operators

144 10. DIVERSITY: EXPERIMENTAL RESULTS

10.5 Discussion

The use of mechanisms that generate and maintain diversity in the population
was always seen as fundamental to help EAs to achieve better performances
when dealing with dynamic environments. In the last years, several studies
showed that this was not always true and, in some situations, too much diversity
could hinder the performance of the EA for dynamic environments [89], [123].
In order to have more insight about this important issue, we proposed and im-
plemented two alternative genetic operators to use in different memory-based
EAs. All the algorithms were tested with four different benchmark problems
using the same parameter setting, except for the standard recombination oper-
ator. We measured the population’s diversity and the performances obtained
by the algorithms and obtained some important conclusions. Those conclusions
can be summarized in the following points:

1. Transformation obtained the highest diversity level;

2. Conjugation obtained the lowest diversity level;

3. As the change period increased, the diversity generated by crossover and
conjugation was similar;

4. In general, the best performances of the algorithms corresponded to the
lowest diversity (conjugation and crossover);

5. Transformation and a higher diversity were advantageous, mainly in the
Royal Road functions, when the environment changed slower with higher
severity.

The stated conclusions show that, the use of memory in EAs for cyclic envi-
ronments was advantageous. The use of mechanisms that promoted too much
diversity in the population, combined with memory conferred the worst per-
formance of the algorithms. High diversity can be synonymous of disruption
and it is important to find a tradeoff between the use of the memory and the
degree of diversity. This tradeoff can allow the algorithms to maintain different
individuals for exploring different areas of the search space, without making this
search random or disruptive.
When the environment changed slower and the changes were harsher, conju-
gation and crossover maintained a very low degree of diversity. Therefore, the
memorized solutions were prematurely converged and, when a change occurred,
those individuals weren’t enough to the readaptation of the EA. For those situ-
ations, transformation (and a higher diversity) was advantageous since allowed
the exploration of other regions of the search space.
Note that the studied algorithms used memory to help its readaptation when a
change happened. The genetic operators were useful to continue the search after
the retrieval of the memory individuals. So, if the memory had the appropriate
information to introduce into the population when a change was detected, and
those individuals were not prematurely converged, mechanisms that promoted a
higher diversity could disrupt them, slowing the search process for the optimum.

Chapter 11

Prediction: experimental

results

This chapter presents and discusses the results obtained using the proposed
predictors. First, the accuracy of the predictors is analyzed under different
types of environments. Second, the EA using prediction is compared with the
same EA without prediction.

11.1 Prediction Accuracy

In this section, the accuracy of the proposed predictors is analyzed. By ac-
curacy we mean the frequency of correct outcomes reached by the proposed
predictors. For the Markov model predictor, the predicted value was considered
correct when the module provided the correct value for the next environmental
transition.
Table 11.1 shows the prediction accuracy of the Markov model based on 500
environmental changes. As the number of different environments increased, the
prediction accuracy expectedly decreased. Moreover, for probabilistic dynamics
the prediction accuracy was worst. This happened because the Markov model
used data collected from previous transitions to estimate the future. As the
number of environments increased or the transitions were not deterministic, the
Markov model needed more time to learn the entire behavior of the environment.
Figure 11.1 shows how the EA behaved through time using prediction and with-
out prediction. We can see that the EA using prediction went through a learning
phase - where the Markov model acquired the history of possible environmental
transitions - and an equilibrium phase - where the Markov model provided the
correct predictions. During the equilibrium phase no fitness decrease was ob-
served. On the other hand, the EA without prediction experienced a decrease
on its performance every time a change happened. In this case, the recuper-
ation was achieved only after the change, when the information from memory
was introduced into the population. The example shows a typical result for the
first 50 environmental changes in the dynamic bit matching problem.
The proposed model based on a Markov model provided excellent predictions,

145

146 11. PREDICTION: EXPERIMENTAL RESULTS

 40

 50

 60

 70

 80

 90

 100

 0 400 800 1200 1600 2000

B
es

t
o

f
g

en
er

at
io

n

Generations

PredEA, r = 50, 10 states

 40

 50

 60

 70

 80

 90

 100

 0 400 800 1200 1600 2000

B
es

t
o

f
g

en
er

at
io

n

Generations

NoPredEA, r = 50, 10 states

Figure 11.1: Best of generation for PredEA and noPredEA, bit matching
problem

Number of Type of % of correct
different environments dynamics predictions

3 Cyclic 99.40%
3 Probabilistic 98.80%
5 Cyclic 99.00%
5 Probabilistic 98.00%
10 Cyclic 98.00%
10 Probabilistic 96.20%
20 Cyclic 96.00%
20 Probabilistic 93.60%
50 Cyclic 90.00%
50 Probabilistic 87.00%

Table 11.1: Accuracy of the Markov model predictions

almost always above 90%.
For the linear and nonlinear regression predictors, the accuracy of the predic-
tions provided depended on the type of adjustment used for ∆. The value
provided by those predictors was considered accurate if, using the value of ∆,
the anticipation was made before the real change happened. If a previous change
occurred at generation gbefore and the predicted value for next change was gnext,
this value was considered accurate if gnext −∆ < greal and gnext −∆ ≥ gbefore

(where greal corresponded to the generation when the change effectively hap-
pened and the accuracy of the predicted value was measured). Figure 11.2 shows
different cases of good and bad predictions.

The results of Table 11.2, show that the value of ∆ influenced the prediction
efficacy. For instance, for the 5-10-5 change period, the linear regression predic-
tor using methods ∆2 and ∆3 provided the worst prediction accuracy (around
67%) when compared with other methods (around 99%). This happened be-
cause the value of ∆ achieved by methods ∆2 and ∆3 was smaller than the
remaining cases and, depending on the prediction error, some situations were
not correctly estimated. With the same change period, the nonlinear regression
predictor was able to improve the prediction accuracy using different methods
for adjusting ∆. The prediction error decreased and smaller values for ∆ were
obtained. Consequently, the anticipation of the change in the correct time step

11.1. PREDICTION ACCURACY 147

Accurate predictions

Non accurate predictions

Figure 11.2: Examples of good and bad predictions for the Linear and Nonlinear
predictors.

was improved. Using a constant value for ∆ the prediction accuracy was slightly
decreased when compared with the linear predictor. The reason for this was re-
lated to the prediction error obtained by the nonlinear predictor. Since in the
5-10-5 change period the environment changed very quickly, using ∆ = 5 with
smaller negative prediction errors, increased the number of situations where the
condition gnext −∆ ≥ gbefore, was not reached.

148 11. PREDICTION: EXPERIMENTAL RESULTS

Change Adjustment Prediction Average of Average of Average of
period of ∆ Accuracy err | err | ∆

linear nlinear linear nlinear linear nlinear linear nlinear
∆ = 5 100.0% 100.0% 5 5

r = 10 ∆1 100.0% 100.0% 2 2
r = 50 ∆2 100.0% 100.0% 0.0 0.0 0.0 0.0 2 2
r = 100 ∆3 100.0% 100.0% 2 2
r = 200 ∆4 100.0% 100.0% 2 2

∆ = 5 99.87% 97.86% 5 5
∆1 99.87% 100.0% 5 2

5-10-5 ∆2 67.38% 100.0% -0.32 -0.36 2.01 1.01 2 2
∆3 67.65% 100.0% 2 2
∆4 99.87% 100.0% 3 2
∆ = 5 99.46% 99.73% 5 5
∆1 99.73% 99.73% 10 9

10-20-10 ∆2 68.10% 66.76% -0.29 -0.30 2.37 2.36 3 2
∆3 68.63% 99.46% 3 4
∆4 99.73% 66.76% 6 3
∆ = 5 98.32% 98.32% 5 5
∆ = 10 99.66% 100.0% 10 10
∆1 99.66% 99.66% 13 8

50-60-70 ∆2 41.95% 96.64% -0.29 -0.28 4.43 4.38 3 4
∆3 99.66% 99.66% 4 5
∆4 99.66% 99.66% 8 5
∆ = 5 65.77% 65.77% 5 5
∆ = 25 99.33% 100.0% 25 25
∆1 99.66% 66.78% 50 16

100-150-100 ∆2 67.79% 66.78% -0.02 -0.02 11.53 10.77 15 12
∆3 67.79% 66.78% 16 13
∆4 99.66% 100.0% 32 28
∆ = 5 0.00% 97.58% 5 5
∆1 0.00% 97.58% 5 5

Nlinear 1 ∆2 0.00% 97.58% -1885.52 -0.85 1885.52 0.85 5 5
∆3 1.21% 98.79% 632 2
∆4 0.00% 97.58% 5 5
∆ = 5 1.01% 100.0% 5 5
∆1 0.25% 100.0% 775 2

Nlinear 2 ∆2 0.25% 100.0% 778.56 -0.39 778.56 0.62 410 2
∆3 0.25% 100.0% 410 2
∆4 0.25% 100.0% 593 2
∆ = 5 4.04% 98.48% 5 5
∆1 7.07% 100.0% 269 2

Nlinear 3 ∆2 7.07% 100.0% -485.08 -1.56 1045.57 1.56 147 2
∆3 6.06% 100.0% 532 2
∆4 7.07% 100.0% 208 2
∆ = 5 5.56% 74.24% 5 5
∆1 10.61% 100.0% 1251 2

Nlinear 4 ∆2 5.56% 100.0% 1240.23 -0.72 1246.50 0.72 883 2
∆3 6.57% 100.0% 797 2
∆4 5.56% 100.0% 1067 2

Table 11.2: Accuracy of the Linear and Nonlinear Regression Predictors

In general, for the 10-20-10 and 50-60-70 change periods, the nonlinear regres-
sion predictor was able to improve the prediction accuracy when compared with
the linear predictor. The different methods for adjusting ∆ also provided bet-
ter scores than the use of a constant value. Besides, smaller values of ∆ were
attained, indicating that the anticipation was made closer to the moment of
change, reducing computational costs. The accuracy of the linear and nonlinear
regression predictors was not consistent for the 100-150-100 change period. In

11.2. ALGORITHMS PERFORMANCE 149

some situations the nonlinear predictor obtained better results than the linear
predictor, but using the methods ∆1, ∆2 and ∆3, the nonlinear predictor was
not so effective. In fact, the values obtained for ∆ were not enough to cover
the prediction errors. The use of ∆ = 25 or the method ∆4, which used a large
value for ∆, obtained better performances.
The use of a constant value for ∆ should be used only as last resort, because
this method requires some preliminary experimentation before an appropriate
∆ value can be determined. This preliminary experimentation is not necessary
when using auto-adjusting methods for ∆ values.
Despite the different prediction accuracies obtained by the different methods,
we can say that both, linear and nonlinear predictors, are good approaches to
the problem of estimating when next change will occur, either in periodic or
patterned change periods. In the following subsection we will see that both
methods effectively increased the performance of the EA.

For the situations where the change period followed a nonlinear trend, the lin-
ear predictor failed. The prediction accuracies for the Nlinear1 and Nlinear2
change periods were close to zero, and for the Nlinear3 and Nlinear4 change
periods they were very weak. Since the predictor was based on linear regression,
these results were expected.
In Nlinear1 and Nlinear3, the predicted values corresponded to generations
before the real change (negative prediction errors), but the associated error was
enormous and to a great extent the predicted value was not even close to the
next change. In the remaining cases (Nlinear2 and Nlinear4), all the predicted
values were provided after the change occurred (positive prediction errors) and
the predictor errors were also very high. Even using large values of ∆, the effi-
cacy of the anticipation was very poor.
For nonlinear situations, the nonlinear regression predictor was able to signif-
icantly improve the prediction accuracy for the nonlinear situations. For all
the situations analyzed the predictor achieved near 100% efficacy, with a small
prediction error and small values for ∆. In the linear and patterned change
periods, the nonlinear regression predictor was also very effective, proving, for
different types of change periods, to be an appropriate method for estimating
when the next change would occur.

11.2 Algorithms performance

This section sets forth the results obtained by the EA using the proposed pre-
dictors. We will show the results obtained using the first approach, consisting
of the Markov model combined with linear regression (PredEA-LR) and the
second approach, which used the Markov model combined with the nonlinear
predictor (PredEA-NLR). The results reported correspond to the best results
obtained using the different methods for adjusting ∆. Both results are com-
pared with the performance of the EA without any predictor (noPredEA).
Table 11.3 shows the results for the dynamic bit matching problem, and Table
11.4 contains the scores concerning the dynamic knapsack problem. The statis-
tical results, obtained using the statistical tests, are on Tables 11.5 and 11.6 for

150 11. PREDICTION: EXPERIMENTAL RESULTS

the dynamic bit matching problem and the dynamic knapsack problem, respec-
tively. In all tables, adjacent to the number of states is the type of environment:
C for cyclic and P for probabilistic.

Bit matching Number of states
3 5 10 20 50

Period Algorithm C P C P C P C P C P
noPredEA 89.68 90.63 85.99 86.53 80.74 81.97 75.27 76.53 69.74 70.89

r=10 PredEA-LR 98.14 97.32 96.86 96.24 93.72 93.39 90.17 90.14 84.86 85.62
PredEA-NLR 98.24 97.37 96.89 96.27 93.76 93.49 90.18 90.18 84.89 85.64

noPredEA 99.01 99.01 98.92 98.92 98.68 98.72 97.26 97.65 89.11 90.74
r=50 PredEA-LR 99.86 99.85 99.79 99.80 99.64 99.58 99.27 99.22 98.20 98.03

PredEA-NLR 99.91 99.89 99.83 99.81 99.66 99.63 99.32 99.25 98.26 98.05
noPredEA 99.50 99.50 99.44 99.45 99.31 99.33 99.12 98.82 94.44 95.42

r=100 PredEA-LR 99.93 99.92 99.88 99.87 99.77 99.75 99.54 99.51 98.84 98.71
PredEA-NLR 99.94 99.93 99.89 99.88 99.78 99.76 99.55 99.52 98.86 98.72

noPredEA 99.73 99.73 99.70 99.70 99.60 99.61 99.46 99.31 97.17 97.49
r=200 PredEA-LR 99.94 99.94 99.91 99.90 99.82 99.81 99.65 99.63 99.13 99.06

PredEA-NLR 99.95 99.95 99.92 99.91 99.83 99.82 99.66 99.64 99.14 99.07
noPredEA 85.56 89.94 85.59 86.53 80.97 81.48 74.05 75.73 67.99 69.04

5-10-5 PredEA-LR 96.57 96.45 94.74 94.02 90.52 90.34 86.88 87.10 94.23 81.53
PredEA-NLR 96.89 96.76 94.90 94.04 90.58 90.45 86.89 87.26 94.59 81.85

noPredEA 91.43 94.68 92.42 92.47 87.69 88.42 81.00 82.87 73.40 75.00
10-20-10 PredEA-LR 97.79 98.31 97.67 96.40 95.14 94.22 92.80 92.32 87.22 86.52

PredEA-NLR 98.10 98.62 97.92 97.20 95.90 95.07 93.12 92.83 87.38 87.02
noPredEA 99.15 99.15 99.06 99.07 98.83 98.86 98.15 97.88 90.78 92.34

50-60-70 PredEA-LR 99.89 99.86 99.80 99.79 99.62 99.60 99.23 99.18 98.07 97.86
PredEA-NLR 99.89 99.87 99.82 99.80 99.63 99.61 99.25 99.19 98.09 97.89

noPredEA 99.57 99.57 99.52 99.52 99.41 99.42 99.25 98.98 95.22 96.17
100-150-100 PredEA-LR 99.92 99.92 99.91 99.90 99.81 99.80 99.62 99.58 99.02 98.91

PredEA-NLR 99.94 99.94 99.92 99.91 99.83 99.82 99.64 99.59 99.05 98.92
noPredEA 98.95 98.94 98.73 98.77 98.38 98.49 97.02 97.41 91.60 92.83

Nlinear 1 PredEA-LR 99.19 98.67 99.00 98.67 98.96 98.80 99.12 98.75 99.55 98.46
PredEA-NLR 99.74 99.68 99.64 99.61 99.48 99.48 99.25 99.22 99.58 98.53

noPredEA 98.11 98.14 97.96 97.97 97.58 97.35 97.01 94.40 84.08 85.36
Nlinear 2 PredEA-LR 98.12 98.15 97.96 97.97 97.57 97.35 97.01 94.38 84.10 85.43

PredEA-NLR 99.80 99.79 99.67 99.65 99.33 99.26 98.66 98.53 96.55 96.19
noPredEA 99.06 99.07 98.84 98.88 98.48 98.55 97.12 97.47 93.42 94.05

Nlinear 3 PredEA-LR 99.34 99.03 99.29 99.17 99.11 99.01 98.51 98.42 96.51 96.65
PredEA-NLR 99.98 99.92 99.85 99.83 99.60 99.57 99.13 99.07 97.71 97.58

noPredEA 99.02 99.06 98.87 98.88 98.52 98.52 97.90 97.44 92.92 93.48
Nlinear 4 PredEA-LR 99.07 99.09 98.90 98.91 98.53 98.53 97.91 97.41 92.94 93.57

PredEA-NLR 99.96 99.94 99.83 99.80 99.49 99.45 98.83 98.73 96.73 96.72

Table 11.3: PredEA and noPredEA results - dynamic bit matching

The evolution of the algorithms with and without prediction during the entire
run is shown, for the dynamic bit matching problem, on figures 11.3 and 11.4
and, for the knapsack problem, on figures 11.5 and 11.6. These results were
obtained in the patterned change period (5-10-5) and in the nonlinear change
period (Nlinear 2). The figures represent typical results for 5 and 20 different
environments using cyclic and probabilistic changes.

11.2. ALGORITHMS PERFORMANCE 151

Knapsack Number of states
3 5 10 20 50

Period Algorithm C P C P C P C P C P
noPredEA 1849.57 1853.31 1849.11 1854.60 1840.03 1839.48 1793.66 1799.04 1669.13 1683.74

r=10 PredEA-LR 1859.57 1863.93 1861.35 1867.86 1854.73 1855.57 1808.89 1814.83 1683.73 1699.14
PredEA-NLR 1859.94 1864.75 1861.52 1868.70 1855.24 1856.36 1809.11 1815.12 1683.92 1699.28

noPredEA 1860.59 1865.40 1860.78 1867.73 1851.61 1851.68 1804.76 1817.04 1680.30 1687.44
r=50 PredEA-LR 1864.37 1870.19 1865.64 1873.56 1858.86 1860.07 1813.40 1825.64 1688.24 1695.47

PredEA-NLR 1864.77 1870.24 1866.22 1873.78 1858.98 1860.35 1813.61 1825.76 1688.29 1695.52
noPredEA 1863.16 1868.04 1864.16 1871.73 1855.27 1853.87 1808.21 1819.53 1683.73 1692.90

r=100 PredEA-LR 1865.51 1870.31 1866.95 1875.17 1859.85 1859.26 1814.54 1825.57 1689.64 1698.64
PredEA-NLR 1865.82 1870.71 1867.20 1875.57 1860.34 1859.33 1814.83 1825.58 1689.65 1698.78

noPredEA 1864.06 1867.03 1866.00 1873.43 1858.00 1859.45 1811.18 1825.43 1686.79 1700.56
r=200 PredEA-LR 1865.57 1868.47 1867.84 1875.88 1860.81 1862.25 1815.27 1828.88 1690.74 1704.27

PredEA-NLR 1865.58 1868.54 1867.95 1875.91 1861.08 1862.26 1815.48 1829.28 1690.80 1704.55
noPredEA 1833.57 1846.72 1846.18 1850.01 1836.80 1838.11 1790.34 1796.52 1665.79 1681.70

5-10-5 PredEA-LR 1844.16 1859.65 1859.60 1864.39 1852.41 1853.08 1806.60 1812.45 1681.49 1697.05
PredEA-NLR 1844.55 1860.40 1860.87 1865.03 1852.55 1853.74 1806.86 1813.29 1681.72 1697.84

noPredEA 1837.92 1853.56 1850.43 1855.41 1840.53 1841.94 1794.42 1808.12 1664.74 1679.17
10-20-10 PredEA-LR 1844.89 1862.31 1859.08 1866.10 1852.67 1853.58 1806.49 1819.42 1674.35 1689.53

PredEA-NLR 1845.57 1862.50 1859.81 1867.18 1853.32 1853.84 1806.98 1819.49 1674.73 1689.63
noPredEA 1871.61 1865.02 1861.30 1870.12 1851.74 1850.70 1805.38 1815.17 1681.20 1688.86

50-60-70 PredEA-LR 1874.44 1868.35 1865.55 1875.33 1858.45 1858.15 1812.47 1822.49 1687.39 1695.53
PredEA-NLR 1874.54 1868.74 1865.65 1875.55 1858.94 1858.21 1812.74 1822.91 1687.65 1695.86

noPredEA 1856.57 1867.50 1863.97 1871.71 1856.16 1855.20 1809.02 1819.75 1684.55 1693.54
100-150-100 PredEA-LR 1858.19 1870.10 1867.29 1875.43 1860.85 1860.09 1815.30 1826.18 1690.59 1699.55

PredEA-NLR 1858.72 1870.99 1867.42 1875.66 1861.61 1860.16 1815.97 1826.94 1690.90 1699.73
noPredEA 1861.10 1862.12 1860.54 1865.47 1851.44 1851.85 1804.82 1808.31 1678.06 1697.48

Nlinear 1 PredEA-LR 1861.74 1865.58 1864.04 1873.50 1858.61 1861.20 1812.95 1817.62 1684.88 1704.58
PredEA-NLR 1866.05 1867.93 1867.68 1874.38 1861.57 1862.84 1816.24 1819.65 1687.50 1707.01

noPredEA 1857.70 1861.36 1858.66 1863.41 1850.50 1850.46 1801.34 1815.55 1670.50 1696.64
Nlinear 2 PredEA-LR 1857.87 1860.98 1858.50 1864.31 1849.87 1850.46 1801.46 1815.90 1670.05 1696.36

PredEA-NLR 1860.73 1864.76 1862.58 1867.70 1855.77 1856.32 1808.55 1822.80 1677.07 1702.87
noPredEA 1859.73 1863.16 1858.37 1867.64 1851.47 1855.39 1803.53 1826.09 1680.72 1702.13

Nlinear 3 PredEA-LR 1857.44 1863.93 1858.61 1871.32 1854.26 1860.05 1806.57 1830.53 1682.81 1704.85
PredEA-NLR 1863.31 1867.82 1863.68 1873.22 1857.80 1861.93 1809.82 1832.89 1684.44 1706.71

noPredEA 1861.56 1861.67 1858.09 1864.67 1856.50 1850.37 1799.61 1816.59 1650.37 1708.75
Nlinear 4 PredEA-LR 1863.19 1861.97 1857.97 1864.69 1856.52 1850.23 1799.81 1816.22 1650.39 1708.48

PredEA-NLR 1863.91 1863.17 1859.98 1866.44 1859.02 1852.23 1802.30 1819.31 1652.66 1711.08

Table 11.4: PredEA and noPredEA results - dynamic knapsack

152 11. PREDICTION: EXPERIMENTAL RESULTS

Bit matching Number of states
3 5 10 20 50

Period Pair of Algorithms C P C P C P C P C P
PredEA-NLR – noPredEA ++ ++ ++ ++ ++ ++ ++ ++ ++ ++

r=10 PredEA-LR – noPredEA ++ ++ ++ ++ ++ ++ ++ ++ ++ ++
PredEA-NLR – PredEA-LR ++ ++ ++ ++ ++ ++ + + + +
PredEA-NLR – noPredEA ++ ++ ++ ++ ++ ++ ++ ++ ++ ++

r=50 PredEA-LR – noPredEA ++ ++ ++ ++ ++ ++ ++ ++ ++ ++
PredEA-NLR – PredEA-LR ++ ++ + + ++ ++ ++ ++ ++ +
PredEA-NLR – noPredEA ++ ++ ++ ++ ++ ++ ++ ++ ++ ++

r=100 PredEA-LR – noPredEA ++ ++ ++ ++ ++ ++ ++ ++ ++ ++
PredEA-NLR – PredEA-LR + + + + + + + + + +
PredEA-NLR – noPredEA ++ ++ ++ ++ ++ ++ ++ ++ ++ ++

r=200 PredEA-LR – noPredEA ++ ++ ++ ++ ++ ++ ++ ++ ++ ++
PredEA-NLR – PredEA-LR + + + + + + + + + +
PredEA-NLR – noPredEA ++ ++ ++ ++ ++ ++ ++ ++ ++ ++

5-10-5 PredEA-LR – noPredEA ++ ++ ++ ++ ++ ++ ++ ++ ++ ++
PredEA-NLR – PredEA-LR ++ ++ ++ + + ++ + + ++ ++
PredEA-NLR – noPredEA ++ ++ ++ ++ ++ ++ ++ ++ ++ ++

10-20-10 PredEA-LR – noPredEA ++ ++ ++ ++ ++ ++ ++ ++ ++ ++
PredEA-NLR – PredEA-LR ++ ++ ++ ++ ++ ++ ++ ++ ++ ++
PredEA-NLR – noPredEA ++ ++ ++ ++ ++ ++ ++ ++ ++ ++

50-60-70 PredEA-LR – noPredEA ++ ++ ++ ++ ++ ++ ++ ++ ++ ++
PredEA-NLR – PredEA-LR + + + + + + + + + ++
PredEA-NLR – noPredEA ++ ++ ++ ++ ++ ++ ++ ++ ++ ++

100-150-100 PredEA-LR – noPredEA ++ ++ ++ ++ ++ ++ ++ ++ ++ ++
PredEA-NLR – PredEA-LR + + + + + + + + + +
PredEA-NLR – noPredEA ++ ++ ++ ++ ++ ++ ++ ++ ++ ++

Nlinear 1 PredEA-LR – noPredEA ++ ++ ++ ++ ++ ++ ++ ++ ++ ++
PredEA-NLR – PredEA-LR ++ ++ ++ ++ ++ ++ ++ ++ ++ ++
PredEA-NLR – noPredEA ++ ++ ++ ++ ++ ++ ++ ++ ++ ++

Nlinear 2 PredEA-LR – noPredEA + + + + − + + − + ++
PredEA-NLR – PredEA-LR ++ ++ ++ ++ ++ ++ ++ ++ ++ ++
PredEA-NLR – noPredEA ++ ++ ++ ++ ++ ++ ++ ++ ++ ++

Nlinear 3 PredEA-LR – noPredEA ++ + ++ ++ ++ ++ ++ ++ ++ ++
PredEA-NLR – PredEA-LR ++ ++ ++ ++ ++ ++ ++ ++ ++ ++
PredEA-NLR – noPredEA ++ ++ ++ ++ ++ ++ ++ ++ ++ ++

Nlinear 4 PredEA-LR – noPredEA + + + ++ + + + − + ++
PredEA-NLR – PredEA-LR ++ ++ ++ ++ ++ ++ ++ ++ ++ ++

Table 11.5: Statistical results - dynamic bit matching

11.2. ALGORITHMS PERFORMANCE 153

Knapsack Number of states
3 5 10 20 50

Period Pair of Algorithms C P C P C P C P C P
PredEA-NLR – noPredEA ++ ++ ++ ++ ++ ++ ++ ++ ++ ++

r=10 PredEA-LR – noPredEA ++ ++ ++ ++ ++ ++ ++ ++ ++ ++
PredEA-NLR – PredEA-LR + + + + + + + + + +
PredEA-NLR – noPredEA ++ ++ ++ ++ ++ ++ ++ ++ ++ ++

r=50 PredEA-LR – noPredEA ++ ++ ++ ++ ++ ++ ++ ++ ++ ++
PredEA-NLR – PredEA-LR + + + + + + + + + ++
PredEA-NLR – noPredEA ++ ++ ++ ++ ++ ++ ++ ++ ++ ++

r=100 PredEA-LR – noPredEA ++ ++ ++ ++ ++ ++ ++ ++ ++ ++
PredEA-NLR – PredEA-LR + + + + ++ + + + + +
PredEA-NLR – noPredEA ++ ++ ++ ++ ++ ++ ++ ++ ++ ++

r=200 PredEA-LR – noPredEA ++ ++ ++ ++ ++ ++ ++ ++ ++ ++
PredEA-NLR – PredEA-LR + ++ + + ++ + + + + +
PredEA-NLR – noPredEA ++ ++ ++ ++ ++ ++ ++ ++ ++ ++

5-10-5 PredEA-LR – noPredEA ++ ++ ++ ++ ++ ++ ++ ++ ++ ++
PredEA-NLR – PredEA-LR ++ + ++ + + + + + + ++
PredEA-NLR – noPredEA ++ ++ ++ ++ ++ ++ ++ ++ ++ ++

10-20-10 PredEA-LR – noPredEA ++ ++ ++ ++ ++ ++ ++ ++ ++ ++
PredEA-NLR – PredEA-LR ++ + ++ ++ + + + + + +
PredEA-NLR – noPredEA ++ ++ ++ ++ ++ ++ ++ ++ ++ ++

50-60-70 PredEA-LR – noPredEA ++ ++ ++ ++ ++ ++ ++ ++ ++ ++
PredEA-NLR – PredEA-LR + + + + + + + + + +
PredEA-NLR – noPredEA ++ ++ ++ ++ ++ ++ ++ ++ ++ ++

100-150-100 PredEA-LR – noPredEA ++ ++ ++ ++ ++ ++ ++ ++ ++ ++
PredEA-NLR – PredEA-LR ++ ++ + + ++ + + ++ + +
PredEA-NLR – noPredEA ++ ++ ++ ++ ++ ++ ++ ++ ++ ++

Nlinear 1 PredEA-LR – noPredEA ++ ++ ++ ++ ++ ++ ++ ++ ++ ++
PredEA-NLR – PredEA-LR ++ ++ ++ ++ ++ ++ ++ ++ ++ ++
PredEA-NLR – noPredEA ++ ++ ++ ++ ++ ++ ++ ++ ++ ++

Nlinear 2 PredEA-LR – noPredEA + ++ + ++ + + + + − −
PredEA-NLR – PredEA-LR ++ ++ ++ ++ ++ ++ ++ ++ ++ ++
PredEA-NLR – noPredEA ++ ++ ++ ++ ++ ++ ++ ++ ++ ++

Nlinear 3 PredEA-LR – noPredEA ++ ++ ++ ++ ++ ++ ++ ++ ++ ++
PredEA-NLR – PredEA-LR ++ ++ ++ ++ ++ ++ ++ ++ ++ ++
PredEA-NLR – noPredEA ++ ++ ++ ++ ++ ++ ++ ++ ++ ++

Nlinear 4 PredEA-LR – noPredEA ++ + ++ + + − + − + −
PredEA-NLR – PredEA-LR ++ ++ ++ ++ ++ ++ ++ ++ ++ ++

Table 11.6: Statistical results - dynamic knapsack

154 11. PREDICTION: EXPERIMENTAL RESULTS

 60

 70

 80

 90

 100

 0 1000 2000 3000 4000 5000

O
ff

-l
in

e
p

er
fo

rm
an

ce

Generations

PredEA vs NoPredEA, 5-10-5, 5 states (C)

NoPredEA
PredEA-LR

PredEA-NLR
 60

 70

 80

 90

 100

 0 1000 2000 3000 4000 5000

O
ff

-l
in

e
p

er
fo

rm
an

ce

Generations

PredEA vs NoPredEA, 5-10-5, 5 states (P)

NoPredEA
PredEA-LR

PredEA-NLR

 60

 70

 80

 90

 100

 0 1000 2000 3000 4000 5000

O
ff

-l
in

e
p

er
fo

rm
an

ce

Generations

PredEA vs NoPredEA, 5-10-5, 20 states (C)

NoPredEA
PredEA-LR

PredEA-NLR
 60

 70

 80

 90

 100

 0 1000 2000 3000 4000 5000

O
ff

-l
in

e
p

er
fo

rm
an

ce

Generations

PredEA vs NoPredEA, 5-10-5, 20 states (D)

NoPredEA
PredEA-LR

PredEA-NLR

Figure 11.3: Off-line performance for the bit matching problem using PredEA-
LR, PredEA-NLR and NoPredEA for 5-10-5 change period

 80

 85

 90

 95

 100

 0 2000 4000 6000 8000 10000

O
ff

-l
in

e
p
er

fo
rm

an
ce

Generations

PredEA vs NoPredEA, Nlinear2, 5 states (C)

NoPredEA
PredEA-LR

PredEA-NLR
 80

 85

 90

 95

 100

 0 2000 4000 6000 8000 10000

O
ff

-l
in

e
p
er

fo
rm

an
ce

Generations

PredEA vs NoPredEA, Nlinear2, 5 states (P)

NoPredEA
PredEA-LR

PredEA-NLR

 80

 85

 90

 95

 100

 0 2000 4000 6000 8000 10000

O
ff

-l
in

e
p
er

fo
rm

an
ce

Generations

PredEA vs NoPredEA, Nlinear2, 20 states (C)

NoPredEA
PredEA-LR

PredEA-NLR
 80

 85

 90

 95

 100

 0 2000 4000 6000 8000 10000

O
ff

-l
in

e
p
er

fo
rm

an
ce

Generations

PredEA vs NoPredEA, Nlinear2, 20 states (P)

NoPredEA
PredEA-LR

PredEA-NLR

Figure 11.4: Off-line performance for the bit matching problem using PredEA-
LR, PredEA-NLR and NoPredEA for Nlinear 2 change period

11.2. ALGORITHMS PERFORMANCE 155

 1780

 1800

 1820

 1840

 1860

 0 1000 2000 3000 4000 5000

O
ff

-l
in

e
p

er
fo

rm
an

ce

Generations

PredEA vs NoPredEA, 5-10-5, 5 states (C)

NoPredEA
PredEA-LR

PredEA-NLR
 1780

 1800

 1820

 1840

 1860

 0 1000 2000 3000 4000 5000

O
ff

-l
in

e
p

er
fo

rm
an

ce

Generations

PredEA vs NoPredEA, 5-10-5, 5 states (P)

NoPredEA
PredEA-LR

PredEA-NLR

 1720

 1740

 1760

 1780

 1800

 0 1000 2000 3000 4000 5000

O
ff

-l
in

e
p

er
fo

rm
an

ce

Generations

PredEA vs NoPredEA, 5-10-5, 20 states (C)

NoPredEA
PredEA-LR

PredEA-NLR
 1720

 1740

 1760

 1780

 1800

 1820

 0 1000 2000 3000 4000 5000

O
ff

-l
in

e
p

er
fo

rm
an

ce

Generations

PredEA vs NoPredEA, 5-10-5, 20 states (P)

NoPredEA
PredEA-LR

PredEA-NLR

Figure 11.5: Off-line performance for the knapsack problem using PredEA-LR,
PredEA-NLR and NoPredEA for 5-10-5 change period

 1760

 1780

 1800

 1820

 1840

 1860

 1880

 0 2000 4000 6000 8000 10000

O
ff

-l
in

e
p
er

fo
rm

an
ce

Generations

PredEA vs NoPredEA, Nlinear2, 5 states (C)

NoPredEA
PredEA-LR

PredEA-NLR
 1760

 1780

 1800

 1820

 1840

 1860

 1880

 0 2000 4000 6000 8000 10000

O
ff

-l
in

e
p
er

fo
rm

an
ce

Generations

PredEA vs NoPredEA, Nlinear2, 5 states (P)

NoPredEA
PredEA-LR

PredEA-NLR

 1740

 1760

 1780

 1800

 1820

 0 2000 4000 6000 8000 10000

O
ff

-l
in

e
p
er

fo
rm

an
ce

Generations

PredEA vs NoPredEA, Nlinear2, 20 states (C)

NoPredEA
PredEA-LR

PredEA-NLR
 1740

 1760

 1780

 1800

 1820

 0 2000 4000 6000 8000 10000

O
ff

-l
in

e
p
er

fo
rm

an
ce

Generations

PredEA vs NoPredEA, Nlinear2, 20 states (P)

NoPredEA
PredEA-LR

PredEA-NLR

Figure 11.6: Off-line performance for the knapsack problem using PredEA-LR,
PredEA-NLR and NoPredEA for Nlinear 2 change period

156 11. PREDICTION: EXPERIMENTAL RESULTS

11.3 Discussion

When in the presence of environments that change following a repeated behav-
ior, the use of prediction mechanisms is highly beneficial to the performance of
memory-based EAs. By using past data, accurate predictions when the next
change will occur can be made. Consequently, the algorithm can anticipate the
change by introducing useful information into the population before such change
takes place. In our investigations, we tested two different predictors to estimate
when the next change would occur: one using linear regression, and another
using nonlinear regression. We saw that the linear regression predictor was ap-
propriated for cyclic or patterned change periods, but failed in the presence of
nonlinear change periods. On the other hand, the nonlinear predictor provided
good predictions in all types of environments analyzed. The main drawback
of the nonlinear predictor was that the nonlinear function used to make the
predictions should be known, and the estimation of the nonlinear parameters
was time consuming. Figure 11.7 shows the computational times of a single run
spent by the three algorithms.

 0

 50

 100

 150

 200

 250

 300

noPred PredLR PredNLR

T
im

e
(s

ec
)

Computational time (Knapsack)

 0

 50

 100

 150

 200

 250

 300

noPred PredLR PredNLR

T
im

e
(s

ec
)

Computational time (Bit matching)

Figure 11.7: Computational times for noPredEA, PredEA-LR and PredEA-
NLR - Nlinear 2 change period, 20 states, probabilistic changes

The second predictor, responsible to estimate how the environment would change,
was implemented using Markov chains. The Markov chain stored information
about the environments and the transitions among them. After that, this infor-
mation was used to predict which possible environment(s) would appear in the
next change. This predictor performed very well in the situations analyzed: it
started by learning the dynamics of the environmental changes and, after that
phase, the predictions provided were, for the most part, correct. When the
number of different environments increased, the predictor needed more time to
acquire all the necessary information in order to make valid predictions. The
main limitation of this predictor was the problem dependance, that is, the in-
formation stored in each state of the Markov model corresponded to the fitness
function that was being used.
Notwithstanding the foregoing limitations, the work carried out on this thesis
provided an important contribution on this topic. No relevant work existed
before, using this kind of methods in memory-based EAs. The results obtained
showed that prediction combined with memory highly increased the performance
of the EA and should be further investigated.

Chapter 12

Conclusion

This final chapter summarizes the main contributions of this thesis and the
results obtained in the experiments. Future directions of this work are also
discussed.

12.1 Summary

The main goal of this thesis is to improve memory-based EAs on how to deal
with dynamic optimization problems. This type of algorithms is clearly benefi-
cial when the environmental changes follow some repeated behavior. The basic
principle is to keep in memory past good solutions and/or environmental in-
formation so it can later be used with benefit. Throughout this thesis, several
aspects and problems of classical memory-based EAs were revised:

• The relationship between the size of the memory and that of the popula-
tion. Memory size is usually chosen as a small percentage of the global
number of individuals, and this choice is seldom the best option;

• The limited size of the memory itself, implying that it is necessary to
decide whether and which individual should be replaced by a new one;

• The combination of memory and preservation of diversity, which were
assumed to benefit EAs in solving dynamic problems;

• The retrieval of memorized individuals, which usually occurs after a change
takes place and before the readaptation of the EA to the new environment,
resulting in a decrease of the EA’s performance.

This work has introduced approaches that focus on each one of the foregoing
topics:

• An exhaustive experimental study about the influence of the memory and
population sizes was taken and a new algorithm - called Variable-Memory
Evolutionary Algorithm (VMEA) - using population and memory of vari-
able size, was proposed;

157

158 12. CONCLUSION

• Three new replacing strategies, called age1, age2 and generational, were
introduced and tested on different memory-based EAs;

• Two new genetic operators for promoting diversity, called conjugation
and transformation, were introduced and tested, replacing the standard
crossover operator on different memory-based EAs. The experimentation
taken on different types of dynamic environments allowed us to draw im-
portant conclusions about the advantage of increasing the population’s
diversity;

• Two prediction modules were incorporated in the memory-based EA. One
module was responsible for predicting when the next change would hap-
pen. This module was tested using linear and nonlinear regression tech-
niques. The second module, based on Markov models, gathered informa-
tion about the environmental transitions and provided prediction about
how the environment would change in the future. The combination of
these two modules interplay with memory and the ability of make good
predictions allowed for the introduction of useful memorized information
into the population before the change took place.

The proposed methods were tested with different benchmark problems and the
performance of different memory-based EAs was compared. We concluded that
the population and memory sizes had a significant impact in the performance
of different memory-based EAs. The results showed that the traditional choice,
which uses memory of smaller proportions when compared with the population
size, was rarely the best choice. Unfortunately, it was not possible to point out
a general rule to decide which memory and population sizes should be used,
because they depended on the problem, the characteristics of the environment,
and on the algorithm. An important algorithm was introduced and studied
in this thesis. This algorithm, called Variable-size Memory Evolutionary Al-
gorithm (VMEA) used the global number of individuals distributed in the
memory and the search population in a variable manner during the run. Our
study showed that this algorithm achieved superior results when compared with
the algorithms using constant population and memory sizes.

The mechanisms that manage the memorized solutions and decide which in-
dividuals should be replaced when the memory is full are very important in
the performance of memory-based EAs. This is obvious, since if we store bad
individuals, replacing good ones, the EAs will not be able to readapt when a
change occurs. We proposed three different replacing schemes and compared
them with the popular similar method proposed by Branke. The analysis of
the results showed that the replacing mechanisms based on age were difficult to
tune, since it was difficult to find appropriated values for the age of the indi-
viduals. The proposed age-based methods obtained good results in a minority
of the situations analyzed. On the other hand, the generational mechanism
introduced and studied in this thesis proved to be an efficient scheme to decide
which memory individuals should be replaced. The performance of all the algo-
rithms analyzed was significantly improved in most of the environments studied.

12.2. FUTURE WORK 159

For the past years, different mechanisms that promote and maintain the popu-
lation diversity have been proposed and used in EAs for dynamic environments.
Recently, some studies showed that in some situations the use of high diversity
could be detrimental to the performance of EAs for dynamic environments. In
this thesis we introduced two new genetic operators and used them as alterna-
tive to the traditional crossover operator. We were concerned in studying the
diversity of the population maintained by these two mechanisms, and seeing if
the performance of the algorithms was affected by it. We used the two genetic
operators, as well as the uniform crossover in four different memory-based EAs,
and analyzed the relation between the population’s diversity and the algorithm’s
performance. The results showed that the proposed methods generated differ-
ent values of diversity and different performances were obtained. In general, the
best performances were obtained by conjugation that was able to preserve the
lowest diversity. Transformation (highest diversity) performed better in slower
environments with severer changes. Finally, when the diversity promoted for
crossover and conjugation was similar, the performance of the algorithms was
also equivalent.

The last contribution of this thesis consisted of the introduction of mechanisms
capable of using information from the past to correctly predict the future. The
mechanisms introduced in the memory-based EA were used to predict when
the next generation would occur and how the environment would change. To
predict when a change would take place, we introduced two predictors: one
based on linear regression and another based on nonlinear regression. In order
to forecast how the environment would change, we used a Markov chain model
to keep track of past environments (and the transitions among them) and to
use that information to predict the future environment. The prediction modules
were incorporated in a standard memory-based EA, which was tested on differ-
ent situations. Results showed the effectiveness of the proposed methods, which
gave accurate predictions in most of the situations analyzed. The performance of
the memory-based EA was significantly improved by the mechanisms proposed.
We showed that, in cyclic environments, not only was prediction attainable, but
also that anticipating the changes resulted in a superior performance. The pro-
posed predictors are problem-dependent and can fail in some types of nonlinear
change periods. These shortcomings deserve further investigation in order to
develop predictors that are more flexible and adaptable.

12.2 Future Work

Several topics studied in this thesis yield results that indicate that extra work
should be done. For instance, it is important to determine whether the pro-
posed VMEA can also achieve good performances in other types of environ-
ments besides cyclic ones. In this regard, some preliminary experimentation
was performed and published in [91], but further investigation is still needed.
Also, different types of dynamic environments should be used to evaluate the
proposed replacing strategies. This is a work in progress, and should be contin-
ued.

160 12. CONCLUSION

The results related to diversity were very interesting and have spur our curiosity
in studying the real importance of diversity as it pertains to EAs for dynamic
environments. We are extending our experimentations with memory-based EAs
to other types of environments. Moreover, different mechanisms for promoting
and maintaining diversity are also being used and tested in EAs without mem-
ory. This work is in progress.
Finally, the prediction mechanisms must be improved. Both linear and non-
linear regression predictors must be tested using the concept of time window :
instead of using all the available information from the beginning of the run, we
intend to use only a small number of past observations, enclosed by a time win-
dow. This can reduce the computational effort without hindering the prediction
performance. Moreover, we intend to evolve, through genetic programming, the
function that is used by the nonlinear predictor. Concerning the Markov model,
some enhancements must be introduced in order to make this module indepen-
dent from the problem. All these prediction-related subjects are currently under
study.

Bibliography

[1] P. Angeline. Tracking extrema in dynamic environments. In Proceed-
ings oth the Sixth Annual Conference on Evolutionary Programming (EP
VI), volume 1213 of Lecture Notes on Computer Science, pages 335–345.
Springer, 1997.

[2] J. Arabas, Z. Michalewicz, and J. Mulawka. Gavaps - a genetic algo-
rithm with varying population size. In F. Varela and P. Bourgine, editors,
Proceedings of the First IEEE Conference on Evolutionary Computation
(CEC 1994), pages 73–78. IEEE Press, 1994.

[3] T. Bäck. Self adaptation in genetic algorithms. In F. Varela and
P. Bourgine, editors, Toward a Practice of Autonomous Systems: Pro-
ceedings of the First Conference on Artificial Life, pages 263–271. MIT
Press, 1992.

[4] T. Bäck. Optimal mutation rates in genetic search. In S. Forrest, editor,
Proceedings of the Fifth International Conference on Genetic Algorithms
(ICGA 1993), pages 2–8. Morgan Kaufmann, 1993.

[5] T. Bäck, A. E. Eiben, and N. A. L. van der Vaart. An empirical study on
gas ’without parameters’. In M. Schoenauer, K. Deb, G. Rudolf, X. Yao,
E. Lutton, J. J. J. Merelo, and H.-P. Schwefel, editors, Proceedings of
Parallel Problem Solving from Nature (PPSN V), volume 1917 of Lecture
Notes in Computer Science, pages 315–324. Springer, 2000.

[6] S. Baluja. Population-based incremental learning: a method for integrat-
ing genetic search based function optimization and competitive learning.
Technical Report TR CMU-CS-94-163, Carnegie Mellon University, 1994.

[7] G. J. Barlow and S. F. Smith. A memory enhanced evolutionary algo-
rithm for dynamic scheduling problems. In Springer, editor, Applications
of Evolutionary Computing, volume 4974 of Lecture Notes in Computer
Science, pages 606–615, 2008.

[8] C. N. Bendtsen and T. Krink. Dynamic memory model for non-stationary
optimization. In Proceedings of the IEEE Congress on Evolutionary Com-
putation (CEC 2002), pages 145–150. IEEE Press, 2007.

[9] C. Bierwirth, K. Kopfer, D. Mattfeld, and I. Rixen. Genetic algorithm
based sceduling in a dynamic manufacturing environment. In Proceedings

161

162 BIBLIOGRAPHY

of the IEEE Congress on Evolutionary Computation (CEC 1995). IEEE
Press, 1995.

[10] C. Bierwirth and D. Mattfeld. Production scheduling and rescheduling
with genetic algorithms. Evolutionary Computation, 7(1):1–17, 1999.

[11] P. A. N. Bosman and H. L. Poutré. Computationally intelligent online
dynamic vehicle routing by explicit loa prediction in evolutionary algo-
rithm. In T. P. Runarsson, H.-G. Beyer, E. Burke, J. Merelo-Guervós,
L. D. Whitley, and X. Yao, editors, Proceedings of Parallel Problem Solv-
ing from Nature (PPSN IX), Lecture Notes in Computer Science 4193,
pages 312–321. Springer-Verlag, 2006.

[12] P. A. N. Bosman and H. L. Poutré. Inventory management and the impact
of anticipation in evolutionary stochastic online dynamic optimization. In
Proceedings of the IEEE Congress on Evolutionary Computation (CEC
2007), pages 268–275. IEEE Press, 2007.

[13] J. Branke. Memory enhanced evolutionary algorithms for changing opti-
mization problems. In Proceedings of the IEEE Congress on Evolutionary
Computation (CEC 1999), pages 1875–1882. IEEE Press, 1999.

[14] J. Branke. Evolutionary Optimization in Dynamic Environments. Kluwer
Academic Publishers, 2002.

[15] J. Branke, T. Kaußler, and C. Schmidt. A multi-population approach
to dynamic optimization problems. In I. Parmee, editor, Proceedings
of Adaptsim03ive Computing in Design and Manufacture (ACDM 2000),
pages 299–308. Spriger-Verlag, 2000.

[16] J. Branke and D. Mattfeld. Anticipation in dynamic optimization: The
scheduling case. In M. Schoenauer, K. Deb, G. Rudolph, X. Yao, E. Lut-
ton, J. Merelo, and H.-P. Schwefel, editors, Parallel Problem Solving from
Nature, pages 253–262, 2000.

[17] W. Cedeno and V. R. Vemuri. On the use of niching for dynamic land-
scapes. In Proceedings of the International Conference on Evolutionary
Computation (ICEC 1997), pages 361–366. IEEE Press, 1997.

[18] H. Cheng and S. Yang. Genetic algorithms with elitism-based immigrants
for dynamic shortest path problem in mobile ad hoc networks. In Pro-
ceedings of the 2009 IEEE Congress on Evolutionary Computation (CEC
2009, pages 3135–3140. IEEE Press, 2009.

[19] H. G. Cobb. An investigation into the use of hypermutation as an adaptive
operator in genetic algorithms having continuous, time-dependent nonsta-
tionary environments. Technical Report TR AIC-90-001, Naval Research
Laboratory, 1990.

[20] H. G. Cobb and J. J. Grefenstette. Genetic algorithms for tracking chang-
ing environments. In Proceedings of the Fifth International Conference
on Genetic Algorithms (ICGA 1993), pages 523–530. Morgan Kaufmann,
1993.

BIBLIOGRAPHY 163

[21] G. P. M. D. S. Moore. Introduction to the Practice of Statistics (4th
edition). Freeman and Company, 2003.

[22] L. Davis. Adapting operator probabilities in genetic algorithms. In
J. Schaffer, editor, Proceedings of the Third International Conference on
Genetic Algorithms (ICGA 1989), pages 61–69. Morgan Kaufmann, 1989.

[23] A. E. Eiben, R. Hinterding, and Z. Michalewicz. Parameter control in evo-
lutionary algorithms. IEEE Transactions on Evolutionary Computation,
2(3):124–141, 1999.

[24] A. E. Eiben, E. Narchiori, and V. A. Valkó. Adapting operator proba-
bilities in genetic algorithms. In X. Yao and et al., editors, Proceedings
of Parallel Problem Solving from Nature (PPSN VIII), volume 3242 of
Lecture Notes in Computer Science, pages 41–50. Springer, 1989.

[25] A. E. Eiben and J. E. Smith. Introduction to Evolutionary Computing.
Springer, 2003.

[26] M. Farina, K. Deb, and P. Amato. Dynamic multiobjective optimization
problem: test cases, approximation and applications. In E. Cantú-Paz
and et al., editors, Proceedings of the Fifth International Genetic and
Evolutionary Computation Conference (GECCO 2003), volume 2723 of
Lecture Notes in Computer Science, pages 311–326. Springer, 2003.

[27] M. Farina, K. Deb, and P. Amato. Dynamic multiobjective optimization
problem: test cases, approximation and applications. IEEE Transactions
on Evolutionary Computation, 8(5):425–442, 2004.

[28] D. Floreano and C. Mattiussi. Bio-Inspired Artificial Intelligence: Theo-
ries, Methods and Technologies. MIT Press, 2008.

[29] L. Fogel, A. Owens, and M. Walsh. Artificial Intelligence Through Simu-
lated Evolution. John Wiley & Sons, Inc, 1966.

[30] D. E. Goldberg, K. Deb, and J. H. Clark. Genetic algorithms, noise and
the sizing of populations. Complex Systems, (6):333–362, 1992.

[31] D. E. Goldberg and J. Richardson. Genetic algorithms with sharing for
multimodal function optimization. In J. J. Grefenstette, editor, Proceed-
ings of the Second International Conference on Genetic Algorithms (ICGA
1987), pages 41–49. Lawrence Erlbaum Associates, 1987.

[32] D. E. Goldberg and R. E. Smith. Nonstationary function optimization us-
ing genetic algorithms with dominance and diploidy. In J. J. Grefenstette,
editor, Proceedings of the Second International Conference on Genetic Al-
gorithms (ICGA 1987), pages 59–68. Lawrence Erlbaum Associates, 1987.

[33] J. L. Gould and W. T. Keeton. Biological Science. W. W. Norton &
Company, 1996.

164 BIBLIOGRAPHY

[34] J. J. Grefenstette. Optimisation of control parameters for genetic algo-
rithms. IEEE Transactions on Systems, Man and Cybernetics, 1(16):122–
128, 1986.

[35] J. J. Grefenstette. Genetic algorithms for changing environments. In
R. Männer and B. Manderick, editors, Parallel Problem Solving from Na-
ture (PPSN II), 1992.

[36] J. J. Grefenstette and C. L. Ramsey. An approach to anytime learn-
ing. In D. Sleeman and P. Edwards, editors, Proceedings of the Ninth
International Conference on Machine Learning, pages 189–195. Morgan
Kaufmann, 1992.

[37] I. Harvey. The microbial genetic algorithm. 1996.

[38] I. Hatzakis and D. Wallace. Dynamic multi-objective optimization with
evolutionary algorithms: A forward-looking approach. In Proceedings of
the Genetic and Evolutionary Computation Conference (GECCO 2006),
pages 1201–1208. ACM Press, 2001.

[39] J. H. Holland. Adaptation in Natural and Artificial Systems: An Introduc-
tory Analysis with Applications to Biology. University of Michigan Press,
1975.

[40] Y. Jin and B. Sendhoff. Constructing dynamic optimization test problems
using the multi-objective optimization concept. In G. Raidl and et al.,
editors, Applications of Evolutionary Algorithms, volume 3005 of LNCS,
pages 525–536. Springer, 2004.

[41] K. D. Jong. An Analysis of the Behavior of a Class of Genetic Adaptive
Systems. PhD thesis, University of Michigan, 1975.

[42] K. D. Jong. Evolutionary Computation: a unified approach. MIT Press,
2006.

[43] A. Karaman, S. Uyar, and G. Eryigit. The memory indexing evolution-
ary algorithm for dynamic environments. In Applications of Evolutionary
Computing, volume 3449 of Lecture Notes in Computer Science, pages
563–573. Springer, 2005.

[44] C. L. Karr. Genetic algorithms and fuzzy logic for adaptive process con-
trol. In S. Goonatilake and S. Khebbal, editors, Intelligent Hybrid Systems,
volume 4, pages 63–83. John Wiley, 1995.

[45] M. D. Kidwell and D. J. Cook. Genetic algorithm for dynamic task
scheduling. In Proceedings of the Thirteenth International Phoenix Con-
ference on Computers and Communications, pages 61–67. IEEE Press,
1994.

[46] J. R. Koza. Genetic programming: On the programming of computers by
means of natural selection. Statistics and Computing, 4(2):87–112, 1994.

BIBLIOGRAPHY 165

[47] J. R. Koza, J. P. Rice, and J. Roughgarden. Evolution of food forag-
ing strategies for the caribbean anolis lizard using genetic programming.
Adaptive Behavior, 1(2):171–199, 1992.

[48] E. H. J. Lewis and G. Ritchie. A comparison of dominance mechanisms
and simple mutation on non-stationary problems. In M. Schoenauer,
K. Deb, G. Rudolf, X. Yao, E. Lutton, J. J. J. Merelo, and H.-P. Schwefel,
editors, Proceedings of the Parallel Problem Solving from Nature (PPSN
V), volume 1917 of Lecture Notes on Computer Science, pages 139–148.
Springer, 1998.

[49] C. Li and S. Yang. A generalized approach to construct benchmark prob-
lems for dynamic optimization. In X. Li and et al., editors, Proceedings
of the 7th International Conference on Simulated Evolution and Learning
(SEAL 2008), volume 5361 of Lecture Notes on Computer Science, pages
391–400. Springer, 2008.

[50] Q. Ling, G. Wu, and Q. Wang. Deterministic robust optimal design
based on standard crowding genetic algorithm. In S. Yang, Y.-S. Ong,
and Y. Jin, editors, Evolutionary Computation in Dynamic and Uncer-
tain Environments, volume 51 of Studies in Computational Intelligence,
pages 583–598. Springer-Verlag, 2007.

[51] L. Liu, D. Wang, and S. Yang. An immune system based genetic algo-
rithm using permutation-based dualism for dynamic traveling salesman
problems. In M. Giacobini and et al., editors, EvoWorkshops 2009: Ap-
plications of Evolutionary Computing (EVOSTOC 2009), volume 5484 of
Lecture Notes on Computer Science, pages 725–734. Springer, 2009.

[52] F. Lobo and C. F. Lima. Revisiting evolutionary algorithms with on-the-
fly population adjustment. In M. Keijzer and et al., editors, Proceedings
of the Eighth International Genetic and Evolutionary Computation Con-
ference (GECCO 2006), pages 1241–1248. ACM Press, 2006.

[53] S. J. Louis and Z. Xu. Genetic algorithms for open shop scheduling and re-
scheduling. In M. E. Cohen and D. L. Hudson, editors, Proceedings of the
Eleventh International Conference on Computers and their Applications
(ISCA), pages 99–102, 1996.

[54] R. I. Lung and D. Dumitrescu. Evolutionary swarm cooperative optimiza-
tion in dynamic environments. Natural Computing, 2009.

[55] Z. Michalewicz. Genetic Algorithms + Data Structures = Evolution Pro-
grams. Springer-Verlag, 3rd edition, 1999.

[56] M. Mitchell, S. Forrest, and J. Holland. The royal road for genetic al-
gorithms: fitness landscape and ga performance. In F. J. Varela and
P. Bourgine, editors, Proceedings of the First European Conference on
Arti

cial Life, pages 245–254. MIT Press, 1992.

166 BIBLIOGRAPHY

[57] N. Mori, H. Kita, and Y. Nishikawa. Adaptation to a changing environ-
ment by means of the thermodynamical genetic algorithm. In H.-M. Voigt,
editor, Parallel Problem Solving from Nature (PPSN IV), volume 1141 of
Lecture Notes in Computer Science, pages 513–522, 1996.

[58] N. Mori, H. Kita, and Y. Nishikawa. Adaptation to changing environ-
ments by means of the memory-based thermodynamical genetic algorithm.
In I. Bäck, editor, Proceedings of the Seventh International Conference
on Genetic Algorithms (ICGA 1997), pages 299–306. Morgan Kaufmann,
1997.

[59] N. Mori, H. Kita, and Y. Nishikawa. Adaptation to a changing environ-
ment by means of the feedback thermodynamical genetic algorithm. In
Parallel Problem Solving from Nature (PPSN V), volume 1498 of Lecture
Notes in Computer Science, pages 149–158, 1998.

[60] R. W. Morrison. Designing Evolutionary Algorithms for Dynamic Envi-
ronments. Springer, 2004.

[61] R. W. Morrisoni and K. D. Jong. A test problem generator for nonstation-
ary environments. In Proceedings of the IEEE Congress on Evolutionary
Computation (CEC 1999), pages 2047–2053. IEEE Press, 1999.

[62] R. W. Morrisoni and K. D. Jong. Triggered hypermutation revisited.
In Proceedings of the 2000 Congress on Evolutionary Computation (CEC
2000), pages 1025–1032. IEEE Press, 2000.

[63] J. C. Nash and M. Walker-Smith. Nonlinear Parameter Estimation: an
integrated system in BASIC. Marcel Dekker, Inc, 1987.

[64] P. Ng and K. C. Wong. A new diploid scheme and dominance change
mechanism for nonstationary function optimization. In Proceedings of
the Sixth International Conference on Genetic Algorithms (ICGA 1995),
pages 159–166. Morgan Kaufmann, 1995.

[65] F. Oppacher and M. Wineberg. The shifting balance genetic algorithm.
In W. Banzhaf and et al., editors, Proceedings of the Genetic and Evolu-
tionary Computation Conference (GECCO 1999), pages 504–510. Morgan
Kaufmann, 1999.

[66] Z. Pan, Y. Chen, L. Kan, and Y. Zhang. Parameter estimation by genetic
algorithms for nonlinear regression. In Proc. of the International Confer-
ence on Optimization Techniques and Applications, pages 946–953. World
Scientific, 1995.

[67] T. Park, R. Choe, and K. R. Ryu. Dual-population genetic algorithm for
nonstationary optimization. In Proceedings of the Tenth International Ge-
netic and Evolutionary Computation. Conference (GECCO 2008), pages
1025–1032. ACM Press, 2008.

BIBLIOGRAPHY 167

[68] C. L. Ramsey and J. J. Grefenstette. Case-based initialization of genetic
algorithms. In S. Forrest, editor, Proceedings of the Fifth International
Conference on Genetic Algorithms, pages 84–91. Morgan Kaufmann, 1993.

[69] I. Rechenberg. Evolutionsstrategie;: Optimieruntechnischer Systeme nach
Prinzipien der biologischen Evolution. Cambridge Series in Statistical and
Probabilistic Mathematics. Fromman-Holzboogg (German Edition), 1973.

[70] H. Richter and S. Yang. Memory-based on abstraction for dynamic fitness
functions. In M. Giacobini and et al., editors, Applications of Evolutionary
Computing, volume 4974 of Lecture Notes in Computer Science, pages
597–606. Springer-Verlag, 2008.

[71] H. Richter and S. Yang. Learning behavior in abstract memory schemes
for dynamic optimization problems. Soft Computing, 13(12):1163–1173,
2009.

[72] C. Rossi, M. Abderrahim, and J. C. Dı́az. Tracking moving optima using
kalman-based predictions. Evolutionary Computation, 16(1):1–30, 2008.

[73] P. J. Russell. Genetics. 5th edition, Addison-Wesley, 1998.

[74] C. Ryan. Dyploidy without dominance. In J. T. Alander, editor, Proceed-
ings of the Nordic Workshop on Genetic Algorithms, pages 63–70, 1997.

[75] K. Sastry, H. A. Abbass, and D. E. Goldberg. Sub-structural niching in
non-stationary environments. Technical Report 2004035, Illinois Genetic
Algorithms Laboratory (IlliGAL), 2004.

[76] M. Schmidt, Z. Michalewicz, M. Michalewicz, and C. Chiriac. Prediction
and optimization in a dynamic environment: a case study. In Proceed-
ings of the IEEE Congress on Evolutionary Computation (CEC 2005),
volume 1, pages 781–788. IEEE Press, 2005.

[77] I. Schoeman and A. Engelbrecht. Niching for dynamic environments using
particle swarm optimization. In Simulated Evolution and Learning, volume
4247, pages 134–141. Springer, 2006.

[78] L. Schönemann. On the influence of population sizes in evolution strategies
in dynamic environments. In E. Cantú-Paz and et al., editors, EvoDOP
Workshop, Fifth International Genetic and Evolutionary Computation
Conference (GECCO 2003), volume 2723 of Lecture Notes in Computer
Science, pages 123–127. Springer, 2003.

[79] L. Schönemann. The impact of population sizes and diversity on the
adaptability of evolution strategies in dynamic environments. In Proceed-
ings of the IEEE Congress on Evolutionary Computation (CEC 2004),
volume 2, pages 1270–1277. IEEE Press, 2004.

[80] A. Simões and E. Costa. Improving prediction in evolutionary algorithms
for dynamic environments. In Proceedings of the 11th International Ge-
netic and Evolutionary Computation Conference (GECCO 2009), pages
875–888. ACM Press.

168 BIBLIOGRAPHY

[81] A. Simões and E. Costa. On biologically inspired genetic operators: Trans-
formation in the standard genetic algorithm. In L. Spector, E. Goodman,
A. Wu, W. Langdon, H.-M. Voigt, M. Gen, S. Sen, M. Dorigo, S. Pezeshk,
M. Garzon, and E. Burke, editors, Proceedings of the 3th International Ge-
netic and Evolutionary Computation Conference (GECCO 2001), pages
584–591. Morgan Kaufmann.

[82] A. Simões and E. Costa. Parametric study to enhance the genetic al-
gorithm’s performance when using transformation. In Proceedings of
the 4th International Genetic and Evolutionary Computation Conference
(GECCO 2002). Morgan Kaufmann.

[83] A. Simões and E. Costa. Prediction in evolutionary algorithms for dy-
namic environments using markov chains and nonlinear regression. In
Proceedings of the 11th International Genetic and Evolutionary Compu-
tation Conference (GECCO 2009), pages 883–890. ACM Press.

[84] A. Simões and E. Costa. Using biological inspiration to deal with dynamic
environments. In Proceedings of the Seventh International Conference on
Soft Computing (MENDEL 2001). Brno University Press.

[85] A. Simões and E. Costa. Using genetic algorithms to deal with dynamic
environments: A comparative study of several approaches based on pro-
moting diversity. In Proceedings of the 4th International Genetic and Evo-
lutionary Computation Conference (GECCO 2002). Morgan Kaufmann.

[86] A. Simões and E. Costa. A comparative study using genetic algorithms
to deal with dynamic environments. In D. W. Pearson, N. C. Steele, and
R. Albrecht, editors, Proceedings of the 6th International Conference on
Artificial Neural Networks (ICANNGA 2003), pages 203–209. Springer-
Verlag, 2003.

[87] A. Simões and E. Costa. An immune system-based genetic algorithm
to deal with dynamic environments: Diversity and memory. In D. W.
Pearson, N. C. Steele, and R. Albrecht, editors, Proceedings of the 6th In-
ternational Conference on Artificial Neural Networks (ICANNGA 2003),
pages 168–174. Springer-Verlag, 2003.

[88] A. Simões and E. Costa. Improving the genetic algorithm’s performance
when using transformation. In D. W. Pearson, N. C. Steele, and R. Al-
brecht, editors, Proceedings of the 6th International Conference on Artifi-
cial Neural Networks (ICANNGA 2003), pages 175–181. Springer-Verlag,
2003.

[89] A. Simões and E. Costa. Improving memory’s usage in evolutionary algo-
rithms for changing environments. In Proceedings of the IEEE Congress
on Evolutionary Computation (CEC 2007), pages 276–283. IEEE Press,
2007.

[90] A. Simões and E. Costa. Variable-size memory evolutionary algorithm:
Studies on replacing strategies and diversity in dynamic environments.

BIBLIOGRAPHY 169

In D. Thierens and et al., editors, Proceedings of the 9th International
Genetic and Evolutionary Computation Conference (GECCO 2007), page
1530. ACM Press, 2007.

[91] A. Simões and E. Costa. Variable-size memory evolutionary algorithm
to deal with dynamic environments. In M. G. et al., editor, Applications
of Evolutionary Computing, volume 4448 of Lecture Notes in Computer
Science, pages 617–626. Springer, 2007.

[92] A. Simões and E. Costa. Evolutionary algorithms for dynamic environ-
ments: Prediction using linear regression and markov chains. In Parallel
Problem Solving from Nature (PPSN X), volume 5199 of Lecture Notes
on Computer Science, pages 306–315. Springer, 2008.

[93] A. Simões and E. Costa. The influence of population and memory sizes
on the evolutionary algorithm’s performance for dynamic environments.
In M. Giacobini and et al., editors, Applications of Evolutionary Com-
puting, volume 5484 of Lecture Notes on Computer Science, pages 705–
714. Springer-Verlag, 2009. This paper received the Best Paper Award of
EVOSTOC 2009.

[94] P. Smith. Conjugation: A bacterially inspired form of genetic. In Late
Breaking Papers at the Genetic Programming 1996 Conference, 1996.

[95] P. Smith. Finding hard satisfiability problems using bacterial conjugation.
In AISB Workshop on Evolutionary Computing, pages 236–244, 1996.

[96] P. D. Stroud. Kalman-extended genetic algorithm for search in nonsta-
tionary environments with noisy fitness evaluations. IEEE Transactions
on Evolutionary Computation, 5(1):66–77, 2001.

[97] R. Tinos and S. Yang. A self-organizing random immigrants genetic al-
gorithm for dynamic optimization problems. Genetic Programming and
Evolvable Machines, 3(8):255–286, 2007.

[98] R. Tinós and S. Yang. Continuous dynamic problem generators for evolu-
tionary algorithms. In Proceedings of the IEEE Congress on Evolutionary
Computation (CEC 2007), pages 236–243. IEEE Press, 2007.

[99] K. Trojanowski and Z. Michalewicz. Evolutionary algorithms for non-
stationary environments. In Proceedings of 8th Workshop on Intelligent
Information Systems, 1999.

[100] K. Trojanowski and Z. Michalewicz. Searching for optima in nonstation-
ary environments. In Proceedings of the IEEE Congress on Evolutionary
Computation (CEC 1999), pages 1843–1850. IEEE Press, 1999.

[101] R. K. Ursem. Multimodal optimization techniques in dynamic environ-
ments. In D. Whitley and et al., editors, Proceedings of the Genetic and
Evolutionary Computation Conference (GECCO 2000), pages 19–26. Mor-
gan Kaufmann, 2000.

170 BIBLIOGRAPHY

[102] A. S. Uyar and A. E. Harmanci. Investigation of new operators for a
diploid genetic algorithm. In Proceedings of SPIE’s Annual Meeting, 1999.

[103] A. S. Uyar and A. E. Harmanci. Preserving diversity in changing environ-
ments through diploidy with adaptive dominance. In W. B. Langdon and
et al., editors, Proceedings of the Genetic and Evolutionary Computation
Conference (GECCO 2002), page 679. Morgan Kaufmann, 2002.

[104] A. S. Uyar and A. E. Harmanci. A new population based adaptive domi-
nance change mechanism for diploid genetic algorithms in dynamic envi-
ronments. Soft Computing, 9(11):803–814, 2005.

[105] J. van Hemert, C. V. Hoyweghen, E. Lukshandl, and K. Verbeeck. A futur-
ist approach to dynamic environments. In GECCO EvoDOP Workshop,
pages 35–38, 2001.

[106] F. Vavak, T. C. Fogarty, and K. Jules. A genetic algorithm with variable
range of local search for tracking changing environments. In H.-M. Voigt,
editor, Proceedings of the Parallel Problem Solving from Nature (PPSN
IV), volume 1141 of Lecture Notes in Computer Science, pages 376–385.
Springer, 1996.

[107] H. Wang and D. Wang. An improved primal-dual genetic algorithm for
optimization in dynamic environments. In Neural Information Process-
ing, volume 4234 of Lecture Notes in Computer Science, pages 836–844.
Springer-Verlag, 2006.

[108] H. Wang, S. Yang, W. H. Ip, and D. Wang. Adaptive primal-dual genetic
algorithms in dynamic environments. IEEE Transactions on Systems,
Man and Cybernetics, 2009.

[109] K. Weicker. Performance measures for dynamic environments. In Parallel
Problem Solving from Nature (PPSN VII), volume 2439 of Lecture Notes
in Computer Science, pages 64–73. Springer-Verlag, 2002.

[110] K. Weicker. Evolutionary Algorithms and Dynamic Optimization Prob-
lems. Der Andere Verlag, 2003.

[111] M. Wineberg and F. Oppacher. Enhancing the ga’s ability to cope with
dynamic environments. In D. Whitley, editor, Proc. 2nd Genetic and Evo-
lutionary Computation. Conference (GECCO 2000). Morgan Kaufmann,
2000.

[112] S. Yang. Non-stationary problem optimization using the primal-dual ge-
netic algorithm. In R. Sarker and et. al, editors, Proceedings of the 2003
IEEE Congress on Evolutionary Computation (CEC 2003), volume 3,
pages 2246–2253. IEEE Press, 2003.

[113] S. Yang. Constructing dynamic test environments for genetic algorithms
based on problem difficulty. In Proceedings of the 2004 IEEE Congress
on Evolutionary Computation (CEC 2004), volume 2, pages 1262–1269.
IEEE Press, 2004.

BIBLIOGRAPHY 171

[114] S. Yang. Memory-based immigrants for genetic algorithms in dynamic
environments. In H.-G. Beyer, editor, Proceedings of the Seventh In-
ternational Genetic and Evolutionary Computation Conference (GECCO
2005), volume 2, pages 1115–1122. ACM Press, 2005.

[115] S. Yang. Memory-enhanced univariate marginal distribution algorithms
for dynamic optimization problems. In Proceedings of the 2005 IEEE
Congress on Evolutionary Computation (CEC 2005), volume 3, pages
2560–2567. IEEE Press, 2005.

[116] S. Yang. Population-based incremental learning with memory scheme
for changing environments. In H.-G. Beyer, editor, Proceedings of the
Seventh International Genetic and Evolutionary Computation Conference
(GECCO 2005), volume 1, pages 711–718. ACM Press, 2005.

[117] S. Yang. Associative memory scheme for genetic algorithms in dynamic
environments. In F. Rothlauf and et al., editors, Applications of Evolu-
tionary Computing, volume 3907 of Lecture Notes in Computer Science,
pages 788–799. Springer-Verlag, 2006.

[118] S. Yang. A comparative study of immune system based genetic algorithms
in dynamic environments. In M. Keijzer and et al., editors, Proceedings
of the Eighth International Genetic and Evolutionary Computation. Con-
ference (GECCO 2006), pages 1377–1384. ACM Press, 2006.

[119] S. Yang. Dominance learning in diploid genetic algorithms for dynamic
optimization problems. In M. Keijzer and et al., editors, Proceedings of the
Eighth International Genetic and Evolutionary Computation. Conference
(GECCO 2006), pages 1435–1436. ACM Press, 2006.

[120] S. Yang. Adaptive business intelligence: Three case studies. In S. Yang,
Y.-S. Ong, and Y. Jin, editors, Evolutionary Computation in Dynamic
and Uncertain Environments, volume 51 of Studies in Computational In-
telligence, pages 179–196. Springer-Verlag, 2007.

[121] S. Yang. Explicit memory schemes for evolutionary algorithms in dynamic
environments. In S. Yang, Y.-S. Ong, and Y. Jin, editors, Evolution-
ary Computation in Dynamic and Uncertain Environments, volume 51 of
Studies in Computational Intelligence, pages 3–28. Springer-Verlag, 2007.

[122] S. Yang. Genetic algorithms with elitism-based immigrants for changing
optimization problems. In M. Giacobini and et al., editors, Applications
of Evolutionary Computing, volume 4448 of Lecture Notes in Computer
Science, pages 627–636. Springer-Verlag, 2007.

[123] S. Yang. Genetic algorithms with memory- and elitism-based immi-
grants in dynamic environments. Evolutionary Computation, 3(16):385–
416, 2008.

[124] S. Yang and R. Tinós. A hybrid immigrants scheme for genetic algo-
rithms in dynamic environments. International Journal of Automation
and Computing, 3(4):243–254, 2007.

172 BIBLIOGRAPHY

[125] S. Yang and X. Yao. Dual population-based incremental learning for
problem optimization in dynamic environments. In M. Gen and et. al,
editors, Proceedings of the 7th Asia Pacific Symposium on Intelligent and
Evolutionary Systems, pages 49–56, 2003.

[126] S. Yang and X. Yao. Experimental study on population-based incremental
learning algorithms for dynamic optimization problems. Soft Computing,
9(11):815–834, 2005.

[127] S. Yang and X. Yao. Population-based incremental learning with asso-
ciative memory for dynamic environments. IEEE Transactions on Evolu-
tionary Computation, 5(12):542–561, 2008.

[128] A. Younes, O. Basir, and P. Calamai. A hybrid evolutionary approach for
combinatorial problems in dynamic environments. In Proceedings of the
Canadian Conference on Electrical and Computer Engineering (CCECE
2006), pages 1595–1600. IEEE Press, 2006.

[129] A. Zhou, Y. Jin, Q. Zhang, B. Sendhoff, and E. Tsang. Prediction-based
population re-initialization for evolutionary dynamic multi-objective op-
timization. In Evolutionary Multi-Criterion Optimization, volume 4403 of
Lecture Notes in Computer Science, pages 832–846. Springer, 2007.

Index

Adjusting ∆, 81, 82
Algorithms, 8, 35, 50, 82

AMGA, 38
pseudo code, 38
results, 106, 136

conjugation, 61
pseudo code, 61
results, 127, 132, 136, 140

EA, 8
MEGA, 35

pseudo code, 36
results, 99, 127

MIGA, 38
pseudo code, 38
results, 103, 132

PredEA, 82
pseudo code, 83
results, 149

transformation, 58
pseudo code, 55, 58
results, 127, 132, 136, 140

VMEA, 50
pseudo code, 50
results, 109, 140

Benchmarks, 16, 87
bit-matching, 88
DOP generator, 90
dynamic bit-matching, 17
dynamic knapsack, 17
dynamic optimization problems gen-

erator, 17
knapsack, 88
moving parabola, 17
moving peaks, 17
royal road functions, 89

Bit-matching problem, 88
Bonferroni, 97

Change period, 14

linear, 14
nonlinear, 14
patterned, 14
random, 14

Change, type of, 15
cyclic, 15
cyclic with noise, 15
probalilistic, 15
random, 15

Conjugation, 59
pseudo code, 61
results, 127, 132, 136, 140

Diversity, 21
elite immigrants, 23
hypermutation, 22
immune system, 24
measure, 97
niches, 23
random immigrants, 22
restarting, 21
results, 127, 132, 136, 140
sentinels, 24

DOP generator, 90
Dynamic environments, 13

benchmarks, 16
cathegorization, 13
change period, 14
frequency, 14
predicability, 14, 16
severity, 15
state of the art, 21
types od changes, 15
types of change period, 14

Dynamic Optimization Problem Gen-
erator, 90

Estimation of parameters, 68
GA, 71

173

174 INDEX

Evolutionary Algorithms, 1, 7
example, 10
genetic operators, 9
population, 8
pseudocode, 8
representaion, 9
selection, 9

Experimentation plan, 92, 94
Experiments, 87, 90, 92, 94–97

benchmark problems, 87
bit-matching, 88
knapsack, 88
royal road, 89

DOP generator, 90
experimentation plan, 92, 94
measures, 96

diversity, 97
fitness overall, 96
off-line performance, 97

settings, 95
statistical validation, 97

Friedman test, 97

Genetic Algorithm, 71
Genetic operators, 53

conjugation, 3, 59
results, 127, 132, 136, 140
transformation, 3, 54

Knapsack problem, 88

Linear regression, 65

Markov chains, 74
Measures, 96

accuracy, 19
adaptability, 19
average error, 19
diversity, 97
fitness overall, 19, 96
off-line performance, 19, 97
on-line performance, 18
performance, 18

Memory, 1, 25, 35, 38
algorithms, 35, 36, 38, 49
associative, 38
associative memory, 26, 27

direct memory, 26, 36
explicit, 1, 25
immigrant-based, 26, 29, 38
implicit, 1, 25
replacing strategy, 29

Multi-populations, 30
Multiple comparisons, 97

Nemenyi test, 97
Nonlinear regression, 68

estimation, 68

Original contributions
diversity, 3, 53

conjugation, 3
transformation, 3

genetic operators, 3, 53
conjugation, 59
transformation, 54

memory, 2
memory size, 3, 46
population size, 3, 46
prediction, 4, 65, 74, 79, 82, 84

modules, 84
replacing strategy, 2, 41

age1, 41
age2, 41
generational, 43

Variable-size Memory Evolution-
ary Algorithm, 3

VMEA, 3, 49

Parameters settings, 87, 95
Performance measures, 18

accuracy, 19
adaptability, 19
average error, 19
fitness overall, 19
off-line performance, 19
on-line performance, 18

PredEA, 83, 84
modules, 84
pseudo code, 83
results, 149

Prediction, 32, 65, 74, 79, 82, 84
∆ value, 79, 81, 82
accuracy, 145
algorithm, 82

INDEX 175

anticipation, 79
how, 74

example, 75
linear regression, 65
Markov chains, 74

example, 75
modules, 84
nonlinear regression, 68
PredEA, 83
results, 145, 149
when, 65

example, 72

Replacing strategy, 29, 41
age1, 41
age2, 41
generational, 43
results, 112

Results, 99, 109, 112, 127, 132, 136,
140, 145, 149

diversity, 127, 132, 136, 140
memory, 99, 109
prediction, 145, 149
replacing strategies, 112
sizes, 99
statistical validation, 100, 103, 107,

112, 115, 118, 121, 128, 132,
136, 140, 150

VMEA, 109
Royal road functions, 89

State of the art
anticipation, 32
diversity, 21
memory, 25
multi-populations, 30
prediction, 32
replacing strategy, 29

Statistical validation, 97, 100, 103, 107,
112, 115, 118, 121, 128, 132,
136, 140, 150

Bonferroni, 97
Friedman test, 97
t-test, 97

t-test, 97
Transformation, 54

pseudo code, 55, 58

results, 127, 132, 136, 140

Variable-size Memory Evolutionary Al-
gorithm, 3, 49

VMEA, 49
pseudo code, 50
results, 109

