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Centre for ClI (CCI), De Montfort University

@ CCI (www.cci.dmu.ac.uk):
@ Mission: Developing fundamental theoretical and practical solutions to real
world problems using a variety of Cl paradigms
@ Members: 15 staff, 4 research fellows, 30+ PhDs, visiting researchers
@ Components: 3 Labs (Robotics, Gaze, Game Programming) & Bio-Health
Informatics Research Group
@ Funding:
@ Research Councils: EPSRC, TSB, Royal Academy of Engineering, Royal
Society, KTP, Innovation Fellowships, HOPE foundation
@ Government: Leicester City Council, DTI
@ Industries: Lachesis, EMDA, RSSB, Network Rail, etc.
@ Collaborations:
@ Universities: UK, USA, Spain, and China
@ Industries and local governments
@ Teaching/Training:
@ DTP-IS: University Doctor Training Programme in Intelligent Systems
@ MSc Intelligent Systems, MSc Intelligent Systems & Robotics
@ BSc Artificial Intelligence with Robotics

@ YouTube page: http://www.youtube.com/thecci
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Instructor/Presenter — Shengxiang Yang

@ Education and career history:
@ PhD, Northeastern University, China, 1999
@ Worked at King’s College London, University of Leicester, and Brunel
University, 1999-2012
@ Joined De Montfort University as Professor in Computational Intelligence
(Cl) in July 2012
@ Director of Centre for Computational Intelligence (CCl)
@ Research interests:
@ Evolutionary computation (EC) and nature-inspired computation
@ Dynamic optimisation and multi-objective optimisation
@ Relevant real-world applications

@ Over 160 publications and over £1M funding as the PI
@ Editor, Evolutionary Computation and 3 other journals

@ Chair of two IEEE CIS Task Forces

@ EC in Dynamic and Uncertain Environments
@ Intelligent Network Systems
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Outline of the Tutorial

L
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Part I: Set up the stage
@ Introduction to evolutionary computation (EC)
@ EC for dynamic optimization problems (DOPs): Concept and motivation
@ Benchmark and test problems
@ Performance measures
Part Il: Play the game
@ EC approaches for DOPs
@ Case studies
@ Relevant issues
@ Future work
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What Is Evolutionary Computation (EC)? Waw3
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@ EC encapsulates a class of stochastic optimization algorithms, dubbed
Evolutionary Algorithms (EAs)

@ An EAis an optimisation algorithm that is

Generic: a black-box tool for many problems
Population-based: evolves a population of candidate solutions
Stochastic: uses probabilistic rules

Bio-inspired: uses principles inspired from biological evolution

¢ e ¢ ¢

Black Box Solver

Problem to solve ——= A set of soultions
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EC Applications i TR

@ EAs are easy-to-use: No strict requirements to problems

@ Widely used for optimisation and search problems
@ Financial and economical systems
@ Transportation and logistics systems
@ Industry engineering
@ Automatic programming, art and music design
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Design and Framework of an EA %lé\
w2813
Given a problem to solve, first consider two key things:
@ Representation of solution into individual
@ Evaluation or fitness function
Then, design the framework of an EA:
@ Initialization of population m@
@ Evolve the population olsaton
@ Selection of parents Recombinion
© Variation operators (recombination & m@
mutation) Muation
@ Selection of offspring into next
generation Teminaton [m""jg
@ Termination condition: a given number Suvor sdocton

of generations

%_, DE MONTEORT
UNIVERSITY
LEICESTER

Shengxiang Yang (De Montfort University) Tutorial: EC for DOPs GECCO'13, 7/7/2013 6/63

EC for Optimisation Problems

@ Traditionally, research on EAs has focused on static problems
@ Aim to find the optimum quickly and precisely

@ Optimal solution O Candidate soultion in population @ Optimal solution O Candidate soultion in population @ Optimal solution
° o
© o
° ¢ e %
© o
o )
© o
Search space Search space (Iniial population) Seatch Space (Population converging a time )

@ But, many real-world problems are dynamic optimization problems
(DOPs), where changes occur over time

@ In transport networks, travel time between nodes may change
@ In logistics, customer demands may change
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What Are DOPs* 213

@ In general terms, “optimization problems that change over time” are
called dynamic problems/time-dependent problems

F =f(X,6,1)
— X: decision variable(s); 5: parameter(s); t: time

@ DOPs: special class of dynamic problems that are solved online by an
algorithm as time goes by

Z, DE MONTEORT
UNIVERSITY
LEICESTER

Shengxiang Yang (De Montfort University) Tutorial: EC for DOPs GECCO'13, 7/7/2013 9/63

? GECCOR\\
Why EC for DOPs* g TP

@ Many real-world problems are DOPs

@ EAs, once properly enhanced, are good choice

@ Inspired by natural/biological evolution, always in dynamic environments
@ Intrinsically, should be fine to deal with DOPs

@ Many events on EC for DOPs recently

EICESTER
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Why DOPs Challenge EC?

@ For DOPs, optima may move over time in the search space
@ Challenge: need to track the moving optima over time

© Candidate soultion in population

® Optimal solution

Search Space (Population converging at time 1) Search Space (Optimum moved at time t+1)

@ DOPs challenge traditional EAs
@ Once converged, hard to escape from an old optimum
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Relevant Events

@ Books (Monograph or Edited):
@ Yang & Yao, 2013; Yang et al., 2007; Morrison, 2004; Weicker, 2003;
Branke, 2002
@ PhD Theses:
@ Mavrovouniotis, 2013; du Plessis, 2012; Li, 2011; Nguyen, 2011; Simoes,
2010
@ Journal special issues:
@ Neri & Yang, 2010; Yang et al., 2006; Jin & Branke, 2006; Branke, 2005
@ Workshops and conference special sessions:

@ EvoSTOC (2004—2013): part of Evo*
@ ECIDUE (2004—2013): part of IEEE CEC
@ EvoDOP ('99, 01,03, '05, '07, ’09): part of GECCO

@ |IEEE Symposium on CIDUE (Paris, 2011; Singapore, 2013)
@ |EEE Competitions: within IEEE CEC 2009 & CEC 2012
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Benchmark and Test DOPs

@ Basic idea: change base static problem(s) to create DOPs

@ Real space:

@ Switch between different functions

@ Move/reshape peaks in the fitness landscape
@ Binary space:

@ Switch between > 2 states of a problem: knapsack

@ Use binary masks: XOR DOP generator (Yang & Yao’'05)
@ Combinatorial space:

@ Change decision variables: item weights/profits in knapsack problems
@ Add/delete decision variables: new jobs in scheduling, nodes
added/deleted in network routing problems
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The DF1 Generator

@ Proposed by Morrison & De Jong (1999)
@ The base landscape in the D-dimensional real space:

D
Y) — . _ R, . X.)2
fX) = max_ {H/ R x ;(X/ Xj)
—X=(x1,--+,Xp): a point in the landscape; p: number of peaks

— Hi, Ri, Xi = (X, -+, Xip): height, slope, center of peak i
@ The dynamics is controlled by a logistics function:

Ar=A-Arq-(1—A¢y)

— A € [1.0,4.0]: a constant; A;: step size of changing a parameter
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Moving Peaks Benchmark (MPB) Problem i PN

@ Proposed by Branke (1999)

@ The MPB problem in the D-dimensional space:
ax Hi(t)

T 14 Wi(1) 57 (1) —

= Wi(t), Hi(t), Xi(t) = { X - --
@ The dynamics:

F(X.t)= m

Xi(1))?

Xip}: height, width, location of peak i at t

H;i(t) = Hi(t — 1) + height_severity x o

Wi(t) = Wi(t — 1) + width_severity x o
Vi(t) = ﬁ(u SO 4 A(E— 1)
Xi(t) = Xi(0)(t — 1) + vi(t)

—o ~ N(0,1); X: correlated parameter

— Vj(t): shift vector, which combines random vector 7 and Vi(t + 1) and is
normalized to the shift length s 'i*uﬁ'n"\'f’e"ﬁg?{‘v
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Dynamic Knapsack Problems (DKPs)

@ Static knapsack problem:
@ Given nitems, each with a weight and a profit, and a knapsack with
a fixed capacity, select items to fill up the knapsack to maximize the
profit while satisfying the knapsack capacity constraint
@ The DKP:
@ Constructed by changing weights and profits of items, and/or knapsack
capacity over time as:

n

Max f(X(t),t) = zn:pi(t) (), s tr > wi(t) - xi(t) < C(t)

i=1 i=1

— X(t) € {0,1}": a solution at time t

— xi(t) € {0, 1}: indicates whether item i is included or not
— pi(t) and w;(t): profit and weight of item i at ¢

— C(t): knapsack capacity at t

2., DE MONTFORT
% UNIVERSITY
LEICESTER

Tutorial: EC for DOPs GECCO'13, 7/7/2013 16/63

Shengxiang Yang (De Montfort University)

670




The XOR DOP Generator Geccol-’

GECCOp
<2813

<2813

Constructing Cyclic Environments with Noise

@ The XOR DOP generator can create DOPs from any binary f(X) by an
XOR operator “®” (Yang, 2003; Yang & Yao, 2005)

@ Suppose the environment changes every T generations
@ For each environmental period k = |t/7], do

State 1

M(1)=1001011010
State 4 -+ +
MOSTOS vy oty /

(M(0)-0000000000) (Me)-t101000101)

State 0 (Initial State) State 3
MQ2)&T(2)
M(2)=0111010011

State 2

@ Create a template Ty with p * / ones
Q@ Create a mask M(k) incrementally
M(0) =0 (the initial state)
M(k +1) = M(k) & T(k)
© Evaluate an individual:
f(X,t) = f(X ® M(K))

T(0)=1001011010  T(1)=1110001001

T(2)=1010010110

@ 7 and p controls the speed and severity of change respectively
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Constructing Cyclic Dynamic Environments

Can extend the XOR DOP generator to create cyclic environments:

@ Construct K templates T(0),--- , T(K—1)

@ Form a partition of the search space
@ Each contains p x I = 1/K ones

@ Create 2K masks I\7I(i) as base states

Partition Templates:  T(0)=1001011010 v T(1)=0110100101
Base State |

M(1)=1001011010

WO0STO) M(1)8 (1)
Base State 2

MQ)=L1HI (O)
M(i+1) = M(i) ® T(i%K),i =0, -

Base State 0
(Initial State)

M(0)-0000000000

(the initial state)

MB)BT(1) MR)BT(0) 2K -1

MEOL0100101 @ Cycle among M(i)’s every T generations

Base State 3

f(%,t) = f(X @ M(})) = (X & M(k%(2K)))
— k = |t/7]: environmental index
— I = k%(2K): mask index
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We can also construct cyclic environments with noise:

@ Each time before a base state is entered, it is bitwise changed with a
small probability

Base State 1
M(1)=100101101]]

Base State 0
(Initial State)

M(0)=0000000000

Bit 10 changed
by noise

\ Base State 2

MQ)=piL11t11111

/ Bit 1 changed

M(3)=011011p101 by noise

Base State 3

Bit 6 changed
by noise
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Dynamic Traveling Salesman Problems

@ Stationary traveling salesman problem (TSP):

@ Given a set of cities, find the shortest route that visits each city once and
only once

@ Dynamic TSP (DTSP):
@ May involve dynamic cost (distance) matrix

D(t) = {dj(t)}nn

— dj(t): cost from city i to j; n: the number of cities
@ The aim is to find a minimum-cost route containing all cities at time ¢
@ DTSP can be defined as f(x, t):

f(x,t) = Min(i x4 (1))
i=1

where x; € 1,--- ,n. It i #j, x; # x;, and Xp11 = Xq
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Dynamic Permutation Benchmark Generator Geccol-:’s% ,
<2813

@ The dynamic benchmark generator for permutation-encoded problems
(DBGP) can create a DOP from any stationary TSP/VRP by swapping
objects:

@ Generate a random vector 7(T) that
contains all objects every f iterations

Optimum -> (04,3,2,1,0) =9 Distance matrix before change

0o|l0 3 6 5 1

1fs oz © Generate another randomly re-order vector

2|6 2 0 1 4 = . .

als 31002 r’(T) that contains only the first m x n

diB6ein e objects of 7(T)

Swap City Location (4,2)
Optimum -> (0,2,3,4,1,0) = 9 Distance matrix after change . . .

e © Modify the encoding of the problem instance

ofo s 15 with m x n pairwise swaps

als s 200

@ More details: M. Mavrovouniotis, S. Yang, & X. Yao (2012). PPSN X/I, Part Il,

LNCS 7492, pp. 508-517
@% DE MONTFORT
UNIVERSITY
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Effect on Algorithms

@ Similar with the XOR DOP generator, DBGP shifts the
population of an alg. to new location in the fitness landscape

@ The individual with the same encoding as before a change will have a
different cost after the change

Evolutionary Algorithms

Population of Individuals Population of Individuals
1=(0,134,20)=18
2=(1,4,230,1) =16
3=(043210)= 9 Dynamic Change

1=(0,134.2,0)=12
2=(14,2301)=16
3=(043210)=15

1=(304213)=15 p=(304213)=21

Ant Colony Optimization

Heuristic Information Matrix Heuristic Information Matrix

0o 1 2 3 4 0 1 2 3 4
0| 0 033016008 1 o[ 0 033 1 02016
1[033 0 05 033033 oymame Change 1[033 0 033033 05
2(016 05 0 1 025 —— —— — — —» 2|1 033 0 05025
3|/0203 1 0 05 3|02 03305 0 1
4| 1 033025 05 0 4[016 05 025 1 0

@ Can extend for cyclic and cyclic with noise environments @%3&,&%«,{;&%
LEICESTER
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@ Proposed by Li & Yang (2008), GDBG uses the model below:

Generalized DBG

‘ Binaryspace‘ Real Space ‘ ‘Combinalory Spac%

I I
z El
s
3
8 8
- N

@ In GDBG, DOPs are defined as:
F=1f(x,9,1),

— ¢: system control parameter
@ Dynamism results from tuning ¢ of the current environment

o(t+1) =o(t) & &g

— A¢: deviation from the current control parameter(s)
@ The new environment at t + 1 is as follows:

f(x, 0, t+1) = f(x, () © Ag, 1)

Tutorial: EC for DOPs

¥ 8oUBlSU|
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7 souejsu|
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GDBG: Dynamic Change Types Gecc__ol’-sz

@ Change types:
@ Small step: Ag =« - ||6| - rand()
Q Large step: Ag = ||¢]| - (o + (1 — a)rand())
@ Random: A¢ = ||8| - rand()
Q Chaotic: ¢(t +1) = A-¢(t) - (1 — ¢(1)/[4])
@ Recurrent: ¢(t + 1) = ¢(t%P)
©Q Recurrent with nosy: ¢(t + 1) = ¢(t%P) + a - ||¢| - rand()

@ More details:
@ C.Li&S. Yang (2008). SEAL08, LNCS 5361, pp. 391-400
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DOPs: Classification 6515%2%13

Classification criteria:

@ Time-linkage: Does the future behaviour of the problem depend on the
current solution?

@ Predictability: Are changes predictable?
@ Visibility: Are changes visible or detectable
@ Cyclicity: Are changes cyclic/recurrent in the search space?

@ Factors that change: objective, domain/number of variables, constraints,
and/or other parameters
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Performance Measures l’ ,
213

@ For EC for stationary problems, 2 key performance measures
@ Convergence speed
@ Success rate of reaching optimality

@ For EC for DOPs, over 20 measures (Nguyen et al., 2012)

@ Optimality-based performance measures

Collective mean fithess or mean best-of-generation
Accuracy

Adaptation

Offline error and offline performance

Mean distance to optimum at each generation

(-3 "3 R

@ Behaviour-based performance measures
Reactivity

Stability

Robustness

Satisficability

Diversity measures

[ =3 3 R~ ]

DE MONTFORT

@ UNIVERSITY
LEK

ICESTER

DOPs: Common Characteristics

Common characteristics of DOPs in the literature:
@ Most DOPs are non time-linkage problems
For most DOPs, changes are assumed to be detectable
In most cases, the objective function is changed
Many DOPs have unpredictable changes

)
")
<)
@ Most DOPs have cyclic/recurrent changes
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Performance Measures: Examples

@ Collective mean fitness (mean best-of-generation):

Fioc = 1@ X ZZ?(% x 2:\’ Fsoc;)
— G and N: number of generations and runs, resp.
— Fgog;: best-of-generation fitness of generation 7 of run j
@ Adaptation performance (Mori et al., 1997)

Ada = 1

T Z (foest(t)/ Topt(t))

t=1..T
@ Accuracy (Trojanowski and Michalewicz, 1999)

LS (estli) — Fom())

Acc = K
i=1..K

— frest(i): best fitness for environment i (best before change)

L
GECCOSAY
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Part Il: Play the Game Gecs%lzéz*13 EC for DOPs: General Approaches Gecgcil§\2%3

@ Many approaches developed to enhance EAs for DOPs

@ EC approaches for DOPs @ Typical approaches:

@ Case studies @ Memory: store and reuse useful information

] @ Diversity: handle convergence directly

@ Relevant issues @ Multi-population: co-operate sub-populations

@ Future work @ Adaptive: adapt generators and parameters

@ Prediction: predict changes and take actions in advance

@ They have been applied to different EAs for DOPs
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EC for DOPs: First Thinking 3‘@2*13 Memory Approaches

a\

@ Cyclic DOPs: change cyclically among a fixed set of states

© Candidate soultion in population @ Optimal solution

@ Recap: traditional EAs are not good for DOPs

@ Goal: to track the changing optimum .
@ How about restarting an EA after a change? L s
@ Natural and easy choice
@ But, not good choice because: Search space (Optimum moves cyclically)
It may be inefficient, wasting computational resources
3 It may lead to very different solutions before and after a change. @ Memory works by storing and reusing useful information

For real-world problems, we may expect solutions to remain similar @ Two classes regarding how to store information

@ Extra approaches are needed to enhance EAs for DOPs @ Implicit memory: uses redundant representations

@ Multiploidy and dominance (Ng & Wong, 1995; Lewis et al., 1998)
@ Dualism mechanisms (Yang, 2003; Yang & Yao, 2005)

@ Explicit memory: uses extra space to store information
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Implicit Memory: Diploid Genetic Algorithm GE({:Q&Z\Z$13

Encoding Dominance Scheme
Genotype 0 o 1 i
I T ¥V777] [ 1 Chromosome 1 0 0 0 |0/1 0
T It ¥777] [ -3 Chromosome 2 o 0 0 1 ]0/1
110/1| 1 1
i 0 |0/1| 1 1

Ng & Wong (1995)

Genotype—to—Phenotyp $ .
Mapping ? Dominance Scheme

I:W Phenotype AlBlclD
Same Phenoty pic - Alololol1
Evaluating Blo|o|lo|1

Fitness clpojo|1 1

Genotypic Alleles: [ ZZ7] . Dj1 1 1 1

Phenotypic Alleles: ] I

Lewis et al. (1998)

@ Each individual has a pair of chromosomes
@ Dominance scheme maps genotype to phenotype
@ Dominance scheme may change or be adaptive (Uyar & Harmanci,

2005) @;, DE MONTEORT
CRNRRERTY
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Explicit Memory Approaches

Basic idea: use extra memory
@ With time, store useful information of the pop into memory
@ When a change occurs, use memory to track new optimum

© Candidate soultion in population @ Optimal solution O Candidate soultion in population @ Optimal solution O Candidate soultion in population @ Optimal solution

@ Memory solutions @ Memory solutions ® Memory solutions
L L 2 L 3
L] L] L
£ » =
L] £ L] L]
L] ° [
L L Lt
Sle) Sle)
® o ® o ° o

Search space (Memory stores best solutions) Search space (Optimum moves to next state) Search space (Population moves to new optimum)

Shengxiang Yang (De Montfort University) Tutorial: EC for DOPs GECCO'13, 7/7/2013 34/63
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@ Direct memory: store good solutions (Branke, 1999)

@ Associative memory: store environmental information + good solutions
(Yang & Yao, 2008)

Main Population Main Population

Update memory 2.Select ~ Update memory

3. Replace

1. Select besL
pop member

2. Associate

2. Create

2. Replace one

. 1. Merge 3. Replace
memory solution

1. Associate
Retrieve memory
Retrieve memory

Memory

Memory A Environment information O Solution

Direct Memory Associative Memory
% DE MONTFORT
UNIVERSITY
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Associative Memory Based Genetic Algorithm CiR2m13

Idea: Use allele distribution (AD) Dto represent environmental info.

@ Use memory to store <D, 8> pairs
@ Update memory by similarity policy
@ Re-evaluate memory every generation. If
change detected
@ Extract best memory AD: Dy

Main Population

1. Extract allele L’

Update memory

3. Replace
distribution vector

2. Associate I i b,
2 Create @ Create solutions by sampling Dy
3. Replace @ Replace them into the pop randomly
_ l,lAssoclale P Details:
Retreve memory @ S. Yang (2006). EvoWorkshops’06, pp. 788—799

Memory

A Allele distribution vector O Solution
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Diversity Approaches: Random Immigrants “ 23

D

@ Convergence is the key problem in metaheuristics for DOPs

@ Random immigrants:
@ Each generation, insert some random individuals (called random
immigrants) into the population to maintain diversity
@ When optimum moves, random immigrants nearby take action to draw the
pop to the new optimum

© Candidate soultion in population @ Optimal solution O Candidate soultion in population @ Optimal solution  © Candidate soultion in population @ Optimal solution

)
00
)

%g

Previous random immigrant

Random immigrants Random immigrants

Search Space (Population converging at time t) Search Space (Optimum moved at time t+1) Search Space (Population moves to new optimum)
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Experimental Results: Immigrants Based GAs “Rwis
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Cyclic Dynamic OneMax Function, T = 25, p = 0.1 Random Dynamic OneMax Function, T = 25, p = 0.1

100 T T T T 100 T T T T
% SGA —— % R —
RIGA MEGA -
0 MEGA” - Wl MRGA
MRIGA oA
MIGA

Best-Of-Generation Fitness
Best-Of-Generation Fitness

5
4500 4600 4700 4800 4900 5000 4500 4600 4700 4300 4900 5000

Generation Generation

@ Memory-based immigrants GA (MIGA) significantly beats other GAs

@ More details:
@ S. Yang (2008). Evol. Comput., 16(3): 385-416
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@ Random immigrants maintain the diversity while memory adapts an
algorithm directly to new environments

@ Memory-based immigrants: uses memory to guide immigrants
towards current environment
@ Re-evaluate the memory every generation
@ Retrieve the best memory point By(t) as the base
@ Generate immigrants by mutating Bu/(t) with a prob.
@ Replace worst members in the population by these immigrants

Memory-Based Immigrants

current best memory point random immigrants

current °
optimum @ -l
D! o\% -

@ [ ] .
© @ d ,

®0
SR

memory—based immigrants memory points

Search Space 2, DE MONTEORT
@g" UNIVERSITY
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Hybrid Immigrants Approach

L
GECCOSAY

@ Combines elitism, dualism and random immigrants ideas
@ Dualism: Given X = (xq,---, x) € {0,1}/, its dual is defined as
%9 = dual(¥) = (x{, - x) € {0,1}’

where x9 =1 — x;
@ Each generation ¢, select the best individual from previous generation,
E(t — 1), to generate immigrants
@ Elitism-based immigrants: Generate a set of individuals by mutating
E(t— 1) to address slight changes
@ Dualism-based immigrants: Generate a set of individuals by mutating the
dual of E(t — 1) to address significant changes
@ Random immigrants: Generate a set of random individuals to address
medium changes
@ Replace these immigrants into the population

@ More details:
@ S.Yang & R. Tinos (2007). Int. J. of Autom. & Comp., 4(3): 243254
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Experimental Results: Hybrid Immigrants GA Gecg%l:éz*13
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@ Hybrid immigrants improve GA'’s performance for DOPs efficiently @Q@ﬂ%ﬂgﬁ“@
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Multi-Populations: Self-Organizing Scouts
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@ Self-organizing scouts (SOS) GA (Branke et al., 2000)
@ The parent population explores the search space
@ A child population is split under certain conditions
@ Child populations search limited promising areas

Parent
Population

evolve

2, DE MONTFORT

i UNIVERSITY
LEICESTER

Tutorial: EC for DOPs

GECCO'13, 7/7/2013 43/63

Shengxiang Yang (De Montfort University)

Ram3

D

Multi-Populations: Shifting Balance

@ Multi-population scheme uses co-operating sub-populations
@ Shifting Balance GA (Oppacher & Wineberg, 1999):

@ A core population exploits the promising area
@ Several colonies explore the search space

I migration

Core
Population

migration

migratio/
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Multi-Populations: Clustering PSO

@ Particle Swarm Optimisation (PSO):
@ Motivated by the social behaviour of swarm of animals, e.g., bird flocking
and fish schooling
@ PSO has been used to address DOPs

@ Recently, we developed a Clustering PSO (CPSO) for DOPs
@ Use a clustering technique to construct sub-swarms
@ Each sub-swarm will search among one peak quickly
@ Overlapping and convergence check
@ Strategies to response to changes
@ More details:
@ S.Yang & C. Li (2010). IEEE Trans Evol Comput, 14(6): 93—106
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Prediction Approaches

Group
ChangeType: L arge: ~ |
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Frequency: | 2000
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Adaptive Approaches

@ Aim: Adapt operators/parameters, usually after a change
@ Hypermutation (Cobb & Grefenstette, 1993): raise the mutation rate
temporarily
@ Hyper-selection (Yang & Tinos, 2008): raise the selection pressure
temporarily
@ Hyper-learning (Yang & Richter, 2009): raise the learning rate for
Population-Based Incremental Learning (PBIL) temporarily

@ Combined: Hyper-selection and hyper-learning with re-start or
hypermutation
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@ For some DOPs, changes exhibit predictable patterns

@ Techniques (forecasting, Kalman filter, etc.) can be used to predict
@ The location of the next optimum after a change
@ When the next change will occur and which environment may appear

@ Some relevant work: see Simbes & Costa (2009)
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Remarks on Enhancing Approaches

[*]

GECCOSeN

No clear winner among the approaches
Memory is efficient for cyclic environments

Multi-population is good for tracking competing peaks
@ The search ability will decrease if too many sub-populations

Diversity schemes are usually useful
@ Guided immigrants may be more efficient

Different interaction exists among the approaches
Golden rule: balancing exploration & exploitation over time
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Case Study: Dynamic Routing in MANETSs — 1 i TN

@ Shortest path routing problem (SPRP) in a fixed network:
@ Find the shortest path between source and destination in a fixed topology
@ More and more mobile ad hoc networks (MANETS) appear where the
topology keeps changing
@ Dynamic SPRP (DSPRP)in MANETSs:
@ Find a series of shortest paths in a series of highly-related network
topologies
@ We model the network dynamics as follows:

@ For each change, a number of nodes are randomly selected to sleep or
wake up based on their current status

% DE MONTFORT
UNIVERSITY
LEICESTER

GECCO'18, 7/7/2013 49/63

Tutorial: EC for DOPs

. i i i _ GECC l‘}\
Case Study: Dynamic Vehicle Routing — 1 “Rezii3

@ The basic Vehicle Routing Problem (VRP):

@ A number of vehicles with a fixed capacity need to satisfy the demand of all
customers, starting from and finishing to the depot

@ Dynamic extensions of VRP that model real-world scenarios:
@ Dynamic demands
@ Traffic factors
@ Dynamic test cases can be generated using the DBGP generator
(Mavrovouniotis et al., 2012)

2, DE MONTFORT

i UNIVERSITY
LEICESTER

Tutorial: EC for DOPs

Shengxiang Yang (De Montfort University) GECCO'13, 7/7/2013 51/63

Shengxiang Yang (De Montfort University)

Case Study: Dynamic Routing in MANETSs 6525%2%13

@ A specialized GA for the DSPRP:
@ Path-oriented encoding
@ Tournament selection
@ Path-oriented crossover and mutation with repair
@ Enhancements: Immigrants and memory approaches

@ Experimental results:
@ Both immigrants and memory enhance GA'’s performance for the DSPRP
in MANETS.
@ Immigrants schemes show their power in acyclic environments
@ Memory related schemes work well in cyclic environments
@ More details:
@ S.Yang, H. Cheng, & F. Wang (2010). IEEE Trans SMC Part C: Appl. &
Rev., 40(1): 52-63

%_, DE MONTEORT
UNIVERSITY
LEICESTER

Tutorial: EC for DOPs GECCO'13, 7/7/2013 50/63

Case Study: Dynamic Vehicle Routing — 2

*]

ACO algorithms with immigrants schemes are used to address the
dynamic VRP with traffic factors
Each ant constructs a solution that contains all the routes of the vehicles
Diversity is maintained using immigrant ants
Experimental results:

@ ACO with elitism-based immigrants outperforms other ACO algorithms

@ ACO with random immigrants is outperformed by other ACO algorithms
Usually, ACO with guided diversity performs well for DOPs
More details:

@ M. Mavrovouniotis & S. Yang (2012a). EvoApplications’12, LNCS 7248,
pp. 519-528
@ M. Mavrovouniotis & S. Yang (2012b). CEC’12
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Case Study: GA for Dynamic TSP

EC for Dynamic Multi-objective Optimization

@ Dynamic TSP:
@ 144 Chinese cities, 1 geo-stationary saterllite, and 3 mobile satellites
@ Find the path that cycles each city and satellite once with the minimum
length over time

@ Solver: A GA with memory and other schemes

@ More details:
@ C. Li, M. Yang, & L. Kang (2006). SEAL06, LNCS 4247, pp. 236—243
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Theoretical Development

@ So far, mainly empirical studies
@ Theoretical analysis has just appeared

@ Runtime analysis:
@ Stanhope & Daida (1999) first analyzed a (1+1) EA on the dynamic bit
matching problem (DBMP)
@ Droste (2002) analyzed the first hitting time of a (1+1) ES on the DBMP
@ Rohlfshagen et al. (2010) analyzed how the magnitude and speed of
change may affect the performance of the (1+1) EA on two functions
constructed from the XOR DOP generator

@ Analysis of dynamic fitness landscape:
@ Branke et al. (2005) analyzed the changes of fitness landscape due to
changes of the underlying problem instance
@ Richter (2010) analyzed the properties of spatio-temporal fitness
landscapes constructed from Coupled Map Lattices (CML)
@ Tinos and Yang (2010) analyzed the properties of the XOR DOP generator
based on the dynamical system approach of the GA

Z, DE MONTFORT
g UNIVERSITY
LEICESTER

54/63

@ So far, mainly dynamic single-objective optimization
@ Dynamic multi-objective optimization problems (DMOPs): even more
challenging

@ A few studies have addressed EC for DMOPs

@ Farina et al. (2004) classified DMOPs based on the changes on the Pareto
optimal solutions

@ Goh & Tan (2009) proposed a competitive-cooperative coevolutionary
algorithm for DMOPs

@ Zeng et al. (2006) proposed a dynamic orthogonal multi-objective EA
(DOMOEA) to solve a DMOP with continuous decision variables

@ Zhang & Qian (2011) proposed an artificial immune system to solve
constrained DMOPs

2, DE MONTFORT
UNIVERSITY
LEICESTER

Shengxiang Yang (De Montfort University) Tutorial: EC for DOPs GECCO'13, 7/7/2013 55/63

Challenging Issues

@ Detecting changes:
@ Most studies assume that changes are easy to detect or visible to an
algorithm whenever occurred
@ In fact, changes are difficult to detect for many DOPs
@ Understanding the characteristics of DOPs:
@ What characteristics make DOPs easy or difficult?
@ The work has started, but needs much more effort
@ Analysing the behaviour of EAs for DOPs:

@ Requiring more theoretical analysis tools
@ Addressing more challenging DOPs and EC methods
@ Big question: Which EC methods for what DOPs?

@ Real world applications:
@ How to model real-world DOPs?
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@ The domain has attracted a growing interest recently
@ But, far from well-studied

@ New approaches needed: esp. hybrid approaches
@ Theoretical analysis: greatly needed
@ EC for DMOPs: deserves much more effort

@ Real world applications: also greatly needed
@ Fields: logistics, transport, MANETS, data streams, social networks, ...
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@ EC for DOPs: challenging but important

@ The domain is still young and active:

@ More challenges to be taken regarding approaches, theory, and
applications

@ More young researchers are greatly welcome!
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Relevant Information

@ |EEE CIS Task Force on EC in Dynamic and Uncertain Environments
o http://www.tech.dmu.ac.uk/~syang/IEEE_ECIDUE.htmi
@ Maintained by Shengxiang Yang

@ Source codes:
@ http://www.tech.dmu.ac.uk/~syang/publications.html

@ |EEE Competitions:

@ 2009 Competition on EC in Dynamic & Uncertain Environments:
http://www.cs.le.ac.uk/people/syang/ECiIDUE/ECIDUE-Competition09

@ 2012 Competition on EC for DOPs:
http://people.brunel.ac.uk/~csstssy/ECDOP-Competition12.html
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