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@ Chair of two IEEE CIS Task Forces

@ EC in Dynamic and Uncertain Environments
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Outline of the Tutorial

Part I: Fundamentals
@ Introduction to evolutionary computation (EC)
@ EC for dynamic optimization problems (DOPs): Concept and motivation
@ Benchmark and test problems
@ Performance measures

Part Il: Approaches, Issues and Future Work
@ EC enhancement approaches for DOPs
@ Case studies
@ Relevant issues
@ Future work
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What Is Evolutionary Computation (EC)?

@ EC encapsulates a class of stochastic optimization algorithms, dubbed
Evolutionary Algorithms (EAS)

@ An EA is an optimisation algorithm that is

Generic: a black-box tool for many problems
Population-based: evolves a population of candidate solutions
Stochastic: uses probabilistic rules

Bio-inspired: uses principles inspired from biological evolution

Black Box Solver

Problem to solve —— A set of soultions
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Design and Framework of an EA

Given a problem to solve, first consider two key things:
@ Representation of solution into individual
@ Evaluation or fitness function

Then, design the framework of an EA:

@ |Initialization of population m@
@ Evolve the population itilsafion

@ Selection of parents Recombinaiion
@ Variation operators (recombination & m@
mutation) Mutaton

@ Selection of offspring into next i

generation Termination [mjﬂm

@ Termination condition: a given number Suviorselction
of generations
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EC Applications

@ EAs are easy-to-use: No strict requirements to problems

@ Widely used for optimisation and search problems

@ Financial and economical systems

@ Transportation and logistics systems

@ Industry engineering

@ Automatic programming, art and music design
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EC for Optimisation Problems

@ Traditionally, research on EAs has focused on static problems
@ Aim to find the optimum quickly and precisely

@ Optimal solution © Candidate soultion in population @ Optimal solution O Candidate soultion in population @ Optimal solution
o o
© o
° ) © o ¢ © %
© [¢]
[0} o [0}
© [}
Search space Search space (Initial population) Search Space (Population converging at time t)

@ But, many real-world problems are dynamic optimization problems
(DOPs), where changes occur over time
@ In transport networks, travel time between nodes may change
@ In logistics, customer demands may change
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What Are DOPs?

@ In general terms, “optimization problems that change over time” are
called dynamic problems/time-dependent problems

F=f(X,4,1)

— X: decision variable(s); (5: parameter(s); t: time
@ DOPs: special class of dynamic problems that are solved online by an
algorithm as time goes by

Shengxiang Yang (De Montfort University) Tutorial: EC for DOPs IEEE CEC 2017, 05/06/2017 9/68



Why DOPs Challenge EC?

@ For DOPs, optima may move over time in the search space
@ Challenge: need to track the moving optima over time

© Candidate soultion in population @ Optimal solution © Candidate soultion in population @ Optimal solution

& -

Search Space (Population converging at time t) Search Space (Optimum moved at time t+1)

@ DOPs challenge traditional EAs
@ Once converged, hard to escape from an old optimum
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Why EC for DOPs?

@ Many real-world problems are DOPs

@ EAs, once properly enhanced, are good choice

@ Inspired by natural/biological evolution, always in dynamic environments
@ |Intrinsically, should be fine to deal with DOPs

@ Many events on EC for DOPs recently
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Relevant Events

@ Books (Monograph or Edited):
@ Yang & Yao, 2013; Alba et al., 2013; Yang et al., 2007; Morrison, 2004;
Weicker, 2003; Branke, 2002
@ PhD Theses:
@ Jiang, 2017; Mavrovouniotis, 2013; Helbig, 2012; du Plessis, 2012; Li,
2011; Nguyen, 2011; Simoes, 2010
@ Journal special issues:
@ Neri & Yang, 2010; Yang et al., 2006; Jin & Branke, 2006; Branke, 2005
@ Workshops and conference special sessions:

@ EvoSTOC (2004-2017): part of Evo*
@ ECIDUE (2004-2017): part of IEEE CEC
@ EvoDOP ('99, '01, '03, '05, '07, '09): part of GECCO

@ IEEE Symposium on CIDUE (2011, 2013-2017)
@ IEEE Competitions: within IEEE CEC’'09, CEC'12 & CEC’'14
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Benchmark and Test DOPs

@ Basic idea: change base static problem(s) to create DOPs

@ Real space:

@ Switch between different functions

@ Move/reshape peaks in the fitness landscape
@ Binary space:

@ Switch between > 2 states of a problem: knapsack

@ Use binary masks: XOR DOP generator (Yang & Yao'05)
@ Combinatorial space:

@ Change decision variables: item weights/profits in knapsack problems
@ Add/delete decision variables: new jobs in scheduling, nodes
added/deleted in network routing problems
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The DF1 Generator

@ Proposed by Morrison & De Jong (1999)
@ The base landscape in the D-dimensional real space:

D
X) = R X2
00 = rpax |Fh=Rox |2 66 =)
—X = (Xg,--+,Xp): apoint in the landscape; p: number of peaks

—Hi, Ri, X; = (Xi1, -+, Xip): height, slope, center of peak i
@ The dynamics is controlled by a logistics function:

A=A Ay (1 Dg)

— A € [1.0,4.0]: a constant; A;: step size of changing a parameter
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Moving Peaks Benchmark (MPB) Problem

@ Proposed by Branke (1999)
@ The MPB problem in the D-dimensional space:

max Hi(t)
e L W) S 04(1) = X (1)

— W(t), Hi(t), Xi(t) = {Xi1--- Xip }: height, width, location of peak i at t
@ The dynamics:

Hi(t) = Hi(t — 1) + height_severity x o
Wi(t) = Wi(t — 1) + width_severity * o

i S i -
Vi(t) = m((l AP+ At — 1))
Xi(t) = Xi(t)(t — 1) +Vi(t)

— o ~ N(0,1); \: correlated parameter
—Vi(t): shift vector, which combines random vector r and vi(t — 1) and is
normalized to the shift length s
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Dynamic Knapsack Problems (DKPs)

@ Static knapsack problem:
@ Given n items, each with a weight and a profit, and a knapsack with
a fixed capacity, select items to fill up the knapsack to maximize the
profit while satisfying the knapsack capacity constraint

@ The DKP:

@ Constructed by changing weights and profits of items, and/or knapsack
capacity over time as:

Max f(X(t),t) = ipi(t) xi(t), s.t.: iwi(t) -xi(t) < C(t)

i=1 i=1

—-X(t) € {0,1}": a solution at time t

—xi(t) € {0, 1}: indicates whether item i is included or not
— pi(t) and w;(t): profit and weight of item i at t

— C(t): knapsack capacity at t
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The XOR DOP Generator

@ The XOR DOP generator can create DOPs from any binary f(X) by an
XOR operator “@” (Yang, 2003; Yang & Yao, 2005)

@ Suppose the environment changes every T generations
@ For each environmental period k = |t/7], do:

Ste 1 @ Create a template Ty with p = | ones
M(1)=1001011010

Sttedr - - @ Create amask M (k) incrementally

1o N(0) =G (the initial state)

M(1)@T(1)

M(0)=000000000) M(3)=110100010

State 0 (Initial State) State 3 M (k + 1) =M (k) ® T (k)
. © Evaluate an individual:
M(2)=011101001 f()—('7 t) _ f()? ® |\7i(k))

State 2

T(0)=1001011010 T(1)=1110001001  T(2)=10100101

@ 7 and p controls the speed and severity of change respectively
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Constructing Cyclic Dynamic Environments

Can extend the XOR DOP generator to create cyclic environments:

@ Construct K templates T(0),--- , T(K—1)

@ Form a partition of the search space
@ Each contains p x | =1/K ones

Partion Templates;T(0)=1001011010 v T(1)=0110100101
Base State 1
M(1)=100101101}

- @ Create 2K masks M(i) as base states
Base State 0 |V(0)%T() WeTy
(Initial State) Base State 2 = o L
W@ M(0) = 0 (the initial state)
@Ity Mot M(i+1) = M(i) & T(i%K),i =0,---, 2K 1

M(3)=011010010
Base State 3

© Cycle among M(i)’s every T generations
f(X,t) = f(X @ M (k) = f(X ® M(k%(2K)))

—k = [t/7]: environmental index
-k = k%(2K): mask index
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Constructing Cyclic Environments with Noise

We can also construct cyclic environments with noise:

@ Each time before a base state is entered, it is bitwise changed with a
small probability

Base State 1

Base State 0

(Initial State) Bit 10 changed \ Base State 2

by noise
Y M(2)=011111111

Bit 6 changed
by noise /
Bit 1 changed

M(3)=011011010 by noise

Base State 3
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Shengxiang Yang (De Montfort University)

Dynamic Traveling Salesman Problems

@ Stationary traveling salesman problem (TSP):

@ Given a set of cities, find the shortest route that visits each city once and
only once

@ Dynamic TSP (DTSP):
@ May involve dynamic cost (distance) matrix

D(t) = {djj(t) }n«n

—djj(t): cost from city i to j; n: the number of cities

@ The aim is to find a minimum-cost route containing all cities at time t
@ DTSP can be defined as f(x, t):

F6,8) = Min(3 G, 1)

i=1

wherex; € 1,--- ,n. Ifi #j, X # Xj, and Xn41 = X1

Tutorial: EC for DOPs
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Dynamic Permutation Benchmark Generator

@ The dynamic benchmark generator for permutation-encoded problems
(DBGP) can create a DOP from any stationary TSP/VRP by swapping
objects:

Optimum - > (0,4,3,2,1,0) = 9 Distance matrix before change e Generate a ra‘ndom veCtor I7’(T) that
IR contains all objects every f iterations

© Generate another randomly re-order vector
r’(T) that contains only the first m x n
objects of r(T)

0 3
3 0
6 2
5 3
13

&k o N o

5
3
1
0
2

5w N R oo
omn & w ok

Swap City Location (4,2)
Optimum -> (0,2,3,4,1,0) =9 Distance matrix after change

© Modify the encoding of the problem instance
with m x n pairwise swaps

012 3 4

0
3
1
5
6

2w N R oo
N ww o w
s8N oo ow ok
ko N W oa
ok &N oo

@ More details: M. Mavrovouniotis, S. Yang, & X. Yao (2012). PPSN XII, Part Il,
LNCS 7492, pp. 508-517
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Effect on Algorithms

@ Similar with the XOR DOP generator, DBGP shifts the
population of an alg. to new location in the fitness landscape

@ The individual with the same encoding as before a change will have a
different cost after the change

Evolutionary Algorithms

Population of Individuals Population of Individuals
1=(0,1,34,2,0)=18 1=(0,1,34,2,0)=12
2=(1,42301)=16 2=(1,4,230,1) =16
3=(043210=9 Dynamic Change 3=(0,4,321,0)=15

. - - .
H=(304213)=15 b=(304213) =21

Ant Colony Optimization

Heuristic Information Matrix Heuristic Information Matrix

0 1 2 3 4 0 1 2 3 4
0 0O 0.330.16008 1 0| 0 033 1 02016
1033 0 05 0.330.33 oyname Change 1[0.33 0 033033 05
2(0.16 05 0 1 025 ———— — — — »- 2|1 033 0 05 025
3|/0203 1 0 05 3|02 03305 0 1
4| 1 033025 05 0O 41016 05 025 1 O

@ Can extend for cyclic and cyclic with noise environments
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Generalized DOP Benchmark Generator (GDBG)

@ Proposed by Li & Yang (2008), GDBG uses the model below:

Generalized DBG

Binary Space ‘ Real Space ‘ ‘Combinatory Spac%

‘ !
F = f(X’¢’t)7

@ In GDBG, DOPs are defined as:
— ¢: system control parameter
@ Dynamism results from tuning ¢ of the current environment

ot +1) = o(t) & Ad

— Ag: deviation from the current control parameter(s)
@ The new environment att + 1 is as follows:

fx, 0.t +1) = f(x, 6(t) © Ag,t)

¥ 80uBlSu|
¥ souesu|
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GDBG: Dynamic Change Types

@ Change types:
© Small step: Ag = o -||¢] - rand()
Q Large step: Ag = ||¢]| - (o + (1 — a)rand())
© Random: A¢ = ||¢]| - rand()
@ Chaotic: o(t + 1) = A- 4(t) - (1 — 6(t)/ 4]}
@ Recurrent: ¢(t + 1) = ¢(t%P)
© Recurrent with nosy: ¢(t + 1) = ¢(t%P) + a - ||¢|| - rand()

@ More details:
@ C.Li&S. Yang (2008). SEAL08, LNCS 5361, pp. 391-400
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DOPs: Classification

Classification criteria:

@ Time-linkage: Does the future behaviour of the problem depend on the
current solution?

Predictability: Are changes predictable?
Visibility: Are changes visible or detectable
Cyclicity: Are changes cyclic/recurrent in the search space?

Factors that change: objective, domain/number of variables, constraints,
and/or other parameters

¢ © 0 ¢
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DOPs: Common Characteristics

Common characteristics of DOPs in the literature:
@ Most DOPs are non time-linkage problems
For most DOPs, changes are assumed to be detectable
In most cases, the objective function is changed
Many DOPs have unpredictable changes

o
o
o
@ Most DOPs have cyclic/recurrent changes
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Performance Measures

@ For EC for stationary problems, 2 key performance measures

@ Convergence speed
@ Success rate of reaching optimality

@ For EC for DOPs, over 20 measures (Nguyen et al., 2012)

@ Optimality-based performance measures
@ Collective mean fithess or mean best-of-generation
@ Accuracy
@ Adaptation
@ Offline error and offline performance
@ Mean distance to optimum at each generation

@ Behaviour-based performance measures
Reactivity

Stability

Robustness

Satisficability

Diversity measures

©0 00690
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Performance Measures: Examples

@ Collective mean fitness (mean best-of-generation):

i= G 1 j=N
Fgoc = G Z. (N Z.: Feog; )

— G and N: number of generations and runs, resp.
- FBOG”: best-of-generation fithess of generationi of run j
@ Adaptation performance (Mori et al., 1997)

Ada = % Z (Toest (1) /fopt (1))

t=1..T

@ Accuracy (Trojanowski and Michalewicz, 1999)

Acc = % Z (Thest (1) — Topt (i)

i=1..K

— foest (i): best fitness for environment i (best before change)
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Part Il: Approaches, Issues and Future Work

@ EC enhancement approaches for DOPs
@ Case studies

@ Relevant issues

@ Future work
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EC for DOPs: First Thinking

@ Recap: traditional EAs are not good for DOPs
@ Goal: to track the changing optimum

@ How about restarting an EA after a change?
@ Natural and easy choice
@ But, not good choice because:

It may be inefficient, wasting computational resources
It may lead to very different solutions before and after a change.
For real-world problems, we may expect solutions to remain similar

@ Extra approaches are needed to enhance EAs for DOPs
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EC for DOPs: General Approaches

@ Many approaches developed to enhance EAs for DOPs

@ Typical approaches:
@ Memory: store and reuse useful information
@ Diversity: handle convergence directly
@ Multi-population: co-operate sub-populations
Adaptive: adapt generators and parameters
@ Prediction: predict changes and take actions in advance

@ They have been applied to different EAs for DOPs

(4
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Memory Approaches

@ Cyclic DOPs: change cyclically among a fixed set of states

© Candidate soultion in population @ Optimal solution

s
i}
[ ]

e~

.

Search space (Optimum moves cyclically)

@ Memory works by storing and reusing useful information

@ Two classes regarding how to store information
@ Implicit memory: uses redundant representations

@ Multiploidy and dominance (Ng & Wong, 1995; Lewis et al., 1998)
@ Dualism mechanisms (Yang, 2003; Yang & Yao, 2005)

@ Explicit memory: uses extra space to store information
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Implicit Memory: Diploid Genetic Algorithms

Encoding Dominance Scheme

Genotype o

=T V777 [ 1 Chromosome L oflo
CCr s 777 [- -1 Chromosome P

G —to—Ph ) i
enotpreap?jing enoty Q—‘ Dominance Schem% ! ojorjij1

Ng & Wong (1995)

1]
o/4 o

o
o
rlo|ofo
[
o
3
=

:W Phenotype AlBlclo
Same Phenotypic - AJoOjO0O|O0|1
Evaluating BJo|O0O| 0|1
Fitness cjo|jo|1]|1
Genotypic Alleles: 1 777 - Dj1]1]1)1
Phenotypic Allelest—] I Lewis et al (1998)

@ Each individual has a pair of chromosomes

@ Dominance scheme maps genotype to phenotype

@ Dominance scheme may change or be adaptive (Uyar & Harmanci,
2005)
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Explicit Memory Approaches

Basic idea: use extra memory
@ With time, store useful information of the pop into memory
@ When a change occurs, use memory to track new optimum

© Candidate soultion in population @ Optimal solution O Candidate soultion in population

@ Optimal solution O Candidate soultion in population @ Optimal solution

@ Memory solutions

o
L)
OO0 °

@ Memory solutions

d

°
Jee>e

OO. .

@ Memory solutions

Search space (Memory stores best solutions)

Shengxiang Yang (De Montfort University)

Search space (Optimum moves to next state)
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Explicit Memory: Direct vs Associative

@ Direct memory: store good solutions (Branke, 1999)

@ Associative memory: store environmental information + good solutions
(Yang & Yao, 2008)

Main Population Main Population

2. Select  Update memory,

1. Extrac W 3. Replace

1. Select best i

pop member env info

2. Associate
2. Create

2. Replace one 1. Merge 3. Replacq

memory solutior}

1. Associate

Retrieve memory
Retrieve memory

Memory
Memory A Environmentinformation O Solution
Direct Memory Associative Memory
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Associative Memory Based Genetic Algorithm

Idea: Use allele distribution (AD) D to represent environmental info.

@ Use memory to store <D, S> pairs

@ Update memory by similarity policy

@ Re-evaluate memory every generation. If
change detected

@ Extract best memory AD: Dy
2. Create @ Create solutions by sampling Dy
@ Replace them into the pop randomly

@ Detalils:
@ S. Yang (2006). EvoWorkshops’06, pp. 788—799

Main Population

2. Associate]

3. Replacq

_ 1. Associate

Retrieve memory

Memory

A Allele distribution vector O Solution
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Diversity Approaches: Random Immigrants

@ Convergence is the key problem in metaheuristics for DOPs

@ Random immigrants:

@ Each generation, insert some random individuals (called random
immigrants) into the population to maintain diversity

@ When optimum moves, random immigrants nearby take action to draw the
pop to the new optimum

© Candidate soultion in population @ Optimal solution ~ © Candidate soultion in population @ Optimal solution O Candidate soultion in population @ Optimal solution

b L ]
oo
e e.
el
Previous random immigrant
Random immigrants Random immigrants
Search Space (Population converging at time t) Search Space (Optimum moved at time t+1) Search Space (Population moves to new optimum)
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Memory-Based Immigrants

@ Random immigrants maintain the diversity while memory adapts an
algorithm directly to new environments

@ Memory-based immigrants: uses memory to guide immigrants
towards current environment
@ Re-evaluate the memory every generation
o Retrieve the best memory point By (t) as the base
@ Generate immigrants by mutating By (t) with a prob.
@ Replace worst members in the population by these immigrants

current best memory point random immigra
current
optimum
@]
memory—based immigrants memory poi

Search Space
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Experimental Results: Immigrants Based GAs

Best-Of-Generation Fitness

Cyclic Dynamic OneMax Function, = = 25, p = 0.1

Random Dynamic OneMax Function, 7 = 25, p = 0.1

100 T T T T

0k

Best-Of-Generation Fitness

100 T T T T

oA
r o Re
MEGA -----
ol  WRGA
HicA
85 -

5
4500

4600 4700 4800

Generation

4900

@ Memory-based immigrants GA (MIGA) significantly beats other GAs

@ More details:

@ S. Yang (2008). Evol. Comput., 16(3): 385-416

Shengxiang Yang (De Montfort University)
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Hybrid Immigrants Approach

@ Combines elitism, dualism and random immigrants ideas
@ Dualism: Given X = (xg,---,x) € {0,1}, its dual is defined as
)?d = dual(i) = (Xftljv' o ’de) € {07 1}|

where x4 = 1 —x;

@ Each generation t, select the best individual from previous generation,
E(t — 1), to generate immigrants

@ Elitism-based immigrants: Generate a set of individuals by mutating
E(t — 1) to address slight changes

@ Dualism-based immigrants: Generate a set of individuals by mutating the
dual of E(t — 1) to address significant changes

@ Random immigrants: Generate a set of random individuals to address
medium changes

@ Replace these immigrants into the population

@ More details:
@ S.Yang & R. Tinos (2007). Int. J. of Autom. & Comp., 4(3): 243-254
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Experimental Results: Hybrid Immigrants GA

OneMax, T =10 Royal Road, 1= 10 Deceptive, T =10 Knapsack, T = 10
100 L — 100 L S 100 T 1300 T
L 1250 |- —R?gﬁ .
g g é é 12008, IEEEE
£ £ £ £ 1150 RIGA =
3 3 3 § Lo HIGA
2 2 2 fibyod
5 5 5 5 o950 a
900 N
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@ Hybrid immigrants improve GA'’s performance for DOPs efficiently
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Multi-Populations: Shifting Balance

@ Multi-population scheme uses co-operating sub-populations

@ Shifting Balance GA (Oppacher & Wineberg, 1999):

@ A core population exploits the promising area
@ Several colonies explore the search space

I migration
Core
Popul ation
mi grati;)/ \.:igrati on
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Multi-Populations: Self-Organizing Scouts

@ Self-organizing scouts (SOS) GA (Branke et al., 2000)

@ The parent population explores the search space
@ A child population is split under certain conditions
@ Child populations search limited promising areas

Parent
Population

evolve

Parent chitd
Population population 1,
evolve

Parent split child
- - 1
Population population 2,

split

Shengxiang Yang (De Montfort University) Tutorial: EC for DOPs |IEEE CEC 2017, 05/06/2017



Adaptive Approaches

@ Aim: Adapt operators/parameters, usually after a change
@ Hypermutation (Cobb & Grefenstette, 1993): raise the mutation rate
temporarily
@ Hyper-selection (Yang & Tinos, 2008): raise the selection pressure
temporarily
@ Hyper-learning (Yang & Richter, 2009): raise the learning rate for
Population-Based Incremental Learning (PBIL) temporarily

@ Combined: Hyper-selection and hyper-learning with re-start or
hypermutation
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Prediction Approaches

@ For some DOPs, changes exhibit predictable patterns

@ Techniques (forecasting, Kalman filter, etc.) can be used to predict

@ The location of the next optimum after a change
@ When the next change will occur and which environment may appear

@ Some relevant work: see Simdes & Costa (2009)
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Remarks on Enhancing Approaches

©

No clear winner among the approaches
Memory is efficient for cyclic environments

Multi-population is good for tracking competing peaks
@ The search ability will decrease if too many sub-populations

Diversity schemes are usually useful
@ Guided immigrants may be more efficient

Different interaction exists among the approaches
Golden rule: balancing exploration & exploitation over time

¢ ©
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Case Study: GA for Dynamic TSP

@ Dynamic TSP:

@ 144 Chinese cities, 1 geo-stationary saterllite, and 3 mobile satellites
@ Find the path that cycles each city and satellite once with the minimum
length over time

@ Solver: A GA with memory and other schemes

@ More details:
@ C.Li, M. Yang, & L. Kang (2006). SEAL'06, LNCS 4247, pp. 236—243
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Case Study: GAs for Dynamic Routing in MANETs — 1

@ Shortest path routing problem (SPRP) in a fixed network:
@ Find the shortest path between source and destination in a fixed topology
@ More and more mobile ad hoc networks (MANETS) appear where the
topology keeps changing
@ Dynamic SPRP (DSPRP)in MANETS:
@ Find a series of shortest paths in a series of highly-related network
topologies
@ We model the network dynamics as follows:

@ For each change, a number of nodes are randomly selected to sleep or
wake up based on their current status
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Case Study: GAs for Dynamic Routing in MANETS — 2

@ A specialized GA for the DSPRP:

@ Path-oriented encoding
@ Tournament selection
@ Path-oriented crossover and mutation with repair

@ Enhancements: Immigrants and memory approaches

@ Experimental results:

@ Both immigrants and memory enhance GA'’s performance for the DSPRP
in MANETSs.

@ Immigrants schemes show their power in acyclic environments

@ Memory related schemes work well in cyclic environments

@ More details:

@ S.Yang, H. Cheng, & F. Wang (2010). IEEE Trans SMC Part C: Appl. &
Rev., 40(1): 52-63
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Case Study: PSO for Continuous DOPs

@ Particle Swarm Optimization (PSO):
@ Inspired by models of swarming and flocking
@ First introduced by Kennedy and Eberhart in 1995
@ PSO has been applied for many static optimization problems

@ Recently, PSO has been applied for continuous DOPs

@ Two aspects to consider for DOPs:

@ Outdated memory. Two solutions:

@ Simply set pbest to the current position

@ Reevaluate pbest and reset it to the current position if current position is better
@ Diversity loss. Three solutions:

@ Introduce diversity after a change
@ Maintain diversity during the run
@ Use multi-swarms
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Multi-swarm PSO for DOPs

@ Clustering PSO (CPSO):

o

© ¢ ¢ ¢ ¢

Training: Move particles toward different promising regions

Clustering: Single linkage hierarchical clustering to create sub-swarms
Local search: Each sub-swarm will search among one peak quickly
Overlapping and convergence check

Strategies to response to changes

Details: Li & Yang, CEC’'09; Yang & Li, IEEE Trans Evol Comput, 14(6),
2010

@ Adaptive Multi-Swarm Optimizer (AMSO):

[~
o
o

Use single linkage hierarchical clustering to create populations
An overcrowding scheme to remove unnecessary populations
A special rule to decide proper moments to increase diversity without
change detection
An adaptive method to create a proper number of populations needed
Details:

@ Li, Yang & Yang (2014), Evol Comput, 22(4): 559-594

@ Lietal (2016), IEEE Trans Evol Comput, 20(4): 590-605
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Case Study: Ant Colony Optimization (ACO) for DOPs

©

ACO mimics the behaviour of ants searching for food
ACO was first proposed for TSPs (Dorigo et al., 1996)
Generally, ACO was developed to be suitable for graph optimization
problems, such as TSP and VRP
The idea was to let ants “walk” on the arcs of the graph while “reading”
and “writing” pheromones until they converge into a path
Standard ACO consists of two phases:

@ Forward mode: Construct solutions

@ Backward mode: Pheromone update
Conventional ACO cannot adapt well to DOPs due to stagnation
behaviour

@ Once converged, it is hard to escape from the old optimum
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ACO for DOPs: General Comments

@ ACO transfers knowledge via pheromone
@ Make sense on slight changes; otherwise, may misguide the search
@ For severe changes, a global restart is a better choice
@ A global restart of ACO =- pheromone re-initialization

@ Moreover, ACO has to maintain adaptability, instead of stagnation
behaviour, to accept knowledge transferred

@ Recently, many approaches developed with ACO for DOPs
(Mavrovouniotis, Li, & Yang 2017)

@ Pheromone modification after a change (Guntsch & Middendorf, 2001,
Eyckelhof & Snoek, 2002)

Memory-based schemes (Guntsch & Middendorf, 2002)

Hybrid and memetic algorithms (Mavrovouniotis, Muller & Yang, 2017)
Pheromone modification during execution (Mavrovouniotis & Yang, 2013a)
Multi-colony schemes (Mavrovouniotis, Yang & Yao, 2014)

© ¢ ¢ ¢
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ACO with Pheromone Strategies: Adapting Evaporation

@ Pheromone evaporation is an adaptation mechanism in ACO
@ Different evaporation rates perform better for different DOPs

@ Solution = Adaptive pheromone evaporation rate
@ Starts with an initial p and modifies it as follows:
@ When stagnation behaviour is detected, increase p to help ants forget
current solution; otherwise, decrease p to avoid randomization
@ A X-branching method is used to detect stagnation behaviour
@ Performs better than fixed evaporation rate
@ However, a restart strategy performs better for severe changes

@ More details:
@ Mavrovouniotis & Yang (2013a) for both DTSP and DVRP
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ACO with Pheromone Strategies: Immigrants

@ Integrate immigrants schemes to ACO
@ A short-term memory is used to store the best k ants and generated
immigrant ants
@ The memory is updated every iteration
@ No ant can survive in more than one iteration
@ Pheromone trails are synchronized with short-term memory
@ Any changes to the memory applied also to pheromone trails
@ Pheromone evaporation is not used because pheromone trails are
removed directly
@ More details:

@ Mavrovouniotis & Yang (2013b) for DTSPs

@ Mavrovouniotis & Yang (2015) for DVRPs

@ Eaton, Mavrovouniotis & Yang (2016) for the dynamic railway junction
rescheduling problem
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Theoretical Development

@ So far, mainly empirical studies
@ Theoretical analysis has just appeared

@ Runtime analysis:
@ Stanhope & Daida (1999) first analyzed a (1+1) EA on the dynamic bit
matching problem (DBMP)
@ Droste (2002) analyzed the first hitting time of a (1+1) ES on the DBMP
@ Rohlfshagen et al. (2010) analyzed how the magnitude and speed of
change may affect the performance of the (1+1) EA on two functions
constructed from the XOR DOP generator

@ Analysis of dynamic fitness landscape:
@ Branke et al. (2005) analyzed the changes of fitness landscape due to
changes of the underlying problem instance
@ Richter (2010) analyzed the properties of spatio-temporal fithess
landscapes constructed from Coupled Map Lattices (CML)
@ Tinos and Yang (2010, 2014) analyzed the properties of the XOR DOP
generator based on the dynamical system approach of a GA

Shengxiang Yang (De Montfort University) Tutorial: EC for DOPs |IEEE CEC 2017, 05/06/2017 57 /68



EC for

Dynamic Multi-objective Optimization

@ So far, mainly dynamic single-objective optimization

@ Dynamic multi-objective optimization problems (DMOPSs): even more
challenging

@ Recently, rising interest in studying EC for DMOPs

]

o

o

Farina et al. (2004) classified DMOPs based on the changes on the Pareto
optimal solutions

Goh & Tan (2009) proposed a competitive-cooperative coevolutionary
algorithm for DMOPs

Zeng et al. (2006) proposed a dynamic orthogonal multi-objective EA
(DOMOEA) to solve a DMOP with continuous decision variables
Zhang & Qian (2011) proposed an artificial immune system to solve
constrained DMOPs

Jiang & Yang (2017a) proposed a new benchmark MDOP generator
Jiang & Yang (2017b) proposed a Steady-Generational EA (SGEA) for
DMOPs

Ruan et al. (2017) analyzed the effect of diversity maintenance on
prediction for DMOPs

Eaton et al. (2017) applied ACO for the dynamic multi-objective railway
junction rescheduling problem
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Challenging Issues

@ Detecting changes:
@ Most studies assume that changes are easy to detect or visible to an
algorithm whenever occurred
@ In fact, changes are difficult to detect for many DOPs
@ Understanding the characteristics of DOPs:
@ What characteristics make DOPs easy or difficult?
@ The work has started, but needs much more effort
@ Analysing the behaviour of EAs for DOPs:
@ Requiring more theoretical analysis tools
@ Addressing more challenging DOPs and EC methods
@ Big question: Which EC methods for what DOPs?
@ Real world applications:
@ How to model real-world DOPs?
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Future Work

@ The domain has attracted a growing interest recently
@ But, far from well-studied

@ New approaches needed: esp. hybrid approaches
@ Theoretical analysis: greatly needed
@ EC for DMOPs: deserves much more effort

@ Real world applications: also greatly needed
@ Fields: logistics, transport, MANETS, data streams, social networks, ...
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@ EC for DOPs: challenging but important

@ The domain is still young and active:

@ More challenges to be taken regarding approaches, theory, and
applications

@ More young researchers are greatly welcome!
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