Evolutionary Computation for Dynamic **Optimization Problems**

Shengxiang Yang

Centre for Computational Intelligence School of Computer Science and Informatics De Montfort University, United Kingdom Email: syang@dmu.ac.uk http://www.tech.dmu.ac.uk/~svang

http://www.sigevo.org/gecco-2013/

Copyright is held by the author/owner(s). GECCO'13 Companion, July 6-10, 2013, Amsterdam, The Netherlands ACM 978-1-4503-1964-5/13/07.

Tutorial: EC for DOP

Centre for CI (CCI), De Montfort University

- CCI (www.cci.dmu.ac.uk):
 - Mission: Developing fundamental theoretical and practical solutions to real world problems using a variety of CI paradigms
 - Members: 15 staff, 4 research fellows, 30+ PhDs, visiting researchers
 - Components: 3 Labs (Robotics, Gaze, Game Programming) & Bio-Health Informatics Research Group
- Funding:
 - Research Councils: EPSRC, TSB, Royal Academy of Engineering, Royal Society, KTP, Innovation Fellowships, HOPE foundation
 - Government: Leicester City Council. DTI
 - Industries: Lachesis, EMDA, RSSB, Network Rail, etc.
- Collaborations:
 - Universities: UK, USA, Spain, and China
 - Industries and local governments
- Teaching/Training:
 - DTP-IS: University Doctor Training Programme in Intelligent Systems
 - MSc Intelligent Systems, MSc Intelligent Systems & Robotics
 - BSc Artificial Intelligence with Robotics
- YouTube page: http://www.youtube.com/thecci

hengxiang Yang (De Montfort University)

Tutorial: EC for DOPs

Instructor/Presenter — Shengxiang Yang

- Education and career history:
 - PhD, Northeastern University, China, 1999
 - Worked at King's College London, University of Leicester, and Brunel University, 1999-2012
 - Joined De Montfort University as Professor in Computational Intelligence (CI) in July 2012
 - Director of Centre for Computational Intelligence (CCI)
- Research interests:
 - Evolutionary computation (EC) and nature-inspired computation
 - Dynamic optimisation and multi-objective optimisation
 - Relevant real-world applications
- Over 160 publications and over £1M funding as the PI
- Editor, Evolutionary Computation and 3 other journals
- Chair of two IEEE CIS Task Forces
 - EC in Dynamic and Uncertain Environments
 - Intelligent Network Systems

Outline of the Tutorial

Part I: Set up the stage

- Introduction to evolutionary computation (EC)
- EC for dynamic optimization problems (DOPs): Concept and motivation
- Benchmark and test problems
- Performance measures

Part II: Play the game

- EC approaches for DOPs
- Case studies
- Relevant issues
- Future work

Shengxiang Yang (De Montfort University)

667

What Are DOPs?

 In general terms, "optimization problems that change over time" are called dynamic problems/time-dependent problems

$$F = f(\vec{x}, \vec{\phi}, t)$$

- $-\vec{x}$: decision variable(s); $\vec{\phi}$: parameter(s); t: time
- DOPs: special class of dynamic problems that are solved online by an algorithm as time goes by

Shengxiang Yang (De Montfort University)

Tutorial: EC for DOPs

ECCO'13, 7/7/2013 9 /

Why EC for DOPs?

- Many real-world problems are DOPs
- EAs, once properly enhanced, are good choice
 - Inspired by natural/biological evolution, always in dynamic environments
 - Intrinsically, should be fine to deal with DOPs
- Many events on EC for DOPs recently

Shengxiang Yang (De Montfort University)

Tutorial: EC for DOP

GECCO'13 7/7/2013

13 11 / 69

Why DOPs Challenge EC?

- For DOPs, optima may move over time in the search space
 - Challenge: need to track the moving optima over time

Search Space (Optimum moved at time t+1)

- DOPs challenge traditional EAs
 - Once converged, hard to escape from an old optimum

Shengxiang Yang (De Montfort University)

Tutorial: EC for DOPs

GECCO'13, 7/7/2013

Relevant Events

- Books (Monograph or Edited):
 - Yang & Yao, 2013; Yang et al., 2007; Morrison, 2004; Weicker, 2003; Branke, 2002
- PhD Theses:
 - Mavrovouniotis, 2013; du Plessis, 2012; Li, 2011; Nguyen, 2011; Simoes, 2010
- Journal special issues:
 - Neri & Yang, 2010; Yang et al., 2006; Jin & Branke, 2006; Branke, 2005
- Workshops and conference special sessions:
 - EvoSTOC (2004–2013): part of Evo*
 - ECiDUE (2004–2013): part of IEEE CEC
 - EvoDOP ('99, '01, '03, '05, '07, '09): part of GECCO
- IEEE Symposium on CIDUE (Paris, 2011; Singapore, 2013)
- IEEE Competitions: within IEEE CEC 2009 & CEC 2012

Shengxiang Yang (De Montfort University)

Tutorial: EC for DOPs

GECCO'13, 7/7/2013

Benchmark and Test DOPs

- Basic idea: change base static problem(s) to create DOPs
- Real space:
 - Switch between different functions
 - Move/reshape peaks in the fitness landscape
- Binary space:
 - Switch between > 2 states of a problem: knapsack
 - Use binary masks: XOR DOP generator (Yang & Yao'05)
- Combinatorial space:
 - Change decision variables: item weights/profits in knapsack problems
 - Add/delete decision variables: new jobs in scheduling, nodes added/deleted in network routing problems

hengxiang Yang (De Montfort University)

Tutorial: EC for DOPs

Moving Peaks Benchmark (MPB) Problem

- Proposed by Branke (1999)
- The MPB problem in the D-dimensional space:

$$F(\vec{x},t) = \max_{i=1,\dots,p} \frac{H_i(t)}{1 + W_i(t) \sum_{j=1}^{D} (x_j(t) - X_{ij}(t))^2}$$

- $-W_i(t), H_i(t), X_i(t) = \{X_{i1} \cdots X_{iD}\}$: height, width, location of peak i at t
- The dynamics:

$$H_i(t) = H_i(t-1) + height severity * \sigma$$

$$W_i(t) = W_i(t-1) + width_severity * \sigma$$

$$\vec{v}_i(t) = \frac{s}{\left|\vec{r} + \vec{v}_i(t-1)\right|}((1-\lambda)\vec{r} + \lambda \vec{v}_i(t-1))$$

$$\vec{X}_i(t) = \vec{X}_i(t)(t-1) + \vec{v}_i(t)$$

- $-\sigma \sim N(0,1)$; λ : correlated parameter
- $-\vec{v}_i(t)$: shift vector, which combines random vector \vec{r} and $\vec{v}_i(t+1)$ and is normalized to the shift length s

engxiang Yang (De Montfort University)

The DF1 Generator

- Proposed by Morrison & De Jong (1999)
- The base landscape in the *D*-dimensional real space:

$$f(\vec{x}) = \max_{i=1,...,p} \left[H_i - R_i \times \sqrt{\sum_{j=1}^{D} (x_j - X_{ij})^2} \ \right]$$

- $-\vec{x}=(x_1,\cdots,x_D)$: a point in the landscape; p: number of peaks $-H_i$, R_i , $X_i = (X_{i1}, \dots, X_{iD})$: height, slope, center of peak i
- The dynamics is controlled by a logistics function:

$$\Delta_t = A \cdot \Delta_{t-1} \cdot (1 - \Delta_{t-1})$$

 $-A \in [1.0, 4.0]$: a constant; Δ_t : step size of changing a parameter

Dynamic Knapsack Problems (DKPs)

- Static knapsack problem:
 - Given *n* items, each with a weight and a profit, and a knapsack with a fixed capacity, select items to fill up the knapsack to maximize the profit while satisfying the knapsack capacity constraint
- The DKP:
 - Constructed by changing weights and profits of items, and/or knapsack capacity over time as:

Max
$$f(\vec{x}(t), t) = \sum_{i=1}^{n} p_i(t) \cdot x_i(t)$$
, s. t.: $\sum_{i=1}^{n} w_i(t) \cdot x_i(t) \leq C(t)$

- $-\vec{x}(t) \in \{0,1\}^n$: a solution at time t
- $-x_i(t) \in \{0,1\}$: indicates whether item i is included or not
- $-p_i(t)$ and $w_i(t)$: profit and weight of item i at t
- C(t): knapsack capacity at t

Shengxiang Yang (De Montfort University)

Tutorial: EC for DOPs

The XOR DOP Generator

- The **XOR DOP generator** can create DOPs from any binary $f(\vec{x})$ by an XOR operator " \oplus " (Yang, 2003; Yang & Yao, 2005)
- Suppose the environment changes every τ generations
- For each environmental period $k = |t/\tau|$, do:

- ① Create a template T_k with $\rho * I$ ones
- ② Create a mask $\vec{M}(k)$ incrementally

$$\vec{M}(0) = \vec{0}$$
 (the initial state)

$$\vec{M}(k+1) = \vec{M}(k) \oplus \vec{T}(k)$$

Evaluate an individual:

$$f(\vec{x},t)=f(\vec{x}\oplus\vec{M}(k))$$

 \bullet τ and ρ controls the speed and severity of change respectively

Shengxiang Yang (De Montfort University)

Tutorial: FC for DOPs

ECCO'13 7/7/2013 17

Shengxiang Yang (De Montfort University

small probability

Base State 0

(Initial State)

M(0)=00000000000

Tutorial: EC for DOPs

Constructing Cyclic Environments with Noise

Each time before a base state is entered, it is bitwise changed with a

Base State 1 M(1)=100101101

Bit 10 changed

Bit 6 changed

M(3)=01101 0101
Base State 3

by noise

by noise

We can also construct cyclic environments with noise:

GECCO'13, 7/7/2013

Base State 2

M(2)=01111111111

Bit 1 changed

by noise

DE MONTFORT UNIVERSITY LEICESTER

Constructing Cyclic Dynamic Environments

Can extend the XOR DOP generator to create cyclic environments:

Shengxiang Yang (De Montfort University)

- Onstruct K templates $\vec{T}(0), \dots, \vec{T}(K-1)$
 - Form a partition of the search space
 - Each contains $\rho \times I = I/K$ ones
- ② Create 2K masks $\vec{M}(i)$ as base states

$$\vec{M}(0) = \vec{0}$$
 (the initial state)

$$\vec{M}(i+1) = \vec{M}(i) \oplus \vec{T}(i\%K), i = 0, \cdots, 2K-1$$

3 Cycle among $\vec{M}(i)$'s every τ generations

$$f(\vec{x},t) = f(\vec{x} \oplus \vec{M}(I_t)) = f(\vec{x} \oplus \vec{M}(k\%(2K)))$$

- $-k = |t/\tau|$: environmental index
- $-I_t = k\%(2K)$: mask index

Tutorial: EC for DOPs

18 / 63

Dynamic Traveling Salesman Problems

- Stationary traveling salesman problem (TSP):
 - Given a set of cities, find the shortest route that visits each city once and only once
- Dynamic TSP (DTSP):
 - May involve dynamic cost (distance) matrix

$$D(t) = \{d_{ij}(t)\}_{n*n}$$

- $-d_{ii}(t)$: cost from city i to j; n: the number of cities
- The aim is to find a minimum-cost route containing all cities at time t
- DTSP can be defined as f(x, t):

$$f(x,t) = Min(\sum_{i=1}^{n} d_{x_i,x_{i+1}}(t))$$

where $x_i \in 1, \dots, n$. If $i \neq j$, $x_i \neq x_j$, and $x_{n+1} = x_1$

Shengxiang Yang (De Montfort University)

Tutorial: EC for DOPs

GECCO'13, 7/7/2013

Dynamic Permutation Benchmark Generator

 The dynamic benchmark generator for permutation-encoded problems (DBGP) can create a DOP from any stationary TSP/VRP by swapping objects:

- One of the contract of $\vec{r}(T)$ that contains all objects every f iterations
- @ Generate another randomly re-order vector $\vec{r'}(T)$ that contains only the first $m \times n$ objects of $\vec{r}(T)$
- Modify the encoding of the problem instance with $m \times n$ pairwise swaps

 More details: M. Mavrovouniotis, S. Yang, & X. Yao (2012). PPSN XII, Part II, LNCS 7492, pp. 508-517

Shengxiang Yang (De Montfort University)

Shengxiang Yang (De Montfort University)

Tutorial: FC for DOPs

Generalized DOP Benchmark Generator (GDBG)

Proposed by Li & Yang (2008), GDBG uses the model below:

In GDBG, DOPs are defined as:

$$F = f(x, \phi, t),$$

- $-\phi$: system control parameter
- Dynamism results from tuning ϕ of the current environment

$$\phi(t+1) = \phi(t) \oplus \Delta \phi$$

- $-\Delta\phi$: deviation from the current control parameter(s)
- The new environment at t + 1 is as follows:

GDBG: Dynamic Change Types

Small step: $\Delta \phi = \alpha \cdot ||\phi|| \cdot rand()$

3 Random: $\Delta \phi = \|\phi\| \cdot rand()$

Securrent: $\phi(t+1) = \phi(t\%P)$

2 Large step: $\Delta \phi = \|\phi\| \cdot (\alpha + (1 - \alpha) rand())$

Ohaotic: $\phi(t+1) = A \cdot \phi(t) \cdot (1 - \phi(t)/\|\phi\|)$

$$f(x, \phi, t + 1) = f(x, \phi(t) \oplus \Delta \phi, t)$$

Change types:

Tutorial: EC for DOPs

Effect on Algorithms

- Similar with the XOR DOP generator, DBGP shifts the population of an alg. to new location in the fitness landscape
- The individual with the same encoding as before a change will have a different cost after the change

						Evolutionary Algorithms						
	Population of Individuals $1 = (0,1,3,4,2,0) = 18$ $2 = (1,4,2,3,0,1) = 16$ $3 = (0,4,3,2,1,0) = 9$						Population of Individuals 1 = (0.1, 3.4, 2.0) = 12 2 = (1.4, 2.3, 0.1) = 16 3 = (0.4, 3.2, 1.0) = 15					
						Dynamic Change						
	$\mu = (3,0,4,2,1,3) = \textbf{15}$				5		$\mu = (3,0,4,2,1,3) = 21$					
Heuristic Information Matrix						Ant Colony Optimization	Heuristic Information Matrix					
Н	eurist	ic Info	ormati	on M	atrix		He	eurist	ic Into	ormati	on Ma	atrix
Н	eurist 0	ic Info	ormati 2	on M	atrix 4		Н	eurist 0	1	rmati 2	on Ma	atrix 4
Н 0		1		3			0			2		4
	0	1	2 0.16	3	4	Dynamic Change		0	1	2	3	4 0.16
0	0	1 0.33 0	2 0.16	3	4	Dynamic Change	0	0	1	2 1 0.33	3 0.2 0.33	4 0.16
0	0 0 0.33	1 0.33 0 0.5 0.33	2 0.16 0.5 0	3 0.08 0.33 1 0	4 1 0.33	Dynamic Change	0	0 0 0.33 1	1 0.33 0	1 0.33 0	3 0.2 0.33	4 0.16 0.5
0 1 2	0 0.33 0.16	1 0.33 0 0.5 0.33	2 0.16 0.5 0	3 0.08 0.33 1 0	4 1 0.33 0.25	Dynami: Change	0 1 2	0 0.33 1 0.2	1 0.33 0 0.33 0.33	1 0.33 0	3 0.2 0.33 0.5	4 0.16 0.5 0.25

Can extend for cyclic and cyclic with noise environments

More details:

Tutorial: EC for DOPs

Securrent with nosy: $\phi(t+1) = \phi(t\%P) + \alpha \cdot ||\phi|| \cdot rand()$

C. Li & S. Yang (2008). SEAL'08, LNCS 5361, pp. 391–400

Shengxiang Yang (De Montfort University)

Tutorial: EC for DOPs

DOPs: Classification

Classification criteria:

- Time-linkage: Does the future behaviour of the problem depend on the current solution?
- Predictability: Are changes predictable?
- Visibility: Are changes visible or detectable
- Oyclicity: Are changes cyclic/recurrent in the search space?
- Factors that change: objective, domain/number of variables, constraints, and/or other parameters

Shengxiang Yang (De Montfort University

Tutorial: EC for DOPs

GECCO'13, 7/7/2013

Performance Measures

- For EC for stationary problems, 2 key performance measures
 - Convergence speed
 - Success rate of reaching optimality
- For EC for DOPs, over 20 measures (Nguyen et al., 2012)
 - Optimality-based performance measures
 - Collective mean fitness or mean best-of-generation
 - Accuracy
 - Adaptation
 - Offline error and offline performance
 - Mean distance to optimum at each generation
 - ...
 - Behaviour-based performance measures
 - Reactivity
 - Stability
 - Robustness
 - Satisficability
 - Diversity measures
 - **a**

hengxiang Yang (De Montfort University)

Tutorial: EC for DOPs

GECCO'12 7/7/2012

12 27/6

DOPs: Common Characteristics

Common characteristics of DOPs in the literature:

- Most DOPs are non time-linkage problems
- For most DOPs, changes are assumed to be detectable
- In most cases, the objective function is changed
- Many DOPs have unpredictable changes
- Most DOPs have cyclic/recurrent changes

Performance Measures: Examples

Collective mean fitness (mean best-of-generation):

$$\overline{F}_{BOG} = \frac{1}{G} \times \sum_{i=1}^{i=G} (\frac{1}{N} \times \sum_{j=1}^{j=N} F_{BOG_{ij}})$$

- G and N: number of generations and runs, resp.
- $-F_{BOG_{ii}}$: best-of-generation fitness of generation i of run j
- Adaptation performance (Mori et al., 1997)

$$Ada = \frac{1}{T} \sum_{t=1..T} (f_{best}(t)/f_{opt}(t))$$

Accuracy (Trojanowski and Michalewicz, 1999)

$$Acc = \frac{1}{K} \sum_{i=1..K} (f_{best}(i) - f_{opt}(i))$$

 $- f_{best}(i)$: best fitness for environment i (best before change)

Shengxiang Yang (De Montfort University)

Tutorial: EC for DOP

GECCO'13, 7/7/2013

Part II: Play the Game

- EC approaches for DOPs
- Case studies
- Relevant issues
- Future work

Shengxiang Yang (De Montfort University)

Shengxiang Yang (De Montfort University)

Tutorial: EC for DOPs

EC for DOPs: General Approaches

- Many approaches developed to enhance EAs for DOPs
- Typical approaches:
 - Memory: store and reuse useful information
 - Diversity: handle convergence directly
 - Multi-population: co-operate sub-populations
 - Adaptive: adapt generators and parameters
 - Prediction: predict changes and take actions in advance
- They have been applied to different EAs for DOPs

EC for DOPs: First Thinking

- Recap: traditional EAs are not good for DOPs
- Goal: to track the changing optimum
- How about restarting an EA after a change?
 - Natural and easy choice
 - But, not good choice because:
 - It may be inefficient, wasting computational resources

 It may lead to very different a limit of the limit of
 - It may lead to very different solutions before and after a change. For real-world problems, we may expect solutions to remain similar
- Extra approaches are needed to enhance EAs for DOPs

Memory Approaches

Cyclic DOPs: change cyclically among a fixed set of states

Search space (Optimum moves cyclically)

- Memory works by storing and reusing useful information
- Two classes regarding how to store information
 - Implicit memory: uses redundant representations
 - Multiploidy and dominance (Ng & Wong, 1995; Lewis et al., 1998)
 - Dualism mechanisms (Yang, 2003; Yang & Yao, 2005)
 - Explicit memory: uses extra space to store information

Shengxiang Yang (De Montfort University)

Tutorial: EC for DOPs

674

Diversity Approaches: Random Immigrants

- Convergence is the key problem in metaheuristics for DOPs
- Random immigrants:
 - Each generation, insert some random individuals (called random immigrants) into the population to maintain diversity
 - When optimum moves, random immigrants nearby take action to draw the pop to the new optimum

Shengxiang Yang (De Montfort University)

Tutorial: EC for DOPs

GECCO'13, 7/7/2013 37

Experimental Results: Immigrants Based GAs

- Memory-based immigrants GA (MIGA) significantly beats other GAs
- More details:
 - S. Yang (2008). Evol. Comput., 16(3): 385-416

Shengxiang Yang (De Montfort University)

Tutorial: EC for DOF

GECCO'13 7/7/2013

13 30/6

Memory-Based Immigrants

- Random immigrants maintain the diversity while memory adapts an algorithm directly to new environments
- Memory-based immigrants: uses memory to guide immigrants towards current environment
 - Re-evaluate the memory every generation
 - Retrieve the best memory point $B_M(t)$ as the base
 - Generate immigrants by mutating $B_M(t)$ with a prob.
 - Replace worst members in the population by these immigrants

DE MONTFORT UNIVERSITY LEICESTER

Shengxiang Yang (De Montfort University)

Tutorial: EC for DOPs

GECCO'13, 7/7/2013 38 /

Shengxiang Yang (De Montfort University)

Hybrid Immigrants Approach

- Combines elitism, dualism and random immigrants ideas
- Dualism: Given $\vec{x} = (x_1, \dots, x_l) \in \{0, 1\}^l$, its dual is defined as $\vec{x}^d = dual(\vec{x}) = (x_1^d, \dots, x_l^d) \in \{0, 1\}^l$

where
$$x_i^d = 1 - x_i$$

- Each generation t, select the best individual from previous generation, E(t-1), to generate immigrants
 - Elitism-based immigrants: Generate a set of individuals by mutating E(t-1) to address slight changes
 - Dualism-based immigrants: Generate a set of individuals by mutating the dual of E(t-1) to address significant changes
 - Random immigrants: Generate a set of random individuals to address medium changes
 - Replace these immigrants into the population
- More details:
 - S. Yang & R. Tinos (2007). Int. J. of Autom. & Comp., 4(3): 243–254

Tutorial: EC for DOPs

ECCO'13, 7/7/2013

Prediction Approaches

- For some DOPs, changes exhibit predictable patterns
- Techniques (forecasting, Kalman filter, etc.) can be used to predict
 - The location of the next optimum after a change
 - When the next change will occur and which environment may appear
- Some relevant work: see Simões & Costa (2009)

Shengxiang Yang (De Montfort University)

Adaptive Approaches

- Aim: Adapt operators/parameters, usually after a change
 - Hypermutation (Cobb & Grefenstette, 1993): raise the mutation rate temporarily
 - Hyper-selection (Yang & Tinos, 2008): raise the selection pressure
 - Hyper-learning (Yang & Richter, 2009): raise the learning rate for Population-Based Incremental Learning (PBIL) temporarily
- Combined: Hyper-selection and hyper-learning with re-start or hypermutation

Shengxiang Yang (De Montfort University

Remarks on Enhancing Approaches

- No clear winner among the approaches
- Memory is efficient for cyclic environments
- Multi-population is good for tracking competing peaks
 - The search ability will decrease if too many sub-populations
- Diversity schemes are usually useful
 - Guided immigrants may be more efficient
- Different interaction exists among the approaches
- Golden rule: balancing exploration & exploitation over time

Case Study: Dynamic Routing in MANETs - 1

- Shortest path routing problem (SPRP) in a fixed network:
 - Find the shortest path between source and destination in a fixed topology
- More and more mobile ad hoc networks (MANETs) appear where the topology keeps changing
- Dynamic SPRP (DSPRP)in MANETs:
 - Find a series of shortest paths in a series of highly-related network topologies
- We model the network dynamics as follows:
 - For each change, a number of nodes are randomly selected to sleep or wake up based on their current status

Shengxiang Yang (De Montfort University

Tutorial: EC for DOPs

Case Study: Dynamic Vehicle Routing - 1

- The basic Vehicle Routing Problem (VRP):
 - A number of vehicles with a fixed capacity need to satisfy the demand of all customers, starting from and finishing to the depot
- Dynamic extensions of VRP that model real-world scenarios:
 - Dvnamic demands
 - Traffic factors
- Dynamic test cases can be generated using the DBGP generator (Mavrovouniotis et al., 2012)

Case Study: Dynamic Routing in MANETs - 2

- A specialized GA for the DSPRP:
 - Path-oriented encoding
 - Tournament selection
 - Path-oriented crossover and mutation with repair
- Enhancements: Immigrants and memory approaches
- Experimental results:
 - Both immigrants and memory enhance GA's performance for the DSPRP
 - Immigrants schemes show their power in acyclic environments
 - Memory related schemes work well in cyclic environments
- More details:
 - S. Yang, H. Cheng, & F. Wang (2010). IEEE Trans SMC Part C: Appl. & Rev., 40(1): 52-63

Case Study: Dynamic Vehicle Routing - 2

- ACO algorithms with immigrants schemes are used to address the dynamic VRP with traffic factors
- Each ant constructs a solution that contains all the routes of the vehicles
- Diversity is maintained using immigrant ants
- Experimental results:
 - ACO with elitism-based immigrants outperforms other ACO algorithms
 - ACO with random immigrants is outperformed by other ACO algorithms
- Usually, ACO with guided diversity performs well for DOPs
- More details:
 - M. Mavrovouniotis & S. Yang (2012a). EvoApplications'12, LNCS 7248,
 - M. Mavrovouniotis & S. Yang (2012b). CEC'12

Case Study: GA for Dynamic TSP

- Dynamic TSP:
 - 144 Chinese cities, 1 geo-stationary saterllite, and 3 mobile satellites
 - Find the path that cycles each city and satellite once with the minimum length over time
- Solver: A GA with memory and other schemes
- More details:
 - O. Li, M. Yang, & L. Kang (2006). SEAL'06, LNCS 4247, pp. 236-243

EC for Dynamic Multi-objective Optimization

- So far, mainly dynamic single-objective optimization
- Dynamic multi-objective optimization problems (DMOPs): even more challenging
- A few studies have addressed EC for DMOPs
 - Farina et al. (2004) classified DMOPs based on the changes on the Pareto optimal solutions
 - Goh & Tan (2009) proposed a competitive-cooperative coevolutionary algorithm for DMOPs
 - Zeng et al. (2006) proposed a dynamic orthogonal multi-objective EA (DOMOEA) to solve a DMOP with continuous decision variables
 - Zhang & Qian (2011) proposed an artificial immune system to solve constrained DMOPs

Theoretical Development

- So far, mainly empirical studies
- Theoretical analysis has just appeared
- Runtime analysis:
 - Stanhope & Daida (1999) first analyzed a (1+1) EA on the dynamic bit matching problem (DBMP)
 - Droste (2002) analyzed the first hitting time of a (1+1) ES on the DBMP
 - Rohlfshagen et al. (2010) analyzed how the magnitude and speed of change may affect the performance of the (1+1) EA on two functions constructed from the XOR DOP generator
- Analysis of dynamic fitness landscape:
 - Branke et al. (2005) analyzed the changes of fitness landscape due to changes of the underlying problem instance
 - Richter (2010) analyzed the properties of spatio-temporal fitness landscapes constructed from Coupled Map Lattices (CML)
 - Tinos and Yang (2010) analyzed the properties of the XOR DOP generator based on the dynamical system approach of the GA

Challenging Issues

- Detecting changes:
 - Most studies assume that changes are easy to detect or visible to an algorithm whenever occurred
 - In fact, changes are difficult to detect for many DOPs
- Understanding the characteristics of DOPs:
 - What characteristics make DOPs easy or difficult?
 - The work has started, but needs much more effort
- Analysing the behaviour of EAs for DOPs:
 - Requiring more theoretical analysis tools
 - Addressing more challenging DOPs and EC methods
 - Big question: Which EC methods for what DOPs?
- Real world applications:
 - How to model real-world DOPs?

Future Work

- The domain has attracted a growing interest recently
 - But, far from well-studied
- New approaches needed: esp. hybrid approaches
- Theoretical analysis: greatly needed
- EC for DMOPs: deserves much more effort
- Real world applications: also greatly needed
 - Fields: logistics, transport, MANETs, data streams, social networks, ...

Shengxiang Yang (De Montfort University)

Tutorial: EC for DOPs

Acknowledgements

- Two EPSRC funded projects on EC for DOPs
 - "EAs for DOPs: Design, Analysis and Applications"
 - Linked project among Brunel Univ. (Univ. of Leicester before 7/2010), Univ. of Birmingham, BT, and Honda
 - Funding/Duration: over £600K / 3.5 years (1/2008–7/2011)
 - http://www.cs.le.ac.uk/projects/EADOP/
 - "EC for Dynamic Optimisation in Network Environments"
 - Linked project among DMU, Univ. of Birmingham, RSSB, and Network Rail
 - Funding/Duration: ~£1M / 4 years (2/2013–2/2017)
 - http://www.cci.dmu.ac.uk/research-grants/
- Research team members:
 - Research Fellows: Dr. Hui Cheng, Dr. Crina Grosan, Dr. Changhe Li, Dr. Michalis Mavrovouniotis
 - PhD students: Changhe Li, Michalis Mavrovouniotis, Lili Liu, Hongfeng Wang, Yang Yan
- Research cooperators:
 - Prof. Xin Yao, Prof. Juergen Branke, Dr. Renato Tinos, Dr. Hendrik Richter, Dr. Trung Thanh Nguyen, etc.

engxiang Yang (De Montfort University)

Tutorial: EC for DOP

Summary

- EC for DOPs: challenging but important
- The domain is still young and active:
 - More challenges to be taken regarding approaches, theory, and applications
- More young researchers are greatly welcome!

Shengxiang Yang (De Montfort University

Relevant Information

- IEEE CIS Task Force on EC in Dynamic and Uncertain Environments
 - http://www.tech.dmu.ac.uk/~syang/IEEE ECIDUE.html
 - Maintained by Shengxiang Yang
- Source codes:
 - http://www.tech.dmu.ac.uk/~syang/publications.html
- IEEE Competitions:
 - 2009 Competition on EC in Dynamic & Uncertain Environments: http://www.cs.le.ac.uk/people/syang/ECiDUE/ECiDUE-Competition09
 - 2012 Competition on EC for DOPs: http://people.brunel.ac.uk/~csstssy/ECDOP-Competition12.html

References – 1

- J. Branke (1999). Memory enhanced evolutionary algorithms for changing optimization problems. CEC'99, pp. 1875–1882
- J. Branke (2002). Evolutionary Optimization in Dynamic Environments. Kluwer Academic Publishers
- 3 J. Branke, E. Salihoglu & S. Uyar (2005). Towards an analysis of dynamic environments. *GECCO'05*, pp. 1433–1439
- H.G. Cobb & J.J. Grefenstette (1993). Genetic algorithms for tracking changing environments. Proc. ICGA, pp. 523–530
- C. Cruz, J. Gonzanlez, & D. Pelta (2011). Optimization in dynamic environments: A survey on problems, methods and measures. Soft Comput., 15: 1427–1448
- S. Droste (2002) Analysis of the (1+1) ea for a dynamically changing onemax-variant. CEC'02. pp. 55–60
- M. Farina, K. Deb, & P. Amato (2004). Dynamic multiobjective optimization problems: test cases, approximations, and applications. *IEEE Trans. Evol. Comput.*, 8(5): 425–442
- C. Goh & K.C. Tan (2009). A competitive-cooperative coevolutionary paradigm for dynamic multiobiective optimization. IEEE Trans. Evol. Comput., 13(1): 103–127
- Y. Jin & J. Branke (2005). Evolutionary optimization in uncertain environments—A survey. IEEE Trans. Evol. Comput., 9(3): 303–317
- R.W. Morrison (2004). Designing Evolutionary Algorithms for Dynamic Environments. Springer
- E.H.J. Lewis & G. Ritchie (1998). A comparison of dominance mechanisms and simple mutation on non-stationary problems. PPSN V. pp. 139–148.
- R.W. Morrison & K.A. De Jong (1999). A test problem generator for non-stationary environments. CEC'99, pp. 2047–2053

Shengxiang Yang (De Montfort University)

Tutorial: EC for DOPs

GECCO'13, 7/7/2013

References – 2

- K.P. Ng & K.C. Wong (1995). A new diploid scheme and dominance change mechanism for non-stationary function optimisation. ICGA 6, pp. 159–166
- T.T. Nguyen, S. Yang, & J. Branke (2012). Evolutionary dynamic optimization: A survey of the state of the art. Swarm & Evol. Comput., 6: 1–24
- F. Oppacher & M. Wineberg (1999). The Shifting balance genetic algorithm: Improving the GA in a dynamic environment. GECCO'99, vol. 1, pp. 504–510
- H. Richter (2010). Evolutionary optimization and dynamic fitness landscapes: From reaction-diffusion systems to chaotic cml. Evolutionary Algorithms and Chaotic Systems, Springer, pp. 409–446.
- P. Rohlfshagen, P.K. Lehre, & X. Yao (2009). Dynamic evolutionary optimisation: An analysis of frequency and magnitude of change. *GECCO'09*, pp. 1713–1720
- S.A. Stanhope & J.M. Daida (1999). (1+1) genetic algorithm fitness dynamics in a changing environments. CEC'99, vol. 3, pp. 1851–1858
- R. Tinos & S. Yang (2010) An analysis of the XOR dynamic problem generator based on the dynamical system. PPSN XI, LNCS 6238, Part I, pp. 274–283
- A. Simões & E. Costa (2009). Improving prediction in evolutionary algorithms for dynamic environments. GECCO'09, pp. 875–882
- K. Trojanowski & Z. Michalewicz (1999). Searching for optima in non-stationary environments. CEC'99, vol. 3, pp. 1843–1850
- A.S. Uyar & A.E. Harmanci (2005). A new population based adaptive domination change mechanism for diploid genetic algorithms in dynamic environments. Soft Comput., 9: 803–814
- S. Yang (2003). Non-stationary problem optimization using the primal-dual genetic algorithm. CEC'03, pp. 2246–2253

Shengxiang Yang (De Montfort University)

Tutorial: EC for DOPs

GECCO'13, 7/7/2013

62 / 63

References - 3

- S. Yang, Y. Jiang, & T.T. Nguyen (2013). Metaheuristics for dynamic combinatorial optimization problems. IMA J of Management Math., in press
- S. Yang, Y.-S. Ong & Y. Jin (2007). Evolutionary Computation in Dynamic and Uncertain Environments. Springer
- S. Yang & H. Richter (2009). Hyper-learning for population-based incremental learning in dynamic environments. CEC'09, pp. 682–689
- S. Yang & R. Tinos (2008). Hyper-selection in dynamic environments. CEC'08, pp. 3185-3192
- S. Yang & X. Yao (2005). Experimental study on population-based incremental learning algorithms for dynamic optimization problems. Soft Comput., 9: 815–834
- S. Yang & X. Yao (2008). Population-based incremental learning with associative memory for dynamic environments. IEEE Trans Evol Comput, 12: 542–561
- S. Yang & X. Yao (2013). Evolutionary Computation for Dynamic Optimization Problems.
 Springer
- K. Weicker (2003). Evolutionary Algorithms and Dynamic Optimization Problems. Der Andere Verlag
- S. Zeng et al. (2006). A dynamic multi-objective evolutionary algorithm based on an orthogonal design. CEC'06, pp. 573–580
- Z. Zhang & S. Qian (2011). Artificial immune system in dynamic environments solving time-varying non-linear constrained multi-objective problems. Soft Comput., 15(7): 1333–1349

DE MONTFORT UNIVERSITY

Shengxiang Yang (De Montfort University)

Tutorial: EC for DOPs

GECCO'13 7/7/2013