
Evolutionary Computation in
Dynamic and Uncertain

Environments

CEC’2004 TutorialCEC’2004 Tutorial

Yaochu Jin

Honda Research Institute Europe
63073 Offenbach/Main, Germany

OutlineOutline

• Brief introduction to evolutionary algorithms

• Handling noisy fitness functions

• Using meta-models in evolutionary computation

• Searching for robust solutions

• Tracking moving optimums and dealing with multiple objectives

• A uniform framework for uncertainties in evolutionary computation

• Related additional information

Introduction to Evolutionary Algorithm Introduction to Evolutionary Algorithm

Introduction to Evolutionary Algorithms Introduction to Evolutionary Algorithms

• Generic structure evolutionary algorithms
Problem representation (encoding)

Recombination, mutation and selection

Fitness evaluations

• Evolutionary algorithms
Genetic algorithms

(crossover, mutation, stochastic selection)

Evolution strategies

(mutation, recombination, deterministic selection, self-adaptation)

Genetic programming …

• Pros and cons
Stochastic, global search

No requirement for derivative information

Well-tailored for hybrid optimization

Population-based search

o Need large number of fitness evaluations

o Not well-suitable for on-line optimization

Initialize

Evaluate

(Parent)

Recombine

Mutate

Evaluate (Offspring)

Select

Terminate

Handling Noisy Fitness FunctionsHandling Noisy Fitness Functions

Handling Noisy Fitness Functions (I) Handling Noisy Fitness Functions (I)

• Basic assumptions

Noise is additive
Noise is normally or uniformly distributed

F(X) = f(X) + z, z ~ N(0, σN
2), σN

2 is variance of the noise

• Methods

Use a larger population size to reduce the influence of noise
Thresholding in selection (Markon et al, 2001)

an optimal value for the threshold is derived for (1+1)-ES under certain conditions

Use averaging to filter out the noise (re-sampling)
sample multiple times (Fitzpatrick and Greffenstette, 1988)
sample the neighborhood – averaging over space (Branke98)

recombination is recommended in ES (Beyer, 1998)

Handling Noise in Fitness Functions (II)Handling Noise in Fitness Functions (II)

• Re-sample effectively
increase the sample size as evolution proceeds (Aizawa and Wah, 1994)

adapt the sample size based on the probability of the individual to be selected

(Stagge, 1998)

adapt the sample size based on the estimated error probability in tournament

selection (Branke, 2003)

• Fitness estimation
estimate true fitness using all history data, assuming a Gaussian distribution

(Sano and Kita, 2000)

estimate true fitness using local regression models (Branke et al, 2001)

Handling Noisy Fitness Functions (III) Handling Noisy Fitness Functions (III)

•• Influence of noise on convergence
convergence is slowed down in (deterministic) tournament selection
(Miller and Goldberg, 1995)

µ(t+1) - µ(t) = I σ F
2 (t) (without noise)

I : selection intensity (effective selection pressure)

µ(t+1) - µ(t) = I σ F
2(t) / [σ F

2(t) + σ N
2 (t)]½ (with noise)

tconv / t’conv = σ F
2(t) / [σ F

2(t) + σ N
2 (t)] ½

population sizing(Miller and Goldberg, 1996)

N = Γ (σ F
2 + σ N

2)
Γ : population sizing coefficient

Fitness Approximation in Evolutionary ComputationFitness Approximation in Evolutionary Computation

Evolutionary Computation with Approximate FitnessEvolutionary Computation with Approximate Fitness

• Basic assumption: Fitness function is noisy and biased

F(X) = f(X) + z, z ~ N(µN, σN
2)

- µN and σN
2 are mean and variance

• When fitness approximation is necessary
No explicit fitness function exists
Fitness evaluation is highly time-consuming
Fitness is noisy (filter out noise)
Fitness is highly rugged (smooth out the fitness landscape)
Search for robust solutions (based on expected fitness or variance etc.)

• How to generate meta-models

• How to use meta-models
Approximate model using multiple populations
Approximate model in initialization, crossover and mutation
Approximate model in fitness evaluations

Approximate Models Using Multiple PopulationsApproximate Models Using Multiple Populations

• Injection island model (Eby et al, 1998)

Model of lowest
complexity

Model of medium
complexity• Hierarchical model (Sefrioui and Periaux, 2000)
Model of highest
complexity

Reduction of Randomness in Genetic OperatorsReduction of Randomness in Genetic Operators

• Generate a plurality of individuals randomly and choose the best ones according
to the meta-model for the initial population

• Informed crossover (Rasheed and Hirsch, 2000):

select two individuals randomly
choose a crossover method randomly and generate a potential offspring
repeat the above process for a number of times
rank the potential offspring individuals and choose the best
according to the meta-model as the offspring

• Informed mutation (Rasheed and Hirsch, 2000; Abboud and Schoenauer, 2002):

Generate multiple individuals randomly
Choose the best according to the meta model

MetaMeta--models in Fitness Evaluationsmodels in Fitness Evaluations

• Due to unavoidable modeling errors, a combination of meta-model with
the original fitness function is necessary (evolution control / model
management) (Jin et al, 2000)

generation-based evolution control
attractive for parallel computing
less flexibility

individual-based evolution control
powerful in model management
not the best for parallel computing if the number of controlled individual changes

Generation Based Evolution Control (I)Generation Based Evolution Control (I)

Ind. 1 Ind. 1

Ind. 2

Ind. n

Ind. 2

Ind. n

Ind. 1

Ind. 2

Ind. n

Ind. 1

Ind. 2

Ind. n

Ind. 1

Ind. 2

Ind. n

t + ξt + 1 t + ct t + ξ + 1

• Determine the control frequency heuristically (Bull, 1999)
• EA evolves on the meta-model until it converges (Ratle, 1998; Ratle 1999)

a bias toward the unexplored region is included (Büche et al, 2003)

Generation Based Evolution Control (II)Generation Based Evolution Control (II)

Adaptation of the control frequency based on the
model fidelity (Jin et al, 2001; Jin et al, 2002)

End of control cycle

• Estimation of model fidelity
• Adaptation of control frequency
• On- line model update

IndividualIndividual--based Evolution Control (I)based Evolution Control (I)

Blade 1Blade 1

Blade 2

Blade n

Blade 2

Blade n

Blade 1

Blade 2

Blade n

Blade 1

Blade 2Blade 2

Blade 1

Blade n Blade n

Generation t Generation t + 1 Generation t + 2 Generation t + 3 Generation t + m

• Choose individuals randomly (Jin et al, 2000)
• Choose the best individuals according to the model (Jin et al, 2000)

bias the selection toward individuals with higher uncertainty (Emmerich et al, 2002)
f(X) = f - α E (for minimization)

- α: a constant
- E: error bound

adapt the number of individuals to be re-evaluated (Hong et al, 2003)
• Choose the individuals with most uncertain individuals (Branke, 2003)
• Pre-selection (Ulmer et al, 2003)

IndividualIndividual--based Evolution Control (II)based Evolution Control (II)

• 12-D Ackley function
• (3,12)-ES
• average over 10 runs

Random strategy Best strategy

Number of controlled individualsNumber of controlled individuals

• the best strategy is more efficient than the random strategy

• in the best strategy, about half of the individual should be controlled

IndividualIndividual--based Evolution Control (III)based Evolution Control (III)

(µ, λλ)) Best strategy

…… µµ parentsparents

crossover/recombination, mutation

……

evaluation using
the meta-model

……

re-evaluate λ1 (λ1 ≤ λ) best individuals
using the true fitness function

λλ parentsparents

λλ parentsparents

……
λλ parentsparents

selection

µµ parentsparents

(µ, λλ)) Pre-selection

…… µµ parentsparents

crossover/recombination, mutation

……

evaluation using
the meta-model

……

Re-evaluate λ (λ ≤ λ2) best individual using
the true fitness function

λλ2 parents2 parents
((λλ2 2 ≥≥ λλ))

λλ2 parents2 parents

…… λλ parentsparents

selection

µµ parentsparents…… ……

IndividualIndividual--based Evolution Control (IV)based Evolution Control (IV)

Clustering-based Individual Choice (Jin et al, 2004)

• Grouping the population into a number of clusters consisting of similar
individuals

• Evaluate the individual closest to the cluster center only
• Estimate fitness using neural network ensembles
• estimate the prediction error based on the ensemble

∑

w1

w2

wk

x2

x1

MetaMeta--models models -- General General

• Types of meta-models
polynomials (Response surface methodology)
neural networks

multi-layer perceptrons (MLPs)
radial-basis-function networks (RBFNs)

Gaussian processes, kriging models (DACE)
support vector machines (SVMs)

• Comparison of models
no essential difference in model quality
Gaussian processes provides an error bound, useful in model management

• Modeling locally is more practical than modeling globally

• Small variance is more important than small bias

• Ensemble is a practical and effective technique
reduce bias and variance simultaneously
provide an estimate of prediction error

MetaMeta--models models –– Ensemble Techniques Ensemble Techniques

• Bagging – Bootstrap aggregation

• Boosting

• Evolutionary approaches

sequentially and independently (different initial structure and parameters)
sequentially, negative correlated
simultaneously, negatively correlated
multi-objective approach (trade-off between accuracy and complexity)

Ensemble Techniques Ensemble Techniques -- BaggingBagging
 B ootstrap
 estim ators

 θ 1 θ 2 θ B

 B ootstrap
 sam ples

 O rig ina l
 sam ple

X = (x 1, ..., x n)

 X * 1
 X * 2

 X * B

θ = (θ1 + θ2 + ... + θ B)/B

Reduce variance while bias unchanged

Degrade the performance of stable procedures

Ensemble Techniques Ensemble Techniques -- BoostingBoosting

• Initialize weights: D1(i) = 1/n, i=1,2,…,n

• For t=1 to B:
Fit a model (θ t) to the data using weights D1

Calculate error εt of model θ t

Compute αt = 1/2ln[(1- εt) / εt]

Update weight:

Dt(i) = Dt-1(i) exp[αt I(yi ≠ θ t(xi)]

• Final model:

θ = (α1θ1 + α2θ2 + ... + αBθ B)

X = (x1, ..., xn)

X1

θ1

X2

θB

XB

D1

D2

DB

θ = (α1θ1 + α2θ2 + ... + αBθ B)

Reduce both variance and bias

Sensitive to noise, large number of bootstrap samples needed

Ensemble Techniques Ensemble Techniques –– MultiMulti--objective Network Evolutionobjective Network Evolution

• Structure and weight representation
A connection matrix and a weight matrix

• Genetic operators
node addition/deletion
weight addition/deletion
Gaussian mutation to the weights

• Life-time learning
Rprop+ learning algorithm
encode the change of the weights during life-time learning back to the
chromosomes (Lamarckian evolution)

• Objectives
E: mean squared error on training data after life-time learning
Ω: model complexity (count the number of connections)

• Dynamic weighted aggregation

connection matrix

Comparison of Ensemble TechniquesComparison of Ensemble Techniques

Random initialization Multi-objective approach

• three inputs
• 80 training data
• 20 test data
• no cross-validation in training

• reduced MSE
• more consistent error prediction

Data Sampling TechniquesData Sampling Techniques

• Design of experiments
Orthogonal array: XTX is diagonal (first-order models)
Simplex design: require n+1 samples for n variables, so that the angle of any
two points make with the origin (θ) satisfies:

cos(θ) = -1/n (first-order models)
Central composite design (second-order polynomials)
D-optimality (to maximize the determination of XTX equals to
minimize the variance of the estimate)

• Active learning
Maximize information gain
Reduce entropy
Reduce generalization error

CCD

Optimization ResultsOptimization Results
- (5,30)-ES Covariance Matrix Adaptation
- 10 individuals are controlled
- Ensemble size = 3
- average over 10 runs

Clustering based strategy Plain

Single Neural Network versus EnsemblesSingle Neural Network versus Ensembles

Network ensembleSingle NN

An Example: 2D Blade DesignAn Example: 2D Blade Design

• Non-Uniform Rational B-Spline representation
• Computational fluid dynamics simulation for fitness evaluation
• Minimization of pressure loss +outflow angle deviation
• Mechanical constraints
• Evolution strategy
• Neural network as meta-model

Pressure Loss

Pressure Loss

CFD evaluations
CFD + NN evaluations

Search for Robust Optimal SolutionsSearch for Robust Optimal Solutions

Evolutionary Search for Robust Optimal SolutionsEvolutionary Search for Robust Optimal Solutions

• Robust to variations in design parameters (x)
• Robust to variations in environmental parameters (a)

x

f(x, a)

A

B

B
f(x, a)

a∗

A

a

Expectation Based Approach to RobustnessExpectation Based Approach to Robustness

• Averaging based approach:

f(x) = ∑i f(x+∆xi), ∆xi~ N(0,σ2)

Need additional fitness evaluations
Use of approximate models could alleviate
this difficulty

• Perturbation based approach:

f(x) = f(x+ ∆x(t)), ∆x(t) ~ N(0,σ2)

Approximation can be proved under the assumption of an infinite
population size
No additional fitness evaluations needed

∆Xi

f(X)

f(X+ ∆Xi)

f(X)

X
X

Weaknesses of Expected Fitness ApproachWeaknesses of Expected Fitness Approach

• Search result based on the expected fitness is sensitive to the number of
averaging and the variance of averaging

• Search result based on expected fitness may fail to capture the trade-off
between performance and robustness

MultiMulti--objective Approach to Robustnessobjective Approach to Robustness

• Expected fitness value (first order moment) and the original fitness
• Higher moment of the original fitness (e.g. variance) and the
original fitness function

• Expected fitness and variance of the fitness

min f R =
σf, i

σx, j

Estimation of function variance without additional fitness
calculations.

An Example for MOO Approach to RobustnessAn Example for MOO Approach to Robustness

The MOO approach successfully provides a qualitative description of the
robustness of different optima.

Using MetaUsing Meta--models in Search for Robust Solutions (I)models in Search for Robust Solutions (I)

Trade-off between mean and varianceTest function

• median Pareto front using meta-models as well
as the rough estimation method

• all approximation models perform as as good as
when the real fitness was used.

Using MetaUsing Meta--models in Search for Robust Solutions (II)models in Search for Robust Solutions (II)

Dimension = 5

Tracking Moving Optimums and Dealing withTracking Moving Optimums and Dealing with
Multiple Objectives Multiple Objectives

Examples of (Implicit) Dynamic Optimization ProblemsExamples of (Implicit) Dynamic Optimization Problems

• Adaptive coding in structure optimization

• Co-evolution

Dynamic Optimization Problems (Dynamic Optimization Problems (DOPsDOPs))

• Optimization problems whose optimal solution changes over time during the
optimization, which could result from

change of environmental parameters
change of constraints
change of objectives
change of problem settings (representations)

• Types of dynamic optimization problems
the optimum moves linearly/nonlinearly in the design space
the optimum oscillates periodically among a number of locations
the optimum jumps randomly

• What may matter
the speed of change
the severity of change
if the change is periodical, does the optimum move exactly back
to the original location?
is the change observable/detectable or even predictable?

Methods for Dynamic Optimums (I)Methods for Dynamic Optimums (I)

• Maintaining diversity of the population to prevent it from converging

add randomly generated individuals in GA (Grefenstette, 1992)

fitness sharing (Anderson, 1991)

aging of individuals (Ghosh et al, 1998)

adaptive chaotic mutation (Nanayakkara et al, 1999)

set a lower bound on step-sizes in ES to prevent them from converging to
zero (Jin et al, 2004)

• Using explicit memory

store the best solutions in history and add them to the population is
necessary(Mori et al, 1998; Branke, 1999; Bendtsen and Krink, 2002)

store promising genetic materials in a “gene library” for re-use (Tekol and
Acan, 2003)

Methods for Dynamic Optimums (II)Methods for Dynamic Optimums (II)

• Using implicit memory
multiple populations (Oppacher abd Wineberg, 1999; Branke et el, 2000;

redundant coding (Smith, 1987; Goldberg and Smith, 1987; Dagsgupta and

MacGregor, 1992; Ng and Wong, 1995; Lewis et al, 1998)

• (Self-)adaptation and learning
hyper-mutation: increase mutation when time-averaged best performance

worsens (Cobb and Grefenstette, 1993)

self-adaptation - a double-side sword (Angeline, 1997; Bäck, 1998; Weicker

and Weicker,2000)

life-time learning (Sasaki and Tokoro, 1998)

Tracking Moving Optimum Using Multiple Populations (I)Tracking Moving Optimum Using Multiple Populations (I)

colony

migration

core
population

colony colony

migrationmigration

• Oppacher and Wineberg, 1999; 2000

the core population is used to exploit the promising area

a number of colonies are used to explore the search space

diversity measure (distance to the core population) is included in fitness evaluations
of the colonies

Tracking Moving Optimum Using Multiple Populations (II)Tracking Moving Optimum Using Multiple Populations (II)

parent
population

parent
population

parent
population

crossover
mutation
selection

crossover
mutation
selection

split
child

population 1

child
population 2

child
population 1

crossover
mutation
selection

split

• Branke et al, 2000
the parent population explores the search space

a child population is created when certain conditions are met

the size of parent and child population is adjusted

the child population only searches a limited range of the search space

Which for WhatWhich for What

• Explicit memory and redundant coding are well-suited for cases in which the
optimum oscillates periodically. Redundant coding approach seems to be
effective only if the location of optimums are very limited

• Multi-population approach is good for tracking competing peaks.
However, the search ability will decrease if too many child populations
are created and the size of population is dramatically reduced

• Diversity of the population is most efficient for tracking continuously moving
optimums

• Life-time learning for adaptation to small but very fast change of the optimum

Performance Indices for Dynamic OptimizationPerformance Indices for Dynamic Optimization

• PIs for stationary optimization
best-so-far
off-line performance: average best-so-far
on-line performance: average of all evaluations

• PIs for dynamic optimization
adaptation performance (Mori et al, 1997):

I= 1/T ∑fbest(t)/fopt(t)
T: number of generation
fbest(t): best fitness in the population at time t
fopt(t): global optimum at time t

accuracy (Trojanowski and Michalewicz, 1999)

Acc = 1/K ∑ erri
erri : difference between the current best in the

population just before change and the optimum
value averaged over the entire run

the average distance to the optimum at each generation (Weicker and Weicker, 1999)

best-of-generation average (Grefenstette, 1999; Bäck, 1999)

Dynamic Optimization Test FunctionsDynamic Optimization Test Functions

• General requirements for constructing dynamic optimization test problems:
computationally efficient
different dynamic behaviors are realizable
the complexity of the fitness landscape is controllable
the trajectory of the optimum can be known
the test problem should be somehow relevant to real-world applications

• Main approaches:
switching between different objectives (Cobb and Grefenstette, 1993)
shifting stationary functions (Cobb and Grefenstette, 1993; Angeline, 1997; Farina et
al, 2003)

f(x, t) = f(x+d(t));
(applicable to MOO)

competing/moving peaks (Branke, 1999; Morrison, 1999)
f(x, t) = max i=1, M{Pi(x, t)};

Pi(x, t) is time-varying in terms of
peak height, location and width

adapting multi-objective test functions to dynamic optimization (Jin et al, 2004)
f(x,t) = ∑ i=1, M wi(t) fi(x)

wi(t) time-varying weights for each objective
M is number of objectives of the MOO test function

Dynamic Single Objective OptimizationDynamic Single Objective Optimization

DOP_F(x,t) = w(t) f1(x) + (1-w(t)) f2(x)

• If the weight changes randomly, and if MOP_F(x) is convex and continuous,
then the optimum of DOP_F(x,t) moves randomly

• If the weight changes linearly, and if MOP_F(x) is convex, uniform and
continuous, the optimum of DOP_F(x) moves linearly

if MOP_F is uniform with regard to the fitness space, then the optimum
moves linearly in the fitness space; if uniform with regard to the parameter
space, then the optimum moves linearly in the parameter space

If the weights changes linearly and MOP_F(x) is convex and non-uniform,
or if the weight changes non-linearly and MOP_F(x) is convex and
uniform, the optimum of DOP_F(x) moves nonlinearly

If the weight switches among a few given values, the optimum of
DOP_F(x) oscillates

Remark: When constructing a DOP from an MOP, the weights must not be constrained. In this case,
the behavior of the moving optimum becomes more complicated.

Dynamic MultiDynamic Multi--Objective OptimizationObjective Optimization

• A stationary three-objective optimization problem:

MOO_F(x) = min {f1(x), f2(x), f3(x)}

• Reformulate it as follows:

DMOP_F(x,t) = min{F1(x,t), F2(x,t)}

F1(x,t) = w(t) f1(x) + (1- w(t)) f2(x)

F2(x,t) = w(t) f1(x) + (1- w(t)) f3(x)

• The Pareto front moves when w changes over time.

Remark: w(t) should be constrained so that for any given w, the solution of DMOP is a subset of

the solution of the original MOO problem.

Generating Moving PeaksGenerating Moving Peaks

w=0 w=0.5w=0.3

w=1.0 MOP:

• Schaffer’ test function
• The Pareto front is convex

and uniform
• Trajectory defined by x1=x2

DOP:

• The optimum moves linearly
from (0,0) to (2,2) if the weight
change linearly

• If the weight changes
randomly, the optimum will be
located randomly on the curve
defined by x1=x2 between
(0,0) and (2,2)

w=0.7

Generating Competing PeaksGenerating Competing Peaks

w=1

DOP

• When weights change, MOPs
with a concave Pareto front
generate competing peaks

• Both the height and the shape
of the peaks change

• The two peaks locate at
(-0.717, -0.717) and (0.717, 0.717),
and the peak height is 1.
The winning peak switches
when w=0.5 (the two peaks are of
the height for this weight).

w=0.4 MOP:

• Fonseca’s test function

• The Pareto front is concave

• The two ends of the Pareto-front
are at (-0.717, -0.717) and
(0.717, 0.717)

w=0

w=0.6

Complexity ControlComplexity Control

w=0 w=0.4 w=0.8

• Complexity, e.g., multi-modality,
deceptiveness can be controlled
in constructing MOP. In other words,
existing ‘hard’ MOP test functions
can be used for constructing hard DOP test
functions.

w=0.8 w=1

Dynamic MultiDynamic Multi--objective Optimizationobjective Optimization

A moving Pareto front constructed from a three-objective problem

Parameter space Objective space

MultiMulti--modality Introduced by Concave modality Introduced by Concave MOPsMOPs

• It is well-known that the Pareto-optimal solutions located in a concave
area of the Pareto-front cannot be obtained using the conventional
weighted aggregation method

Geometric explanation
SOO point of view: If an MOO is concave, then there must exist a weight, so that the
aggregated function is multi-modal (finite or infinite)

W=1 W=0.75 W=0.5

W=0.25 W=0

FON1 FON2
Both FON1and FON2 have a concave Pareto front.

Tracking A Slowly Moving OptimumTracking A Slowly Moving Optimum

• ES-CMA tracks fastest and best
• GA is something better than ES

GA: popsize =100, one-point crossover, rate 0.7,
mutation rate = 1/l

(15,100)-ES-CMA(15,100)-ES

Tracking A Rapidly Moving OptimumTracking A Rapidly Moving Optimum

• No algorithm can track a rapidly moving minimum
• ES-CMA has the highest “overshoot”

GA: popsize =100, one-point crossover, rate 0.7,
mutation rate = 1/l

GA

(15,100)-ES-CMA(15,100)-ES

Tracking A Randomly Jumping OptimumTracking A Randomly Jumping Optimum

• GA tracks but with low speed
• ES tracks in some cases
• ES-CMA fail to track

GA: popsize =100, one-point crossover, rate 0.7,
mutation rate = 1/l

GA

(15,100)-ES-CMA(15,100)-ES

Why Evolution Strategies FailWhy Evolution Strategies Fail

ES: Tracking trajectory ES-CMA: Tracking trajectory

ES: Adaptation of Step-sizes ES-CMA: Adaptation of Step-sizes

LowerLower--Bound Checking of StepBound Checking of Step--sizesize

ES: Tracking trajectory ES-CMA: Tracking trajectory

ES: Adaptation of Step-sizes ES-CMA: Adaptation of Step-sizes

Relationships between Different Dynamic andRelationships between Different Dynamic and
Uncertain Optimization ProblemsUncertain Optimization Problems

RelationshipsRelationships
Uncertainties in fitness space Uncertainties in parameter space Uncertainty in time space

Multi-Objective
Optimization

Multi-Modal
Optimization

Moving
Optimum
F(x,t) = f(x+d(t))

robustness

Noisy Fitness
F(X) = f(X) + z

Approximate
Fitness
F(X) = f(X) + z concave

Search for Robust Solutions
F(x) = f(x,a+∆a) F(x) = f(x+∆x,a)

additive non-additive

biasedbiased zero-mean

introduced
by noise

DWA (on-line user preference change)

averaging over time

stochastic deterministic

Additional InformationAdditional Information

• IEEE Computational Intelligence Society, Evolutionary Computation Technical
Committee, Working Group on “Evolutionary Computation in Dynamic and
Uncertain Environments”
http://www.soft-computing.de/IEEE-ECiDUE.html

Bibliography on “Fitness Approximation in Evolutionary Computation” maintained
by Yaochu Jin
Bibliography on “Evolutionary Optimization in Stochastic and Dynamic Environments”
maintained by Jürgen Branke

• The 2nd European Workshop on “Evolutionary Optimization in Stochastic and
Dynamic Environments” to be held in Lousanne, May 2005

• IEEE Transactions on Evolutionary Computation, Special Issue on “Evolutionary
Optimization in the Presence of Uncertainties”, 2005

• Soft Computing, Special Issue on “Approximation and Learning in Evolutionary
Computation”, 2004

• The 1st European Workshop on “Evolutionary Optimization in Stochastic and
Dynamic Environments”, Ciombra, Portugal, April 2004. LNCS, Springer, 2004

http://www.soft-computing.de/IEEE-ECiDUE.html

	Evolutionary Computation in Dynamic and Uncertain Environments

